Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.377
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 458, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230670

ABSTRACT

The advancement of fungal biocontrol agents depends on replacing cereal grains with low-cost agro-industrial byproducts for their economical mass production and development of stable formulations. We propose an innovative approach to develop a rice flour-based formulation of the beneficial biocontrol agent Trichoderma asperelloides CMAA1584 designed to simulate a micro-bioreactor within the concept of full biorefinery process, affording in situ conidiation, extended shelf-life, and effective control of Sclerotinia sclerotiorum, a devastating pathogen of several dicot agricultural crops worldwide. Rice flour is an inexpensive and underexplored byproduct derived from broken rice after milling, capable of sustaining high yields of conidial production through our optimized fermentation-formulation route. Conidial yield was mainly influenced by nitrogen content (0.1% w/w) added to the rice meal coupled with the fermentor type. Hydrolyzed yeast was the best nitrogen source yielding 2.6 × 109 colony-forming units (CFU)/g within 14 days. Subsequently, GControl, GLecithin, GBreak-Thru, GBentonite, and GOrganic compost+Break-Thru formulations were obtained by extrusion followed by air-drying and further assessed for their potential to induce secondary sporulation in situ, storage stability, and efficacy against Sclerotinia. GControl, GBreak-Thru, GBentonite, and GOrganic compost+Break-Thru stood out with the highest number of CFU after sporulation upon re-hydration on water-agar medium. Shelf-life of formulations GControl and GBentonite remained consistent for > 3 months at ambient temperature, while in GBentonite and GOrganic compost+Break-Thru formulations remained viable for 24 months during refrigerated storage. Formulations exhibited similar efficacy in suppressing the myceliogenic germination of Sclerotinia irrespective of their concentration tested (5 × 104 to 5 × 106 CFU/g of soil), resulting in 79.2 to 93.7% relative inhibition. Noteworthily, all 24-month-old formulations kept under cold storage successfully suppressed sclerotia. This work provides an environmentally friendly bioprocess method using rice flour as the main feedstock to develop waste-free granular formulations of Trichoderma conidia that are effective in suppressing Sclerotinia while also improving biopesticide shelf-life. KEY POINTS: • Innovative "bioreactor-in-a-granule" system for T. asperelloides is devised. • Dry granules of aerial conidia remain highly viable for 24 months at 4 °C. • Effective control of white-mold sclerotia via soil application of Trichoderma-based granules.


Subject(s)
Ascomycota , Bioreactors , Fermentation , Oryza , Spores, Fungal , Bioreactors/microbiology , Ascomycota/growth & development , Ascomycota/metabolism , Oryza/microbiology , Spores, Fungal/growth & development , Nitrogen/metabolism , Hypocreales/metabolism , Hypocreales/growth & development , Biological Control Agents/chemistry , Trichoderma/metabolism , Trichoderma/growth & development , Plant Diseases/microbiology , Plant Diseases/prevention & control
2.
Food Microbiol ; 124: 104613, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39244365

ABSTRACT

Anthracnose caused by Colletotrichum scovillei is a significant disease of pepper, including in postharvest stage. Bacillus species represent a potential microbial resource for controlling postharvest plant diseases. Here, a strain HG-8-2 was obtained and identified as Bacillus velezensis through morphological, biochemical, physiological, and molecular analyses. The culture filtrate showed highly antifungal activity against C. scovillei both in vitro and on pepper fruit. Crude lipopeptide extracts, which had excellent stability, could effectively inhibit mycelial growth of C. scovillei with an EC50 value of 28.48 ± 1.45 µg mL-1 and inhibited conidial germination. Pretreatment with the extracts reduced the incidence and lesion size of postharvest anthracnose on pepper fruit. Analysis using propidium iodide staining, malondialdehyde content detection and scanning electron microscope observation suggested that the crude lipopeptide extracts harbored antifungal activity by damaging cell membranes and mycelial structures. The RNA-seq analysis conducted on C. scovillei samples treated with the extracts, as compared to untreated samples, revealed significant alterations in the expression of multiple genes involved in protein biosynthesis. Overall, these results demonstrated that B. velezensis HG-8-2 and its crude lipopeptide extracts exhibit highly antagonistic ability against C. scovillei, thereby offering an effective biological agent for the control of anthracnose in pepper fruit.


