Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.175
Filter
1.
Biomolecules ; 14(7)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062541

ABSTRACT

Alzheimer's disease (AD) leads to progressive neurodegeneration and dementia. AD primarily affects older adults with neuropathological changes including amyloid-beta (Aß) deposition, neuroinflammation, and neurodegeneration. We have previously demonstrated that systemic treatment with combined stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) (SCF+G-CSF) reduces the Aß load, increases Aß uptake by activated microglia and macrophages, reduces neuroinflammation, and restores dendrites and synapses in the brains of aged APPswe/PS1dE9 (APP/PS1) mice. However, the mechanisms underlying SCF+G-CSF-enhanced brain repair in aged APP/PS1 mice remain unclear. This study used a transcriptomic approach to identify the potential mechanisms by which SCF+G-CSF treatment modulates microglia and peripheral myeloid cells to mitigate AD pathology in the aged brain. After injections of SCF+G-CSF for 5 consecutive days, single-cell RNA sequencing was performed on CD11b+ cells isolated from the brains of 28-month-old APP/PS1 mice. The vast majority of cell clusters aligned with transcriptional profiles of microglia in various activation states. However, SCF+G-CSF treatment dramatically increased a cell population showing upregulation of marker genes related to peripheral myeloid cells. Flow cytometry data also revealed an SCF+G-CSF-induced increase of cerebral CD45high/CD11b+ active phagocytes. SCF+G-CSF treatment robustly increased the transcription of genes implicated in immune cell activation, including gene sets that regulate inflammatory processes and cell migration. The expression of S100a8 and S100a9 was robustly enhanced following SCF+G-CSF treatment in all CD11b+ cell clusters. Moreover, the topmost genes differentially expressed with SCF+G-CSF treatment were largely upregulated in S100a8/9-positive cells, suggesting a well-conserved transcriptional profile related to SCF+G-CSF treatment in resident and peripherally derived CD11b+ immune cells. This S100a8/9-associated transcriptional profile contained notable genes related to pro-inflammatory and anti-inflammatory responses, neuroprotection, and Aß plaque inhibition or clearance. Altogether, this study reveals the immunomodulatory effects of SCF+G-CSF treatment in the aged brain with AD pathology, which will guide future studies to further uncover the therapeutic mechanisms.


Subject(s)
Alzheimer Disease , Brain , Granulocyte Colony-Stimulating Factor , Mice, Transgenic , Stem Cell Factor , Animals , Mice , Brain/metabolism , Brain/drug effects , Brain/pathology , Granulocyte Colony-Stimulating Factor/pharmacology , Granulocyte Colony-Stimulating Factor/genetics , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Stem Cell Factor/pharmacology , Stem Cell Factor/metabolism , Stem Cell Factor/genetics , Microglia/drug effects , Microglia/metabolism , Single-Cell Analysis , Disease Models, Animal , Aging/genetics , Aging/drug effects , Sequence Analysis, RNA , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Male , Presenilin-1/genetics
2.
Proc Natl Acad Sci U S A ; 121(31): e2404193121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39042698

ABSTRACT

Hematopoietic stem cells (HSCs) develop from hemogenic endothelial cells (HECs) in vivo during mouse embryogenesis. When cultured in vitro, cells from the embryo phenotypically defined as pre-HSC-I and pre-HSC-II have the potential to differentiate into HSCs. However, minimal factors required for HSC induction from HECs have not yet been determined. In this study, we demonstrated that stem cell factor (SCF) and thrombopoietin (TPO) induced engrafting HSCs from embryonic day (E) 11.5 pre-HSC-I in a serum-free and feeder-free culture condition. In contrast, E10.5 pre-HSC-I and HECs required an endothelial cell layer in addition to SCF and TPO to differentiate into HSCs. A single-cell RNA sequencing analysis of E10.5 to 11.5 dorsal aortae with surrounding tissues and fetal livers detected TPO expression confined in hepatoblasts, while SCF was expressed in various tissues, including endothelial cells and hepatoblasts. Our results suggest a transition of signal requirement during HSC development from HECs. The differentiation of E10.5 HECs to E11.5 pre-HSC-I in the aorta-gonad-mesonephros region depends on SCF and endothelial cell-derived factors. Subsequently, SCF and TPO drive the differentiation of E11.5 pre-HSC-I to pre-HSC-II/HSCs in the fetal liver. The culture system established in this study provides a beneficial tool for exploring the molecular mechanisms underlying the development of HSCs from HECs.


