Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.710
Filter
1.
Microb Biotechnol ; 17(7): e14518, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953907

ABSTRACT

Porcine epidemic diarrhoea virus (PEDV) infects pigs of all ages by invading small intestine, causing acute diarrhoea, vomiting, and dehydration with high morbidity and mortality among newborn piglets. However, current PEDV vaccines are not effective to protect the pigs from field epidemic strains because of poor mucosal immune response and strain variation. Therefore, it is indispensable to develop a novel oral vaccine based on epidemic strains. Bacillus subtilis spores are attractive delivery vehicles for oral vaccination on account of the safety, high stability, and low cost. In this study, a chimeric gene CotC-Linker-COE (CLE), comprising of the B. subtilis spore coat gene cotC fused to the core neutralizing epitope CO-26 K equivalent (COE) of the epidemic strain PEDV-AJ1102 spike protein gene, was constructed. Then recombinant B. subtilis displaying the CLE on the spore surface was developed by homologous recombination. Mice were immunized by oral route with B. subtilis 168-CLE, B. subtilis 168, or phosphate-buffered saline (PBS) as control. Results showed that the IgG antibodies and cytokine (IL-4, IFN-γ) levels in the B. subtilis 168-CLE group were significantly higher than the control groups. This study demonstrates that B. subtilis 168-CLE can generate specific systemic immune and mucosal immune responses and is a potential vaccine candidate against PEDV infection.


Subject(s)
Antibodies, Viral , Bacillus subtilis , Porcine epidemic diarrhea virus , Spores, Bacterial , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/immunology , Animals , Bacillus subtilis/genetics , Bacillus subtilis/immunology , Spores, Bacterial/genetics , Spores, Bacterial/immunology , Mice , Antibodies, Viral/blood , Swine , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Coronavirus Infections/veterinary , Coronavirus Infections/prevention & control , Swine Diseases/prevention & control , Swine Diseases/virology , Swine Diseases/microbiology , Swine Diseases/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , Administration, Oral , Cytokines/metabolism , Immunoglobulin G/blood , Mice, Inbred BALB C , Female , Cell Surface Display Techniques , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
2.
J Med Microbiol ; 73(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38963177

ABSTRACT

Introduction. Administered nasally, spores of the Gram-positive bacterium Bacillus subtilis have been shown to be able to induce innate immunity sufficient to confer protection to influenza and respiratory syncytial virus.Hypothesis. Although members of the aerobiome, intranasal delivery of high numbers of live spores carries potential safety issues.Aim. To address the potential safety risk of using live spores, we assessed the safety of spores that had been completely inactivated using heat sterilization.Methodology. Using autoclaved, and therefore killed, spores of a generally recognized as safe-notified B. subtilis strain (DSM 32444), safety was assessed in vitro (biotype, genome and cell based cytoxicity) and in vivo, using intranasal administration in rodent models and lastly in human volunteers.Results. Using a 15-day, repeat-dose, regimen in a rodent model, no indication of toxicity was observed. In a registered human study (NCT05984004), a formulated preparation of inactivated DSM 32444 spores referred to as SPEROVID was developed, and tolerance in human volunteers was assessed following 7 days of nasal dosing (2-4 times/day).Conclusion. Our study demonstrated that in humans an intranasal dose of up to 3×108 killed spores was safe and well tolerated.