Subject(s)
Bacillus , Capsicum , Colletotrichum , Fruit , Plant Diseases , Colletotrichum/drug effects , Colletotrichum/growth & development , Capsicum/microbiology , Bacillus/genetics , Bacillus/metabolism , Bacillus/physiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Fruit/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Lipopeptides/pharmacology , Lipopeptides/metabolism , Mycelium/growth & development , Mycelium/drug effects , Biological Control Agents/pharmacology
3.
Environ Microbiol Rep ; 16(5): e13275, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39228346

ABSTRACT

Olive anthracnose induced by different Colletotrichum species causes dramatic losses of fruit yield and oil quality. The increasing incidence of Colletotrichum fioriniae (Colletotrichum acutatum species complex) as causal agent of olive anthracnose in Italy, is endorsing new studies on its biology, ecology, and environmental factors such as temperature. Five isolates from different sampling sites in Lazio region (Central Italy) were studied under controlled laboratory conditions aiming to better understand the differences of thermal development among the isolates and to lay the foundations of a future mathematical model able to describe the key aspects of the pathogen's life cycle. The mycelial growth rate and the conidial germination rate were assessed at seven different constant temperatures (5, 10, 15, 20, 25, 30, and 35°C) and fixed relative humidity (100% RH). The obtained dataset was analysed to estimate the parameters of mathematical functions that connect the mycelial growth rate and the spore germination with the environmental temperature. The parameters set provided as the result of this study constitute a key step forward in the biological knowledge of the species and the basis for future formulations of mathematical models that might be the core of decision support systems in an integrated pest management framework.


Subject(s)
Colletotrichum , Olea , Plant Diseases , Spores, Fungal , Temperature , Colletotrichum/growth & development , Olea/microbiology , Plant Diseases/microbiology , Spores, Fungal/growth & development , Italy , Mycelium/growth & development , Fruit/microbiology
4.
Fungal Biol ; 128(6): 2032-2041, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39174238

ABSTRACT

P. umbellatus sclerotium is a traditional Chinese medicine that is widely utilized in China, Korea, Japan, and other countries due to its diverse medicinal activities, such as diuretic, antitumor, anticancer, and immune system enhancement effects. Conidia, which are common asexual spores in various fungi, are not universally present in Polyporus species. In this study, the asexual life cycle of P. umbellatus was elucidated. Conidia, i.e. arthorconidia, were produced by both dikaryotic and monokaryotic strains. In the dikaryotic strain, binucleate, uninucleate, and nuclei-free conidia were identified with proportions of 67.9 %, 12.4 %, and 19.7 %, respectively. Conversely, the monokaryotic strain did not produce binucleate conidia. This discrepancy suggests that binucleate spores are heterokaryons, while uninucleate spores are homokaryons. Clamp connections were observed in dikaryotic hyphae, but were absent in monokaryotic hyphae. Monokaryotic strains were obtained from conidia of the dikaryotic strain. Additionally, mating types were determined through pairing tests, and successful crossbreeding occurred between monokaryotic strains derived from conidia and basidiospores from different strains. This study introduced the first crossbreeding strategy for P. umbellatus.


Subject(s)
Polyporus , Spores, Fungal , Spores, Fungal/growth & development , Polyporus/growth & development , Polyporus/metabolism , Cell Nucleus , Reproduction, Asexual , Hyphae/growth & development , Life Cycle Stages , Genes, Mating Type, Fungal
5.
J Appl Microbiol ; 135(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39104199

ABSTRACT

AIMS: The Gα subunit is a major component of heterotrimeric G proteins, which play a crucial role in the development and pathogenicity of several model fungi. However, its detailed function in the causal agent of pear black spot (Alternaria alternata) is unclear. Our aim was to understand the characteristics and functions of AaGA1 in A. alternata. METHODS AND RESULTS: AaGA1 was cloned from A. alternata in this study, which encodes 353 amino acids and has a "G-alpha" domain. Mutant ΔAaGA1 resulted in reduced vegetative growth, conidiation, and spore germination. Especially, mutant ΔAaGA1 produced only fewer conidia on the V8A medium, and spore formation-related genes AbaA, BrlA, and WetA were significantly downregulated. More tolerance against cell wall-inhibiting agents was observed after the deletion of AaGA1. Moreover, AaGA1 deletion led to a significant reduction in melanin and toxin production. Interestingly, deletion of AaGA1 resulted in defective appressorium-like formations, complete loss of the ability to penetrate cellophane, and decreased infection on non-wound inoculated tobacco leaves. Cell wall-degrading enzyme-related genes PME, CL, Cut2, and LC were significantly downregulated in mutant ΔAaGA1 mutant, significantly reducing virulence on wound-inoculated pear fruits. CONCLUSIONS: The G protein alpha subunit AaGA1 is indispensable for fungal development, appressorium-like formations, and pathogenicity in A. alternata.