Subject(s)
Cell Differentiation , Hemangioblasts , Hematopoietic Stem Cells , Stem Cell Factor , Thrombopoietin , Animals , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Mice , Thrombopoietin/metabolism , Stem Cell Factor/metabolism , Hemangioblasts/metabolism , Hemangioblasts/cytology , Endothelial Cells/metabolism , Endothelial Cells/cytology , Signal Transduction , Hematopoiesis/physiology , Embryonic Development , Embryo, Mammalian/metabolism , Embryo, Mammalian/cytology , Liver/embryology , Liver/metabolism , Liver/cytology
3.
J Control Release ; 371: 386-405, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38844177

ABSTRACT

Recently, the formation of three-dimensional (3D) cell aggregates known as embryoid bodies (EBs) grown in media supplemented with HSC-specific morphogens has been utilized for the directed differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), into clinically relevant hematopoietic stem cells (HSCs). However, delivering growth factors and nutrients have become ineffective in inducing synchronous differentiation of cells due to their 3D conformation. Moreover, irregularly sized EBs often lead to the formation of necrotic cores in larger EBs, impairing differentiation. Here, we developed two gelatin microparticles (GelMPs) with different release patterns and two HSC-related growth factors conjugated to them. Slow and fast releasing GelMPs were conjugated with bone morphogenic factor-4 (BMP-4) and stem cell factor (SCF), respectively. The sequential presentation of BMP-4 and SCF in GelMPs resulted in efficient and effective hematopoietic differentiation, shown by the enhanced gene and protein expression of several mesoderm and HSC-related markers, and the increased concentration of released HSC-related cytokines. In the present study, we were able to generate CD34+, CD133+, and FLT3+ cells with similar cellular and molecular morphology as the naïve HSCs that can produce colony units of different blood cells, in vitro.


Subject(s)
Bone Morphogenetic Protein 4 , Cell Differentiation , Gelatin , Hematopoietic Stem Cells , Induced Pluripotent Stem Cells , Spheroids, Cellular , Stem Cell Factor , Bone Morphogenetic Protein 4/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Stem Cell Factor/metabolism , Gelatin/chemistry , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism , Animals , Humans , Mice
4.
Pigment Cell Melanoma Res ; 37(4): 514-529, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705722

ABSTRACT

Epidermal melanin unit integrity is crucial for skin homeostasis and pigmentation. Epidermal growth factor (EGF) receptor (EGFR) is a pivotal player in cell growth, wound healing, and maintaining skin homeostasis. However, its influence on skin pigmentation is relatively unexplored. This study investigates the impact and underlying mechanisms of EGFR inhibitors on skin pigmentation. We evaluated EGF and EGFR expression in various skin cells using quantitative real-time PCR, Western blot, and immunofluorescence. EGF and EGFR were predominantly expressed in epidermal keratinocytes, and treatment with the EGFR tyrosine kinase inhibitors (EGFR-TKIs) gefitinib and PD153035 significantly increased stem cell factor (SCF) and endothelin-1 (ET-1) expression in cultured keratinocytes. Enhanced melanocyte migration and proliferation were observed in co-culture, as evidenced by time-lapse live imaging and single-cell tracking assays. Furthermore, topical application of gefitinib to guinea pig dorsal skin induced increased pigmentation and demonstrated efficacy in mitigating rhododendrol-induced leukoderma. Suppression of EGF signaling indirectly enhanced skin pigmentation by upregulating SCF and ET-1 in epidermal keratinocytes. This novel mechanism highlights the pivotal role of EGF signaling in regulating skin pigmentation, and topical EGFR-TKI therapy at an appropriate dose may be a promising approach for depigmentation disorder management.


Subject(s)
ErbB Receptors , Gefitinib , Hypopigmentation , Keratinocytes , Melanins , Melanocytes , Protein Kinase Inhibitors , ErbB Receptors/metabolism , Animals , Melanins/metabolism , Melanins/biosynthesis , Humans , Protein Kinase Inhibitors/pharmacology , Melanocytes/drug effects , Melanocytes/metabolism , Melanocytes/pathology , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/pathology , Hypopigmentation/pathology , Hypopigmentation/drug therapy , Gefitinib/pharmacology , Guinea Pigs , Skin Pigmentation/drug effects , Stem Cell Factor/metabolism , Epidermis/drug effects , Epidermis/pathology , Epidermis/metabolism , Cell Proliferation/drug effects , Cell Movement/drug effects , Endothelin-1/metabolism , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , Quinazolines
5.
Ecotoxicol Environ Saf ; 279: 116504, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38795418