Subject(s)
Administration, Intranasal , Bacillus subtilis , Spores, Bacterial , Humans , Animals , Female , Male , Adult , Mice , Young Adult , Rats , Middle Aged
3.
Mol Plant Pathol ; 25(7): e13484, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973095

ABSTRACT

Peach brown rot, attributed to Monilinia fructicola, presents a significant threat to postharvest peach cultivation, causing losses of up to 80%. With an increasing number of countries, spearheaded by the European Union, imposing bans on chemical agents in fruit production, there is a growing interest in mining highly active antibacterial compounds from biological control strains for postharvest disease management. In this study, we highlight the unique ability of Streptomyces lincolnensis strain JCP1-7 to inhibit M. fructicola sporulation, despite its limited antimicrobial efficacy. Through GC-MS analysis, eucalyptol was identified as the key compound. Fumigation of diseased fruits with eucalyptol at a concentration of 0.0335 µg cm-3 demonstrated an in vivo inhibition rate against M. fructicola of 93.13%, completely suppressing spore formation. Transcriptome analysis revealed the impact of eucalyptol on multiple pathogenesis-related pathways, particularly through the inhibition of catalase 2 (Cat2) expression. Experiments with a MfCat2 knockout strain (ΔMfCat2) showed reduced pathogenicity and sensitivity to JCP1-7 and eucalyptol, suggesting MfCat2 as a potential target of JCP1-7 and eucalyptol against M. fructicola. Our findings elucidate that eucalyptol produced by S. lincolnensis JCP1-7 inhibits M. fructicola sporulation by regulating MfCat2, thereby effectively reducing postharvest peach brown rot occurrence. The use of fumigation of eucalyptol offers insights into peach brown rot management on a large scale, thus making a significant contribution to agricultural research.


Subject(s)
Eucalyptol , Plant Diseases , Streptomyces , Eucalyptol/pharmacology , Plant Diseases/microbiology , Prunus persica/microbiology , Spores, Bacterial/drug effects , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Virulence/drug effects , Micrococcaceae/pathogenicity , Micrococcaceae/drug effects
4.
Curr Microbiol ; 81(8): 248, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951187

ABSTRACT

Myxococcus xanthus synthesizes polyphosphates (polyPs) with polyphosphate kinase 1 (Ppk1) and degrades short- and long-chain polyPs with the exopolyphosphatases, Ppx1 and Ppx2, respectively. M. xanthus polyP:AMP phosphotransferase (Pap) generates ADP from AMP and polyPs. Pap expression is induced by an elevation in intracellular polyP concentration. M. xanthus synthesized polyPs during the stationary phase; the ppk1 mutant died earlier than the wild-type strain after the stationary phase. In addition, M. xanthus cells cultured in phosphate-starved medium, H2O2-supplemented medium, or amino acid-deficient medium increased the intracellular polyP levels by six- to ninefold after 6 h of incubation. However, the growth of ppk1 and ppx2 mutants in phosphate-starved medium and H2O2-supplemented medium was not significantly different from that of wild-type strain, nor was there a significant difference in fruiting body formation and sporulation in starvation condition. During development, no difference was observed in the adenylate energy charge (AEC) values in the wild-type, ppk1 mutant, and pap mutant strains until the second day of development. However, after day 3, the ppk1 and pap mutants had a lower ADP ratio and a higher AMP ratio compared to wild-type strain, and as a result, the AEC values of these mutants were lower than those of the wild-type strain. Spores of ppk1 and pap mutants in the nutrient medium germinated later than those of the wild-type strain. These results suggested that polyPs produced during development may play an important role in cellular energy homeostasis of the spores by being used to convert AMP to ADP via Pap.


Subject(s)
Myxococcus xanthus , Polyphosphates , Spores, Bacterial , Polyphosphates/metabolism , Myxococcus xanthus/genetics , Myxococcus xanthus/growth & development , Myxococcus xanthus/metabolism , Spores, Bacterial/growth & development , Spores, Bacterial/genetics , Spores, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Phosphotransferases (Phosphate Group Acceptor)/genetics , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Acid Anhydride Hydrolases/genetics , Acid Anhydride Hydrolases/metabolism , Culture Media/chemistry
5.
Mol Biol (Mosk) ; 58(1): 43-53, 2024.
Article in Russian | MEDLINE | ID: mdl-38943579