Subject(s)
Alternaria , Fungal Proteins , GTP-Binding Protein alpha Subunits , Plant Diseases , Spores, Fungal , Alternaria/genetics , Alternaria/growth & development , Alternaria/pathogenicity , Plant Diseases/microbiology , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Spores, Fungal/growth & development , Spores, Fungal/genetics , Virulence/genetics , Pyrus/microbiology , Nicotiana/microbiology , Gene Expression Regulation, Fungal
6.
Curr Microbiol ; 81(10): 329, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190055

ABSTRACT

The search for less harmful, ecologically efficient, more specific, and natural alternatives for the control of pathogens is essential. Bauhinia variegata lectin (BvL) is a protein that has numerous biological activities, including antifungal. The present study examines the potential in vitro of B. variegata lectin against the fungus Bipolaris oryzae, responsible for agricultural losses in southern Brazil, due to damage to rice fields during seed germination. Bioassays to assess the inhibition potential of BvL were performed, including fungal growth, spore formation, and germination, in concentrations of 0, 25, 50, and 100 µg mL-1. Only the concentration of 100 µg mL-1 successfully inhibited mycelial growth and spore germination, while in spore formation, all treatments inhibited sporulation. In addition, fluorescence microscopy analysis demonstrated the ability of lectin to bind to the fungus and the lack of detection in the presence of lactose, suggesting its interaction with the fungal cell wall structures. This study highlights the potential of B. variegata seed lectin to control mycelial growth, sporulation, and germination of the phytopathogenic fungus B. oryzae, posing as a new biotechnological possibility for biological control.


Subject(s)
Antifungal Agents , Bauhinia , Plant Lectins , Spores, Fungal , Bauhinia/chemistry , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Plant Lectins/pharmacology , Ascomycota/drug effects , Ascomycota/growth & development , Plant Diseases/microbiology , Plant Diseases/prevention & control , Lectins/pharmacology , Oryza/microbiology , Oryza/growth & development , Mycelium/drug effects , Mycelium/growth & development , Brazil , Seeds/drug effects
7.
PLoS One ; 19(8): e0308383, 2024.
Article in English | MEDLINE | ID: mdl-39190744

ABSTRACT

Microbial volatile organic compounds (VOCs) emitted from fungi are known as their secondary metabolites from environmental sources. However, their physiological roles remain to be unclear. Even though the roles are still unknown, VOCs are deliberately released to convey information to both homologous and non-homologous organisms. We investigated the effects of single VOCs (hexanal, benzaldehyde, heptanal, 2-ethyl-1-hexanol, 3-octanone, 2-undecanone, 3-octanol, 2-Phenylethanol, 2-phenyl-2-propanol, phenylbenzaldehyde, 2-pentadecanone, ß-trans-bergamotene, ß-bisabolene, 2-methyl-5 -(1-methylethyl)pyrazine) on the fungal growth. In parallel, application of the co-culturing system in a growth chamber allowed free gas and VOCs exchange between emitter colonies of Fusarium solani and Aspergillus fumigatus, or between colonies of different growth stages of the same species. Distinct self-inhibition occurred by the emitters of fungal growing colonies against receiver ones on the stage of conidial germination or against the younger colonies at an earlier stage in both fungi. Similarly, the phenomenon of allelopathy appeared to work between growing colonies of F. solani and the germinating conidia or young colonies of A. fumigatus or vice versa. Solid phase microextraction-gas chromatography/mass spectrometry revealed VOCs compounds of each fungi. In F. solani, hexanal and benzaldehyde appeared to be significant inhibitors for colony growth. Benzaldehyde inhibited filamentous growth but not conidial germination. In A. fumigatus, heptanal seemed to be an equivalent effector. The inhibitory effect of benzaldehyde was more distinct on the A. fumigatus conidial germination than its filamentous growth.


Subject(s)
Aspergillus fumigatus , Benzaldehydes , Fusarium , Volatile Organic Compounds , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/metabolism , Fusarium/drug effects , Fusarium/growth & development , Aspergillus fumigatus/growth & development , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/metabolism , Benzaldehydes/pharmacology , Aldehydes/pharmacology , Aldehydes/metabolism , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Hexanols/pharmacology , Ketones/metabolism
8.
BMC Microbiol ; 24(1): 299, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127645

ABSTRACT

The fungus Parastagonospora nodorum causes septoria nodorum blotch on wheat. The role of the fungal Velvet-family transcription factor VeA in P. nodorum development and virulence was investigated here. Deletion of the P. nodorum VeA ortholog, PnVeA, resulted in growth abnormalities including pigmentation, abolished asexual sporulation and highly reduced virulence on wheat. Comparative RNA-Seq and RT-PCR analyses revealed that the deletion of PnVeA also decoupled the expression of major necrotrophic effector genes. In addition, the deletion of PnVeA resulted in an up-regulation of four predicted secondary metabolite (SM) gene clusters. Using liquid-chromatography mass-spectrometry, it was observed that one of the SM gene clusters led to an accumulation of the mycotoxin alternariol. PnVeA is essential for asexual sporulation, full virulence, secondary metabolism and necrotrophic effector regulation.