ABSTRACT

Cranial radiotherapy is a major treatment for leukemia and brain tumors. Our previous study found abscopal effects of cranial irradiation could cause spermatogenesis disorder in mice. However, the exact mechanisms are not yet fully understood. In the study, adult male C57BL/6 mice were administrated with 20 Gy X-ray cranial irradiation (5 Gy per day for 4 days consecutively) and sacrificed at 1, 2 and 4 weeks. Tandem Mass Tag (TMT) quantitative proteomics of testis was combined with bioinformatics analysis to identify key molecules and signal pathways related to spermatogenesis at 4 weeks after cranial irradiation. GO analysis showed that spermatogenesis was closely related to oxidative stress and inflammation. Severe oxidative stress occurred in testis, serum and brain, while serious inflammation also occurred in testis and serum. Additionally, the sex hormones related to hypothalamic-pituitary-gonadal (HPG) axis were disrupted. PI3K/Akt pathway was activated in testis, which upstream molecule SCF/C-Kit was significantly elevated. Furthermore, the proliferation and differentiation ability of spermatogonial stem cells (SSCs) were altered. These findings suggest that cranial irradiation can cause spermatogenesis disorder through brain-blood-testicular cascade oxidative stress, inflammation and the secretory dysfunction of HPG axis, and SCF/C-kit drive this process through activating PI3K/Akt pathway.


Subject(s)
Cranial Irradiation , Mice, Inbred C57BL , Oxidative Stress , Proto-Oncogene Proteins c-kit , Spermatogenesis , Animals , Male , Spermatogenesis/radiation effects , Mice , Proto-Oncogene Proteins c-kit/metabolism , Oxidative Stress/radiation effects , Cranial Irradiation/adverse effects , Testis/radiation effects , Testis/pathology , Signal Transduction/radiation effects , Stem Cell Factor/metabolism , Inflammation
6.
Exp Dermatol ; 33(5): e15091, 2024 May.
Article in English | MEDLINE | ID: mdl-38711220

ABSTRACT

KIT ligand and its associated receptor KIT serve as a master regulatory system for both melanocytes and mast cells controlling survival, migration, proliferation and activation. Blockade of this pathway results in cell depletion, while overactivation leads to mastocytosis or melanoma. Expression defects are associated with pigmentary and mast cell disorders. KIT ligand regulation is complex but efficient targeting of this system would be of significant benefit to those suffering from melanocytic or mast cell disorders. Herein, we review the known associations of this pathway with cutaneous diseases and the regulators of this system both in skin and in the more well-studied germ cell system. Exogenous agents modulating this pathway will also be presented. Ultimately, we will review potential therapeutic opportunities to help our patients with melanocytic and mast cell disease processes potentially including vitiligo, hair greying, melasma, urticaria, mastocytosis and melanoma.


Subject(s)
Mast Cells , Mastocytosis , Melanocytes , Proto-Oncogene Proteins c-kit , Stem Cell Factor , Humans , Stem Cell Factor/metabolism , Melanocytes/metabolism , Mast Cells/metabolism , Mastocytosis/drug therapy , Mastocytosis/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Melanoma/metabolism , Melanoma/drug therapy , Vitiligo/metabolism , Vitiligo/drug therapy , Vitiligo/therapy , Pigmentation Disorders/drug therapy , Skin Neoplasms/metabolism , Skin Neoplasms/drug therapy , Animals
7.
Blood ; 144(4): 378-391, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38598841

ABSTRACT

ABSTRACT: Intrinsic molecular programs and extrinsic factors including proinflammatory molecules are understood to regulate hematopoietic aging. This is based on foundational studies using genetic perturbation to evaluate causality. However, individual organisms exhibit natural variation in the hematopoietic aging phenotypes and the molecular basis of this heterogeneity is poorly understood. Here, we generated individual single-cell transcriptomic profiles of hematopoietic and nonhematopoietic cell types in 5 young adult and 9 middle-aged C57BL/6J female mice, providing a web-accessible transcriptomic resource for the field. Among all assessed cell types, hematopoietic stem cells (HSCs) exhibited the greatest phenotypic variation in expansion among individual middle-aged mice. We computationally pooled samples to define modules representing the molecular signatures of middle-aged HSCs and interrogated, which extrinsic regulatory cell types and factors would predict the variance in these signatures between individual middle-aged mice. Decline in signaling mediated by adiponectin, kit ligand (KITL) and insulin-like growth factor 1 (IGF1) from mesenchymal stromal cells (MSCs) was predicted to have the greatest transcriptional impact on middle-aged HSCs, as opposed to signaling mediated by endothelial cells or mature hematopoietic cell types. In individual middle-aged mice, lower expression of Kitl and Igf1 in MSCs was highly correlated with reduced lymphoid lineage commitment of HSCs and increased signatures of differentiation-inactive HSCs. These signatures were independent of expression of aging-associated proinflammatory cytokines including interleukin-1ß (IL-1ß), IL-6, tumor necrosis factor α and RANTES. In sum, we find that Kitl and Igf1 expression are coregulated and variable between individual mice at the middle age and expression of these factors is predictive of HSC activation and lymphoid commitment independently of inflammation.