ABSTRACT

Spore-forming bacteria have a unique resistance to negative environmental conditions, including aggressive space factors, and are an excellent model for studying adaptation mechanisms and survival strategies at the molecular level. The study analyzed the genome of Bacillus velezensis, which remained viable after a 2-year exposure in outer space on the outer surface of the ISS as part of the Test space experiment. A comparative analysis of the draft genomes of the exhibit strain and the ground control did not reveal significant changes; the average nucleotide identity was 99.98%, which indicates the ability of microorganisms to maintain genome stability in space conditions, due to both increased stress resistance of bacterial spores and efficient operation of the system of repair of accumulated changes. The study of a single nucleotide polymorphism in the genome of B. velezensis revealed nine point substitutions, three of which are in intergenic regions, six in protein-coding genes, three of them are missense mutations, two nucleotide deletions leading to a shift in the reading frame, and one synonymous substitution. The profiles of the housekeeping genes were determined during MLST typing and it was found that the allelic profiles obtained for B. velezensis T15.2 and 924 strains do not correspond to any of the previously described sequence types. The presented results indicate the ability of B. velezensis bacteria to maintain the viability of spores and the integrity of the genome for a long time under extreme conditions of outer space, which is important for the problem of planetary protection, as well as the potential possibility of performing biotechnological processes based on B. velezensis during space exploration.


Subject(s)
Bacillus , Genome, Bacterial , Genomic Instability , Bacillus/genetics , Bacillus/metabolism , Polymorphism, Single Nucleotide , Spores, Bacterial/genetics , Multilocus Sequence Typing
6.
Food Res Int ; 190: 114610, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945575

ABSTRACT

Spore-forming bacteria are the most complex group of microbes to eliminate from the dairy production line due to their ability to withstand heat treatment usually used in dairy processing. These ubiquitous microorganisms have ample opportunity for multiple points of entry into the milk chain, creating issues for food quality and safety. Certain spore-formers, namely bacilli and clostridia, are more problematic to the dairy industry due to their possible pathogenicity, growth, and production of metabolites and spoilage enzymes. This research investigated the spore-forming population from raw milk reception at two Norwegian dairy plants through the cheesemaking stages until ripening. Samples were collected over two years and examined by amplicon sequencing in a culture independent manner and after an anaerobic spore-former enrichment step. In addition, a total of 608 isolates from the enriched samples were identified at the genus or species level using MALDI-TOF analysis. Most spore-forming isolates belong to the genera Bacillus or Clostridium, with the latter dominating the enriched MPN tubes of raw milk and bactofugate. Results showed a great variation among the clostridia and bacilli detected in the enriched MPN tubes. However, B. licheniformis and C. tyrobutyricum were identified in all sample types from both plants throughout the 2-year study. In conclusion, our results shed light on the fate of different spore-formers at different processing stages in the cheese production chain, which could facilitate targeted actions to reduce quality problems.


Subject(s)
Cheese , Food Microbiology , Spores, Bacterial , Norway , Cheese/microbiology , Spores, Bacterial/isolation & purification , Milk/microbiology , Clostridium/isolation & purification , Clostridium/genetics , Animals , Bacillus/isolation & purification , Bacillus/genetics , Bacillus/classification , Food Handling/methods , Dairying
7.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38906847