Subject(s)
Ascomycota , Fungal Proteins , Plant Diseases , Secondary Metabolism , Transcription Factors , Triticum , Ascomycota/genetics , Ascomycota/metabolism , Ascomycota/pathogenicity , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Lactones , Multigene Family , Mycotoxins/metabolism , Mycotoxins/genetics , Plant Diseases/microbiology , Spores, Fungal/genetics , Spores, Fungal/growth & development , Spores, Fungal/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Triticum/microbiology , Virulence/genetics
9.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960411

ABSTRACT

AIM: We investigated whether there was interspecies and intraspecies variation in spore germination of 12 strains of arbuscular mycorrhizal fungi when co-entrapped with the diazotrophic plant growth-promoting bacteria, Azospirillum brasilense Sp7 in alginate hydrogel beads. METHODS AND RESULTS: Twelve Rhizophagus irregularis, Rhizophagus intraradices, and Funneliformis mosseae strains were separately combined with a live culture of Azospirillum brasilense Sp7. Each fungal-bacterial consortia was supplemented with sodium alginate to a 2% concentration (v/v) and cross-linked in calcium chloride (2% w/v) to form biodegradable hydrogel beads. One hundred beads from each combination (total of 1200) were fixed in solidified modified Strullu and Romand media. Beads were observed for successful spore germination and bacterial growth over 14 days. In all cases, successful growth of A. brasilense was observed. For arbuscular mycorrhizal fungi, interspecies variation in spore germination was observed, with R. intraradices having the highest germination rate (64.3%), followed by R. irregularis (45.5%) and F. mosseae (40.3%). However, a difference in intraspecies germination was only observed among strains of R. irregularis and F. mosseae. Despite having varying levels of germination, even the strains with the lowest potential were still able to establish with the plant host Brachypodium distachyon in a model system. CONCLUSIONS: Arbuscular mycorrhizal spore germination varied across strains when co-entrapped with a diazotrophic plant growth-promoting bacteria. This demonstrates that hydrogel beads containing a mixed consortium hold potential as a sustainable biofertilizer and that compatibility tests remain an important building block when aiming to create a hydrogel biofertilizer that encases a diversity of bacteria and fungi. Moving forward, further studies should be conducted to test the efficacy of these hydrogel biofertilizers on different crops across varying climatic conditions in order to optimize their potential.


Subject(s)
Azospirillum brasilense , Fertilizers , Hydrogels , Mycorrhizae , Spores, Fungal , Mycorrhizae/physiology , Spores, Fungal/growth & development , Azospirillum brasilense/metabolism , Fertilizers/analysis , Alginates
10.
Curr Microbiol ; 81(8): 249, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951199

ABSTRACT

Beauveria bassiana, the causative agent of arthropod, proliferates in the host hemolymph (liquid environment) and shits to saprotrophic growth on the host cadaver (aerial surface). In this study, we used transcriptomic analysis to compare the gene expression modes between these two growth phases. Of 10,366 total predicted genes in B. bassiana, 10,026 and 9985 genes were expressed in aerial (AM) and submerged (SM) mycelia, respectively, with 9853 genes overlapped. Comparative analysis between two transcriptomes indicated that there were 1041 up-regulated genes in AM library when compared with SM library, and 1995 genes were down-regulated, in particular, there were 7085 genes without significant change in expression between two transcriptomes. Furthermore, of 25 amidase genes (AMD), BbAMD5 has high expression level in both transcriptomes, and its protein product was associated with cell wall in aerial and submerged mycelia. Disruption of BbAMD5 significantly reduced mycelial hydrophobicity, hydrophobin translocation, and conidiation on aerial plate. Functional analysis also indicated that BbAmd5 was involved in B. bassiana blastospore formation in broth, but dispensable for fungal virulence. This study revealed the high similarity in global expression mode between mycelia grown under two cultivation conditions.