Subject(s)
Cellular Senescence , Hematopoietic Stem Cells , Insulin-Like Growth Factor I , Stem Cell Factor , Animals , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Mice , Female , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics , Stem Cell Factor/metabolism , Stem Cell Factor/genetics , Aging/metabolism , Aging/genetics , Mice, Inbred C57BL , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Transcriptome
8.
Cardiovasc Res ; 120(7): 745-755, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38507654

ABSTRACT

AIMS: In hypoxia, endothelial cells (ECs) proliferate, migrate, and form new vasculature in a process called angiogenesis. Recent studies have suggested that ECs rely on glycolysis to meet metabolic needs for angiogenesis in ischaemic tissues, and several studies have investigated the molecular mechanisms integrating angiogenesis and endothelial metabolism. Here, we investigated the role of stem cell factor (SCF) and its receptor, cKIT, in regulating endothelial glycolysis during hypoxia-driven angiogenesis. METHODS AND RESULTS: SCF and cKIT signalling increased the glucose uptake, lactate production, and glycolysis in human ECs under hypoxia. Mechanistically, SCF and cKIT signalling enhanced the expression of genes encoding glucose transporter 1 (GLUT1) and glycolytic enzymes via Akt- and ERK1/2-dependent increased translation of hypoxia inducible factor 1A (HIF1A). In hypoxic conditions, reduction of glycolysis and HIF-1α expression using chemical inhibitors significantly reduced the SCF-induced in vitro angiogenesis in human ECs. Compared with normal mice, mice with oxygen-induced retinopathy (OIR), characterized by ischaemia-driven pathological retinal neovascularization, displayed increased levels of SCF, cKIT, HIF-1α, GLUT1, and glycolytic enzymes in the retina. Moreover, cKIT-positive neovessels in the retina of mice with OIR showed elevated expression of GLUT1 and glycolytic enzymes. Further, blocking SCF and cKIT signalling using anti-SCF neutralizing IgG and cKIT mutant mice significantly reduced the expression of HIF-1α, GLUT1, and glycolytic enzymes and decreased the pathological neovascularization in the retina of mice with OIR. CONCLUSION: We demonstrated that SCF and cKIT signalling regulate angiogenesis by controlling endothelial glycolysis in hypoxia and elucidated the SCF/cKIT/HIF-1α axis as a novel metabolic regulation pathway during hypoxia-driven pathological angiogenesis.


Subject(s)
Cell Hypoxia , Glucose Transporter Type 1 , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit , Proto-Oncogene Proteins c-kit , Signal Transduction , Stem Cell Factor , Animals , Humans , Stem Cell Factor/metabolism , Stem Cell Factor/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , Proto-Oncogene Proteins c-kit/metabolism , Proto-Oncogene Proteins c-kit/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Mice, Inbred C57BL , Endothelial Cells/metabolism , Endothelial Cells/pathology , Retinal Neovascularization/metabolism , Retinal Neovascularization/pathology , Retinal Neovascularization/genetics , Mice , Neovascularization, Physiologic , Cells, Cultured , Disease Models, Animal , Glucose/metabolism
9.
Elife ; 122024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536959

ABSTRACT

The cell-type-specific expression of ligand/receptor and cell-adhesion molecules is a fundamental mechanism through which neurons regulate connectivity. Here, we determine a functional relevance of the long-established mutually exclusive expression of the receptor tyrosine kinase Kit and the trans-membrane protein Kit Ligand by discrete populations of neurons in the mammalian brain. Kit is enriched in molecular layer interneurons (MLIs) of the cerebellar cortex (i.e., stellate and basket cells), while cerebellar Kit Ligand is selectively expressed by a target of their inhibition, Purkinje cells (PCs). By in vivo genetic manipulation spanning embryonic development through adulthood, we demonstrate that PC Kit Ligand and MLI Kit are required for, and capable of driving changes in, the inhibition of PCs. Collectively, these works in mice demonstrate that the Kit Ligand/Kit receptor dyad sustains mammalian central synapse function and suggest a rationale for the affiliation of Kit mutation with neurodevelopmental disorders.