ABSTRACT

AIM: Ohmic heating (OH) (i.e. heating by electric field) more effectively kills bacterial spores than traditional wet heating, yet its mechanism remains poorly understood. This study investigates the accelerated spore inactivation mechanism using genetically modified spores. METHODS AND RESULTS: We investigated the effects of OH and conventional heating (CH) on various genetically modified strains of Bacillus subtilis: isogenic PS533 (wild type_1), PS578 [lacking spores' α/ß-type small acid-soluble proteins (SASP)], PS2318 (lacking recA, encoding a DNA repair protein), isogenic PS4461 (wild type_2), and PS4462 (having the 2Duf protein in spores, which increases spore wet heat resistance and decreases spore inner membrane fluidity). Removal of SASP brought the inactivation profiles of OH and CH closer, suggesting the interaction of these proteins with the field. However, the reemergence of a difference between CH and OH killing for SASP-deficient spores at the highest tested field strength suggested there is also interaction of the field with another spore core component. Additionally, RecA-deficient spores yielded results like those with the wild-type spores for CH, while the OH resistance of this mutant increased at the lower tested temperatures, implying that RecA or DNA are a possible additional target for the electric field. Addition of the 2Duf protein markedly increased spore resistance both to CH and OH, although some acceleration of killing was observed with OH at 50 V/cm. CONCLUSIONS: In summary, both membrane fluidity and interaction of the spore core proteins with electric field are key factors in enhanced spore killing with electric field-heat combinations.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Hot Temperature , Rec A Recombinases , Spores, Bacterial , Spores, Bacterial/radiation effects , Spores, Bacterial/genetics , Bacillus subtilis/genetics , Bacillus subtilis/physiology , Bacillus subtilis/metabolism , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Heating , Membrane Proteins/metabolism , Membrane Proteins/genetics
8.
J Nanobiotechnology ; 22(1): 303, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822376

ABSTRACT

Radiation-induced intestinal injury is the most common side effect during radiotherapy of abdominal or pelvic solid tumors, significantly impacting patients' quality of life and even resulting in poor prognosis. Until now, oral application of conventional formulations for intestinal radioprotection remains challenging with no preferred method available to mitigate radiation toxicity in small intestine. Our previous study revealed that nanomaterials derived from spore coat of probiotics exhibit superior anti-inflammatory effect and even prevent the progression of cancer. The aim of this work is to determine the radioprotective effect of spore coat (denoted as spore ghosts, SGs) from three clinically approved probiotics (B.coagulans, B.subtilis and B.licheniformis). All the three SGs exhibit outstanding reactive oxygen species (ROS) scavenging ability and excellent anti-inflammatory effect. Moreover, these SGs can reverse the balance of intestinal flora by inhibiting harmful bacteria and increasing the abundance of Lactobacillus. Consequently, administration of SGs significantly reduce radiation-induced intestinal injury by alleviating diarrhea, preventing X-ray induced apoptosis of small intestinal epithelial cells and promoting restoration of barrier integrity in a prophylactic study. Notably, SGs markedly improve weight gain and survival of mice received total abdominal X-ray radiation. This work may provide promising radioprotectants for efficiently attenuating radiation-induced gastrointestinal syndrome and promote the development of new intestinal predilection.


Subject(s)
Probiotics , Radiation-Protective Agents , Spores, Bacterial , Animals , Probiotics/pharmacology , Mice , Administration, Oral , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/therapeutic use , Radiation-Protective Agents/chemistry , Spores, Bacterial/radiation effects , Radiation Injuries/drug therapy , Reactive Oxygen Species/metabolism , Intestine, Small/microbiology , Intestine, Small/radiation effects , Intestine, Small/pathology , Humans , Apoptosis/drug effects , Male , Gastrointestinal Microbiome/drug effects , Intestines/radiation effects , Intestines/microbiology , Intestines/pathology , Radiation Injuries, Experimental/pathology
9.
Int J Food Microbiol ; 421: 110784, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38897047

ABSTRACT

Bacillus cereus spores pose a significant concern during food processing due to their high resistance to environmental stress. Ohmic heating (OH) is an emerging and alternative heating technology with potential for inactivating such spores. This study evaluated the inactivation effects and the biological property changes of Bacillus cereus spores during OH treatments. OH effectively inactivated spores in milk, orange juice, broth, rice soup, and buffer solution in less time than oil bath heating (OB). A decrease in NaCl content improved spore inactivation at the same temperature. Spores were more sensitive to acid at 80-85 °C with OH treatment. Furthermore, OH at 10 V/cm and 50 Hz could reduce the spore resistance and inhibit an increase in spore hydrophobicity and spore aggregation. Both heating methods resulted in significant dipicolinic acid (DPA) leakage and damage to the cortex and inner membranes of the spores. However, OH at 10 V/cm and 50 Hz had the lowest DPA leakage and inflicted the least damage to the inner membrane. The damage to the spore's inner membrane was considered the primary reason for inactivation by OB and OH treatments. Still, OH at 10 V/cm and 50 Hz might also block the germination or outgrowth of treated spores or cause damage to the spore core.