Subject(s)
Beauveria , Fungal Proteins , Gene Expression Profiling , Gene Expression Regulation, Fungal , Mycelium , Transcriptome , Beauveria/genetics , Beauveria/growth & development , Fungal Proteins/genetics , Fungal Proteins/metabolism , Mycelium/growth & development , Mycelium/genetics , Animals , Virulence/genetics , Spores, Fungal/genetics , Spores, Fungal/growth & development
11.
PLoS One ; 19(7): e0299421, 2024.
Article in English | MEDLINE | ID: mdl-38954713

ABSTRACT

Mold infestations in buildings pose significant challenges to human health, affecting both private residences and hospitals. While molds commonly trigger asthma and allergies in the immunocompetent, they can cause life-threatening diseases in the immunocompromised. Currently, there is an unmet need for new strategies to reduce or prevent mold infestations. Far-UVC technology can inactivate microorganisms while remaining safe for humans. This study investigates the inhibitory efficacy of far-UVC light at 222 nm on the growth of common mold-producing fungi, specifically Penicillium candidum, when delivered in low-dose on-off duty cycles, a configuration consistent with its use in real-world settings. The inhibitory effect of the low-dose duty cycles was assessed on growth induced by i) an adjacent spore-producing P. candidum donor and ii) P. candidum spores seeded directly onto agar plates. In both setups, the far-UVC light significantly inhibited both vertical and horizontal growth of P. candidum, even when the UV doses were below the Threshold Value Limit of 23 mJ/cm2. These results suggest that far-UVC light holds the potential to improve indoor air quality by reducing or preventing mold growth, also when people are present.


Subject(s)
Penicillium , Ultraviolet Rays , Penicillium/growth & development , Penicillium/radiation effects , Spores, Fungal/radiation effects , Spores, Fungal/growth & development , Fungi/radiation effects , Fungi/growth & development , Humans , Air Pollution, Indoor/prevention & control , Air Pollution, Indoor/analysis , Threshold Limit Values
12.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39003242

ABSTRACT

AIMS: Developing energy-saving and ecofriendly strategies for treating harvested Microcystis biomass. METHODS AND RESULTS: Streptomyces amritsarensis HG-16 was first reported to effectively kill various morphotypes of natural Microcystis colonies at very high cell densities. Concurrently, HG-16 grown on lysed Microcystis maintained its antagonistic activity against plant pathogenic fungus Fusarium graminearum. It could completely inhibit spore germination and destroy mycelial structure of F. graminearum. Transcriptomic analysis revealed that HG-16 attacked F. graminearum in a comprehensive way: interfering with replication, transcription, and translation processes, inhibiting primary metabolisms, hindering energy production and simultaneously destroying stress-resistant systems of F. graminearum. CONCLUSIONS: The findings of this study provide a sustainable and economical option for resource reclamation from Microcystis biomass: utilizing Microcystis slurry to propagate HG-16, which can subsequently be employed as a biocontrol agent for managing F. graminearum.


Subject(s)
Fusarium , Microcystis , Spores, Fungal , Streptomyces , Fusarium/growth & development , Fusarium/physiology , Streptomyces/genetics , Streptomyces/physiology , Streptomyces/growth & development , Streptomyces/metabolism , Microcystis/growth & development , Microcystis/genetics , Microcystis/physiology , Spores, Fungal/growth & development , Antibiosis
13.
Arch Microbiol ; 206(8): 365, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085720

ABSTRACT

Trichoderma harzianum T4 is a soil fungus that plays an important role in the biological control of plant diseases. The aim of this study was to functionally characterize the ß-1,6-glucanase gene Neg1 in T. harzianum T4 and to investigate the effect of its overexpression on biocontrol traits, especially antagonism against pathogenic fungi. We found that overexpression of Neg1 did not affect growth of T. harzianum but enhanced sporulation of T. harzianum T4 cultures. Generally, spores are closely related to the defense ability of defense fungi and can assist their proliferation and improve their colonization ability. Secondly, overexpression of Neg1 also increased the secretion level of various hydrolytic enzymes and enhanced the antagonistic ability against phytopathogenic fungi of Fusarium spp. The results suggest that Neg1 is a key gene for improving the biocontrol effect of T. harzianum T4, which contributes to a better understanding of the mechanism of action of T. harzianum T4 as a fungal biocontrol agent.