Subject(s)
Bacillus cereus , Hot Temperature , Spores, Bacterial , Spores, Bacterial/growth & development , Spores, Bacterial/radiation effects , Bacillus cereus/growth & development , Food Microbiology , Microbial Viability , Picolinic Acids/pharmacology , Food Handling/methods
10.
J Hosp Infect ; 149: 22-25, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705474

ABSTRACT

BACKGROUND: The role of the healthcare environment in the transmission of clinical pathogens is well established. EN 17126:2018 was developed to address the need for regulated sporicidal product testing and includes a realistic medical soil to enable validation of products that claim combined cleaning and disinfection efficacy. AIM: To investigate the chemical stability and sporicidal efficacy of oxidizing disinfectant products in the presence of simulated clean and medical dirty conditions. METHODS: Disinfectant stability and sporicidal efficacy were evaluated in like-for-like ratios of soil:product. Disinfectants were exposed to simulated test soils and free chlorine, chlorine dioxide or peracetic acid concentrations were measured using standard colorimetric methods. Efficacy of disinfectants against C. difficile R027 endospores was assessed as per EN 17126:2018. Comparisons of performance between clean and medical dirty conditions were performed using one-way analysis of variance. Correlation analysis was performed using Pearson product-moment correlation. FINDINGS: Performance of chlorine-releasing agents (sodium dichloroisocyanurate, chlorine dioxide and hypochlorous acid) was concentration dependent, with 1000 ppm chlorine showing reduced stability and efficacy in dirty conditions. By contrast, peracetic acid product demonstrated stability and consistently achieved efficacy in dirty conditions. CONCLUSION: These results have implications for clinical practice, as ineffective environmental decontamination may increase the risk of transmission of pathogens that can cause healthcare-associated infections.


Subject(s)
Chlorine Compounds , Disinfectants , Oxides , Peracetic Acid , Spores, Bacterial , Disinfectants/pharmacology , Chlorine Compounds/pharmacology , Oxides/pharmacology , Peracetic Acid/pharmacology , Spores, Bacterial/drug effects , Clostridioides difficile/drug effects , Humans , Disinfection/methods , Triazines/pharmacology , Hypochlorous Acid/pharmacology
11.
J Biol Chem ; 300(6): 107339, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705388

ABSTRACT

During sporulation, Bacillus subtilis forms an asymmetric septum, dividing the cell into two compartments, a mother cell and a forespore. The site of asymmetric septation is linked to the membrane where FtsZ and SpoIIE initiate the formation of the Z-ring and the E-ring, respectively. These rings then serve as a scaffold for the other cell division and peptidoglycan synthesizing proteins needed to build the septum. However, despite decades of research, not enough is known about how the asymmetric septation site is determined. Here, we identified and characterized the interaction between SpoIIE and RefZ. We show that these two proteins transiently colocalize during the early stages of asymmetric septum formation when RefZ localizes primarily from the mother cell side of the septum. We propose that these proteins and their interplay with the spatial organization of the chromosome play a role in controlling asymmetric septum positioning.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Spores, Bacterial , Bacillus subtilis/metabolism , Bacillus subtilis/physiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Spores, Bacterial/metabolism , Cell Division , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics
12.
Microbiol Spectr ; 12(7): e0374823, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38780256

ABSTRACT

The lasso peptide microcin J25 (MccJ25) possesses strong antibacterial properties and is considered a potential effective component of bacterial disease treatment drugs and safe food preservatives. Although MccJ25 can be heterologously expressed in Bacillus subtilis as we have previously reported, its regulation and accumulation are yet to be understood. Here, we investigated the expression level and stability of MccJ25 in B. subtilis strains with disruption in peptidase genes pepA, pepF, and pepT. Oligoendopeptidase F (PepF) was found to be involved in reduction of the production of MccJ25 by degradation of its precursor peptide. In the pepF mutant, the MccJ25 reached a concentration of 1.68 µM after a cultivation time exceeding 60 hours, while the wild-type strain exhibited a concentration of only 0.14 µM. Moreover, the production of MccJ25 in B. subtilis downregulated the genes associated with sporulation, and this may contribute to its accumulation. Finally, this study provides a strategy to improve the stability and production of MccJ25 in B. subtilis. IMPORTANCE: MccJ25 displays significant antibacterial activity, a well-defined mode of action, exceptional safety, and remarkable stability. Hence, it presents itself as a compelling candidate for an optimal antibacterial or anti-endotoxin medication. The successful establishment of exogenous production of MccJ25 in Bacillus subtilis provides a strategy for reducing its production cost and diversifying its utilization. In this study, we have provided evidence indicating that both peptidase PepF and sporulation are significant factors that limit the expression of MccJ25 in B. subtilis. The ΔpepF and ΔsigF mutants of B. subtilis express MccJ25 with higher production yield and enhanced stability. To sum up, this study developed several better engineered strains of B. subtilis, which greatly reduced the consumption of MccJ25 during the nutrient depletion stage of the host strain, improved its production, and elucidated factors that may be involved in reducing MccJ25 accumulation in B. subtilis.


Subject(s)
Anti-Bacterial Agents , Bacillus subtilis , Bacterial Proteins , Bacteriocins , Spores, Bacterial , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacillus subtilis/growth & development , Bacteriocins/metabolism , Bacteriocins/genetics , Bacteriocins/biosynthesis , Spores, Bacterial/genetics , Spores, Bacterial/growth & development , Spores, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/biosynthesis , Gene Expression Regulation, Bacterial , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics
13.
Microsc Microanal ; 30(3): 564-573, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38701197

ABSTRACT

Scanning electron microscopy (SEM) can reveal the ultrastructure of bacterial spores, including morphology, surface features, texture, spore damage, germination, and appendages. Understanding these features can provide a basis for adherence, how physical and environmental stressors affect spore viability, integrity, and functionality, as well as the distribution and function of surface appendages. However, the spore sample preparation method can significantly impact the SEM images' appearance, resolution, and overall quality. In this study, we compare different spore preparation methods to identify optimal approaches for preparation time, spore appearance and resolved features, including the exosporium and spore pili, for SEM imaging. We use Bacillus paranthracis as model species and evaluate the efficacy of preparation protocols using different fixation and drying methods, as well as imaging under room- and cryogenic temperatures. We compare and assess method complexity to the visibility of the spore exosporium and spore appendages across different methods. Additionally, we use Haralick texture features to quantify the differences in spore surface appearance and determine the most suitable method for preserving spore structures and surface features during SEM evaluation. The findings from this study will help establish protocols for preparing bacterial spores for SEM and facilitating accurate and reliable analysis of spores' characteristics.


Subject(s)
Bacillus , Microscopy, Electron, Scanning , Spores, Bacterial , Spores, Bacterial/ultrastructure , Microscopy, Electron, Scanning/methods , Bacillus/ultrastructure , Specimen Handling/methods
14.
Nucleic Acids Res ; 52(12): 7112-7128, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38783097