Subject(s)
Antibiosis , Fusarium , Plant Diseases , Spores, Fungal , Plant Diseases/microbiology , Plant Diseases/prevention & control , Fusarium/genetics , Fusarium/physiology , Spores, Fungal/growth & development , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hypocreales/genetics , Hypocreales/metabolism , Pest Control, Biological , Biological Control Agents/metabolism , Trichoderma/genetics , Trichoderma/physiology , Trichoderma/metabolism
14.
Microbiol Res ; 287: 127833, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39032265

ABSTRACT

In this study, we investigated the biocontrol activity of the P. mediterranea strain PVCT 3C against Mal secco, a severe disease of citrus caused by the vascular fungus Plenodomus tracheiphilus. In vitro, bacterial diffusible compounds, volatile organic compounds and culture filtrates produced by PVCT 3C reduced the mycelial growth and conidial germination of P. tracheiphilus, also affecting the mycelial pigmentation. The application of bacterial suspensions by leaf-spraying before the inoculation with the pathogen on plants of the highly susceptible species sour orange and lemon led to an overall reduction in incidence and disease index, above all during the early disease stage. PVCT 3C genome was subjected to whole-genome shotgun sequencing to study the molecular mechanisms of action of this strain. In silico annotation of biosynthetic gene clusters for secondary metabolites revealed the presence of numerous clusters encoding antimicrobial compounds (e.g. cyclic lipopeptides, hydrogen cyanide, siderophores) and candidate novel products. During the asymptomatic disease phase (seven days post-inoculation), bacterial treatments interfered with the expression of different fungal genes, as assessed with an NGS and de novo assembly RNA-seq approach. These results suggest that P. mediterranea PVCT 3C or its secondary metabolites may offer a potential effective and sustainable alternative to contain P. tracheiphilus infections via integrated management.


Subject(s)
Ascomycota , Citrus , Plant Diseases , Pseudomonas , Plant Diseases/microbiology , Plant Diseases/prevention & control , Citrus/microbiology , Ascomycota/genetics , Ascomycota/physiology , Ascomycota/growth & development , Pseudomonas/genetics , Pseudomonas/metabolism , Pseudomonas/physiology , Spores, Fungal/growth & development , Biological Control Agents , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/pharmacology , Antibiosis , Genome, Bacterial , Plant Leaves/microbiology , Mycelium/growth & development , Secondary Metabolism
15.
Toxins (Basel) ; 16(7)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-39057925

ABSTRACT

Aspergillus flavus and its carcinogenic secondary metabolites, aflatoxins, not only cause serious losses in the agricultural economy, but also endanger human health. Rhein, a compound extracted from the Chinese herbal medicine Rheum palmatum L. (Dahuang), exhibits good anti-inflammatory, anti-tumor, and anti-oxidative effects. However, its effect and underlying mechanisms against Aspergillus flavus have not yet been fully illustrated. In this study, we characterized the inhibition effect of rhein on A. flavus mycelial growth, sporulation, and aflatoxin B1 (AFB1) biosynthesis and the potential mechanism using RNA-seq analysis. The results indicate that A. flavus mycelial growth and AFB1 biosynthesis were significantly inhibited by 50 µM rhein, with a 43.83% reduction in colony diameter and 87.2% reduction in AFB1 production. The RNA-seq findings demonstrated that the differentially expressed genes primarily participated in processes such as spore formation and development, the maintenance of cell wall and membrane integrity, management of oxidative stress, the regulation of the citric acid cycle, and the biosynthesis of aflatoxin. Biochemical verification experiments further confirmed that 50 µM rhein effectively disrupted cell wall and membrane integrity and caused mitochondrial dysfunction through disrupting energy metabolism pathways, leading to decreased ATP synthesis and ROS accumulation, resulting in impaired aflatoxin biosynthesis. In addition, a pathogenicity test showed that 50 µM rhein inhibited A. flavus spore growth in peanut and maize seeds by 34.1% and 90.4%, while AFB1 biosynthesis was inhibited by 60.52% and 99.43%, respectively. In conclusion, this research expands the knowledge regarding the antifungal activity of rhein and provides a new strategy to mitigate A. flavus contamination.


Subject(s)
Aflatoxin B1 , Anthraquinones , Aspergillus flavus , Reactive Oxygen Species , Aspergillus flavus/drug effects , Aspergillus flavus/metabolism , Aspergillus flavus/growth & development , Anthraquinones/pharmacology , Reactive Oxygen Species/metabolism , Aflatoxin B1/biosynthesis , Aflatoxin B1/toxicity , Energy Metabolism/drug effects , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Mycelium/drug effects , Mycelium/growth & development , Antifungal Agents/pharmacology
16.
Sci Rep ; 14(1): 16061, 2024 07 11.
Article in English | MEDLINE | ID: mdl-38992190