ABSTRACT

Streptomyces are soil bacteria with complex life cycle. During sporulation Streptomyces linear chromosomes become highly compacted so that the genetic material fits within limited spore volume. The key players in this process are nucleoid-associated proteins (NAPs). Among them, HU (heat unstable) proteins are the most abundant NAPs in the cell and the most conserved in bacteria. HupS, one of the two HU homologues encoded by the Streptomyces genome, is the best-studied spore-associated NAP. In contrast to other HU homologues, HupS contains a long, C-terminal domain that is extremely rich in lysine repeats (LR domain) similar to eukaryotic histone H2B and mycobacterial HupB protein. Here, we have investigated, whether lysine residues in HupS are posttranslationally modified by reversible lysine acetylation. We have confirmed that Streptomyces venezuelae HupS is acetylated in vivo. We showed that HupS binding to DNA in vitro is controlled by the acetylation. Moreover, we identified that CobB1, one of two Sir2 homologues in Streptomyces, controls HupS acetylation levels in vivo. We demonstrate that the elimination of CobB1 increases HupS mobility, reduces chromosome compaction in spores, and affects spores maturation. Thus, our studies indicate that HupS acetylation affects its function by diminishing DNA binding and disturbing chromosome organization.


Subject(s)
Bacterial Proteins , Spores, Bacterial , Streptomyces , Streptomyces/genetics , Streptomyces/metabolism , Spores, Bacterial/genetics , Spores, Bacterial/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Acetylation , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA, Bacterial/metabolism , DNA, Bacterial/genetics , Protein Binding , Lysine/metabolism
15.
Int J Food Microbiol ; 418: 110731, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38733637

ABSTRACT

Alicyclobacillus spp. is the cause of great concern for the food industry due to their spores' resistance (thermal and chemical) and the spoilage potential of some species. Despite this, not all Alicyclobacillus strains can spoil fruit juices. Thus, this study aimed to identify Alicyclobacillus spp. strains isolated from fruit-based products produced in Argentina, Brazil, and Italy by DNA sequencing. All Alicyclobacillus isolates were tested for guaiacol production by the peroxidase method. Positive strains for guaiacol production were individually inoculated at concentration of 103 CFU/mL in 10 mL of orange (pH 3.90) and apple (pH 3.50) juices adjusted to 11°Brix, following incubation at 45 °C for at least 5 days to induce the production of the following spoilage compounds: Guaiacol, 2,6-dichlorophenol (2,6-DCP) and 2,6-dibromophenol (2,6-DBP). The techniques of micro-solid phase extraction by headspace (HS-SPME) and gas-chromatography with mass spectrometry (GC-MS) were used to identify and quantify the spoilage compounds. All GC-MS data was analyzed by principal component analysis (PCA). The effects of different thermal shock conditions on the recovery of Alicyclobacillus spores inoculated in orange and apple juice (11°Brix) were also tested. A total of 484 strains were isolated from 48 brands, and the species A. acidocaldarius and A. acidoterrestris were the most found among all samples analyzed. In some samples from Argentina, the species A. vulcanalis and A. mali were also identified. The incidence of these two main species of Alicyclobacillus in this study was mainly in products from pear (n = 108; 22.3 %), peach (n = 99; 20.5 %), apple (n = 86; 17.8 %), and tomato (n = 63; 13 %). The results indicated that from the total isolates from Argentina (n = 414), Brazil (n = 54) and Italy (n = 16) were able to produce guaiacol: 107 (25.8 %), 33 (61.1 %) and 13 (81.2 %) isolates from each country, respectively. The PCA score plot indicated that the Argentina and Brazil isolates correlate with higher production of guaiacol and 2,6-DCP/2,6-DBP, respectively. Heatmaps of cell survival after heat shock demonstrated that strains with different levels of guaiacol production present different resistances according to spoilage ability. None of the Alicyclobacillus isolates survived heat shocks at 120 °C for 3 min. This work provides insights into the incidence, spoilage potential, and thermal shock resistance of Alicyclobacillus strains isolated from fruit-based products.