ABSTRACT

Rhizome rot is a destructive soil-borne disease of Polygonatum kingianum and adversely affects the yield and sustenance of the plant. Understanding how the causal fungus Fusarium oxysporum infects P. kingianum may suggest effective control measures against rhizome rot. In germinating conidia of infectious F. oxysporum, expression of the zinc finger transcription factor gene Zfp1, consisting of two C2H2 motifs, was up-regulated. To characterize the critical role of ZFP1, we generated independent deletion mutants (zfp1) and complemented one mutant with a transgenic copy of ZFP1 (zfp1 tZFP1). Mycelial growth and conidial production of zfp1 were slower than those of wild type (ZFP1) and zfp1 tZFP1. Additionally, a reduced inhibition of growth suggested zfp1 was less sensitive to conditions promoting cell wall and osmotic stresses than ZFP1 and zfp1 tZFP1. Furthermore pathogenicity tests suggested a critical role for growth of zfp1 in infected leaves and rhizomes of P. kingianum. Thus ZFP1 is important for mycelial growth, conidiation, osmoregulation, and pathogenicity in P. kingianum.


Subject(s)
Fungal Proteins , Fusarium , Osmoregulation , Plant Diseases , Polygonatum , Spores, Fungal , Transcription Factors , Zinc Fingers , Fusarium/pathogenicity , Fusarium/genetics , Fusarium/growth & development , Fusarium/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Spores, Fungal/growth & development , Spores, Fungal/genetics , Virulence/genetics , Plant Diseases/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Polygonatum/microbiology , Gene Expression Regulation, Fungal
17.
Int J Mol Sci ; 25(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39063186

ABSTRACT

The present study investigates the interactions between eight glucosinolate hydrolysis products (GHPs) sourced from broccoli by-products and the detoxifying enzymes of Botrytis cinerea, namely eburicol 14-alpha-demethylase (CYP51) and glutathione-S-transferase (GST), through in silico analysis. Additionally, in vitro assays were conducted to explore the impact of these compounds on fungal growth. Our findings reveal that GHPs exhibit greater efficacy in inhibiting conidia germination compared to mycelium growth. Furthermore, the results demonstrate the antifungal activity of glucosinolate hydrolysis products derived from various parts of the broccoli plant, including inflorescences, leaves, and stems, against B. cinerea. Importantly, the results suggest that these hydrolysis products interact with the detoxifying enzymes of the fungus, potentially contributing to their antifungal properties. Extracts rich in GHPs, particularly iberin and indole-GHPs, derived from broccoli by-products emerge as promising candidates for biofungicidal applications, offering a sustainable and novel approach to plant protection by harnessing bioactive compounds from agricultural residues.


Subject(s)
Antifungal Agents , Botrytis , Brassica , Glucosinolates , Botrytis/drug effects , Glucosinolates/chemistry , Glucosinolates/pharmacology , Glucosinolates/metabolism , Brassica/microbiology , Hydrolysis , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Plant Diseases/microbiology , Plant Diseases/prevention & control , Molecular Docking Simulation , Microbial Sensitivity Tests
18.
Microbiol Spectr ; 12(9): e0010824, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39041812

ABSTRACT

Aspergillus flavus conidia are widespread in air; they attach to food and feed crops and secrete aflatoxins, which results in serious contamination. Germination of A. flavus conidia is the most critical step in contamination of food by A. flavus. This study aims to gain an insight into A. flavus conidia through dormancy to germination to provide a theoretical basis for inhibition of A. flavus conidia germination. The morphological changes and regulation mechanism of A. flavus conidia germination at 0, 4, 8, and 12 hours were observed. Transcriptomic and metabolomic analyses showed that conidia became active from dormancy (0 hour) to the initial stage of germination (4 hours), cellular respiration and energy metabolism increased, and amino acids and lipids were synthesized rapidly. The number of differentially expressed genes and differential metabolites was highest at this stage. Besides, we found that conidia germination had selectivity for different carbon and nitrogen sources. Compared with monosaccharides, disaccharides, as the only carbon source, significantly promoted the germination of conidia. Moreover, MepA, one of genes in the ammonium transporter family was studied. The gene deletion mutant ΔMepA had a significant growth defect, and the expression of MeaA was significantly upregulated in ΔMepA compared with the wild-type, indicating that both MepA and MeaA played an important role in transporting ammonium ions.IMPORTANCEThis is the first study to use combined transcriptomic and metabolomics analyses to explore the biological changes during germination of Aspergillus flavus conidia. The biological process with the highest changes occurred in 0-4 hours at the initial stage of germination. Compared with polysaccharides, monosaccharides significantly increased the size of conidia, while significantly decreasing the germination rate of conidia. Both MeaA and MepA were involved in ammonia transport and metabolism during conidia germination.