Subject(s)
Alicyclobacillus , Fruit and Vegetable Juices , Fruit , Gas Chromatography-Mass Spectrometry , Guaiacol , Spores, Bacterial , Alicyclobacillus/isolation & purification , Alicyclobacillus/genetics , Alicyclobacillus/classification , Alicyclobacillus/growth & development , Fruit and Vegetable Juices/microbiology , Guaiacol/analogs & derivatives , Guaiacol/metabolism , Guaiacol/pharmacology , Fruit/microbiology , Spores, Bacterial/growth & development , Spores, Bacterial/isolation & purification , Food Microbiology , Food Contamination/analysis , Brazil , Solid Phase Microextraction , Argentina , Malus/microbiology , Italy , Hot Temperature , Citrus sinensis/microbiology
19.
Talanta ; 276: 126282, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38788382

ABSTRACT

Herein, spore@Cu-trimesic acid (TMA) biocomposites were prepared by self-assembling Cu-based metal-organic framework on the surface of Bacillus velezensis spores. The laccase-like activity of spore@Cu-TMA biocomposites was enhanced by 14.9 times compared with that of pure spores due to the reaction of Cu2+ ions with laccase on the spore surface and the microporous structure of Cu-TMA shell promoting material transport and increasing substrate accessibility. Spore@Cu-TMA rapidly oxidized and transformed 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) into ABTS●+ without using H2O2. Under optimum conditions, the ABTS●+ could be stored for 21 days at 4 °C and 7 days at 37 °C without the addition of any stabilizers, allowing for the large-scale preparation and long-term storage of ABTS●+. The ultrarobust stable ABTS●+ obtained with the use of Cu-TMA could effectively reduce the "back reaction" by preventing the leaching of the metabolites released by the spores. On the basis of these findings, a rapid, low-cost, and eco-friendly colorimetric platform was successfully developed for the detection of antioxidant capacity. Determination of antioxidant capacity for several antioxidants such as caffeic acid, glutathione, and Trolox revealed their corresponding limits of detection at 4.83, 8.89, and 7.39 nM, respectively, with linear ranges of 0.01-130, 0.01-140, and 0.01-180 µM, respectively. This study provides a facile way to prepare ultrarobust stable ABTS●+ and presents a potential application of spore@Cu-TMA biocomposites in food detection and bioanalysis.


Subject(s)
Antioxidants , Bacillus , Benzothiazoles , Copper , Spores, Bacterial , Sulfonic Acids , Copper/chemistry , Sulfonic Acids/chemistry , Benzothiazoles/chemistry , Antioxidants/chemistry , Antioxidants/analysis , Spores, Bacterial/chemistry , Bacillus/enzymology , Laccase/chemistry , Laccase/metabolism , Metal-Organic Frameworks/chemistry , Tricarboxylic Acids/chemistry
20.
Talanta ; 276: 126215, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38723474

ABSTRACT

Antibody detection is the critical first step for tracking the spread of many diseases including COVID-19. Lateral flow immunoassay (LFIA) is the most commonly used method for rapid antibody detection because it is easy-to-use and inexpensive. However, LFIA has limited sensitivity when gold nanoparticles (AuNPs) are used as the signals. In this study, the endospores of Bacillus subtilis were used in combination with AuNP in a LFIA to detect antibodies. The endospores serve as a signal amplifier. The detection limit was about 10-8 M for anti-beta galactosidase antibody detection whereas the detection limit of conventional LFIA is about 10-6 M. Furthermore, the proposed methods have no additional user steps compared with the traditional LFIA. This method, therefore, improved the sensitivity 100-fold without compromising any advantages of LFIA. We believe that the proposed method will be useful for detection of antibodies against HIV, Zika virus, SARS-CoV-2, and so on.


Subject(s)
Bacillus subtilis , Gold , Limit of Detection , Metal Nanoparticles , Bacillus subtilis/immunology , Immunoassay/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Humans , Spores, Bacterial/immunology , SARS-CoV-2/immunology , Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , Zika Virus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...