Subject(s)
Aspergillus flavus , Gene Expression Regulation, Fungal , Spores, Fungal , Aspergillus flavus/metabolism , Aspergillus flavus/genetics , Aspergillus flavus/growth & development , Aspergillus flavus/physiology , Spores, Fungal/metabolism , Spores, Fungal/growth & development , Spores, Fungal/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Transcriptome , Nitrogen/metabolism , Carbon/metabolism , Aflatoxins/metabolism , Aflatoxins/genetics , Metabolomics , Energy Metabolism
19.
Fungal Genet Biol ; 173: 103911, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960372

ABSTRACT

Coprinopsis cinerea, a model fungus, is utilized for investigating the developmental mechanisms of basidiomycetes. The development of basidiomycetes is a highly organized process that requires coordination among genetic, environmental, and physiological factors. Oxylipins, a class of widely distributed signaling molecules, play crucial roles in fungal biology. Among oxylipins, the sexual pheromone-inducing factors (psi factors) have been identified as key regulators of the balance between asexual and sexual spore development in Ascomycetes. Linoleate dioxygenases are enzymes involved in the biosynthesis of psi factors, yet their specific physiological functions in basidiomycete development remain unclear. In this study, linoleate dioxygenases in basidiomycetes were identified and characterized. Phylogenetic analysis revealed that linoleate dioxygenases from Basidiomycota formed a distinct clade, with linoleate dioxygenases from Agaricomycetes segregating into three groups and those from Ustilaginomycetes forming a separate group. Both basidiomycete and ascomycete linoleate dioxygenases shared two characteristic domains: the N-terminal of linoleate dioxygenase domain and the C-terminal of cytochrome P450 domain. While the linoleate dioxygenase domains exhibited similarity between basidiomycetes and ascomycetes, the cytochrome P450 domains displayed high diversity in key sites. Furthermore, the gene encoding the linoleate dioxygenase Ccldo1 in C. cinerea was knocked out, resulting in a significant increase in fruiting body formation without affecting asexual conidia production. This observation suggests that secondary metabolites synthesized by CcLdo1 negatively regulate the sexual reproduction process in C. cinerea while not influencing the asexual reproductive process. This study represents the first identification of a gene involved in secondary metabolite synthesis that regulates basidiocarp development in a basidiomycete.


Subject(s)
Basidiomycota , Fruiting Bodies, Fungal , Fungal Proteins , Phylogeny , Fruiting Bodies, Fungal/genetics , Fruiting Bodies, Fungal/growth & development , Fruiting Bodies, Fungal/enzymology , Basidiomycota/genetics , Basidiomycota/enzymology , Basidiomycota/growth & development , Fungal Proteins/genetics , Fungal Proteins/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Agaricales/genetics , Agaricales/enzymology , Agaricales/growth & development , Agaricales/metabolism , Gene Expression Regulation, Fungal , Spores, Fungal/growth & development , Spores, Fungal/genetics , Spores, Fungal/enzymology
20.
World J Microbiol Biotechnol ; 40(9): 282, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39060812

ABSTRACT

Nucleic acid demethylases of α-ketoglutarate-dependent dioxygenase (AlkB) family can reversibly erase methyl adducts from nucleobases, thus dynamically regulating the methylation status of DNA/RNA and playing critical roles in multiple cellular processes. But little is known about AlkB demethylases in filamentous fungi so far. The present study reports that Monascus purpureus genomes contain a total of five MpAlkB genes. The MpAlkB1 gene was disrupted and complemented through homologous recombination strategy to analyze its biological functions in M. purpureus. MpAlkB1 knockout significantly accelerated the growth of strain, increased biomass, promoted sporulation and cleistothecia development, reduced the content of Monascus pigments (Mps), and strongly inhibited citrinin biosynthesis. The downregulated expression of the global regulator gene LaeA, and genes of Mps biosynthesis gene cluster (BGC) or citrinin BGC in MpAlkB1 disruption strain supported the pleiotropic trait changes caused by MpAlkB1 deletion. These results indicate that MpAlkB1-mediated demethylation of nucleic acid plays important roles in regulating the growth and development, and secondary metabolism in Monascus spp.


Subject(s)
Citrinin , Fungal Proteins , Gene Expression Regulation, Fungal , Monascus , Secondary Metabolism , Monascus/genetics , Monascus/metabolism , Monascus/growth & development , Monascus/enzymology , Secondary Metabolism/genetics , Citrinin/biosynthesis , Citrinin/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Pigments, Biological/biosynthesis , Pigments, Biological/metabolism , Spores, Fungal/growth & development , Spores, Fungal/genetics , Gene Knockout Techniques , Multigene Family , AlkB Enzymes/genetics , AlkB Enzymes/metabolism , DNA Methylation
SELECTION OF CITATIONS
SEARCH DETAIL