Subject(s)
Purkinje Cells , Stem Cell Factor , Mice , Animals , Purkinje Cells/physiology , Stem Cell Factor/metabolism , Cerebellum/physiology , Cerebellar Cortex/metabolism , Interneurons/physiology , Receptor Protein-Tyrosine Kinases/metabolism , Mammals/metabolism
10.
Cancer Lett ; 589: 216795, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38556106

ABSTRACT

The immune microenvironment constructed by tumor-infiltrating immune cells and the molecular phenotype defined by hormone receptors (HRs) have been implicated as decisive factors in the regulation of breast cancer (BC) progression. Here, we found that the infiltration of mast cells (MCs) informed impaired prognoses in HR(+) BC but predicted improved prognoses in HR(-) BC. However, molecular features of MCs in different BC remain unclear. We next discovered that HR(-) BC cells were prone to apoptosis under the stimulation of MCs, whereas HR(+) BC cells exerted anti-apoptotic effects. Mechanistically, in HR(+) BC, the KIT ligand (KITLG), a major mast cell growth factor in recruiting and activating MCs, could be transcriptionally upregulated by the progesterone receptor (PGR), and elevate the production of MC-derived granulin (GRN). GRN attenuates TNFα-induced apoptosis in BC cells by competitively binding to TNFR1. Furthermore, disruption of PGR-KITLG signaling by knocking down PGR or using the specific KITLG-cKIT inhibitor iSCK03 potently enhanced the sensitivity of HR(+) BC cells to MC-induced apoptosis and exerted anti-tumor activity. Collectively, these results demonstrate that PGR-KITLG signaling in BC cells preferentially induces GRN expression in MCs to exert anti-apoptotic effects, with potential value in developing precision medicine approaches for diagnosis and treatment.


Subject(s)
Breast Neoplasms , Stem Cell Factor , Humans , Female , Stem Cell Factor/genetics , Stem Cell Factor/metabolism , Mast Cells/pathology , Breast Neoplasms/pathology , Feedback , Apoptosis , Tumor Microenvironment
11.
Mol Cell Endocrinol ; 586: 112163, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38246572

ABSTRACT

NOTCH2 is expressed in pituitary stem cells and is necessary for stem cell maintenance, proliferation, and differentiation. However, the pathways NOTCH2 engages to affect pituitary development remain unclear. In this study, we hypothesized that glycoprotein hormone subunit A2 (GPHA2), a corneal stem cell factor and ligand for the thyroid stimulating hormone receptor (TSHR), is downstream of NOTCH2 signaling. We found Gpha2 is expressed in quiescent pituitary stem cells by RNAscope in situ hybridization and scRNA seq. In Notch2 conditional knockout pituitaries, Gpha2 mRNA is reduced compared with control littermates. We then investigated the possible functions of GPHA2. Pituitaries treated with a GPHA2 peptide do not have a change in proliferation. However, in dissociated adult pituitary cells, GPHA2 increased pCREB expression and this induction was reversed by co-treatment with a TSHR inhibitor. These data suggest GPHA2 is a NOTCH2 related stem cell factor that activates TSHR signaling, potentially impacting pituitary development.


Subject(s)
Pituitary Gland , Stem Cell Factor , Adult , Humans , Pituitary Gland/metabolism , Receptor, Notch2/genetics , Receptor, Notch2/metabolism , Receptors, Thyrotropin , Stem Cell Factor/metabolism , Stem Cells/metabolism
12.
Cancer Metastasis Rev ; 43(1): 423-440, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37796391

ABSTRACT

Cellular plasticity can occur naturally in an organism and is considered an adapting mechanism during the developmental stage. However, abnormal cellular plasticity is observed in different diseased conditions, including cancer. Cancer cell plasticity triggers the stimuli of epithelial-mesenchymal transition (EMT), abnormal epigenetic changes, expression of stem cell factors and implicated signaling pathways, etc., and helps in the maintenance of CSC phenotype. Conversely, CSC maintains the cancer cell plasticity, EMT, and epigenetic plasticity. EMT contributes to increased cell migration and greater diversity within tumors, while epigenetic changes, stem cell factors (OCT4, NANOG, and SOX2), and various signaling pathways allow cancer cells to maintain various phenotypes, giving rise to intra- and inter-tumoral heterogeneity. The intricate relationships between cancer cell plasticity and stem cell factors help the tumor cells adopt drug-tolerant states, evade senescence, and successfully acquire drug resistance with treatment dismissal. Inhibiting molecules/signaling pathways involved in promoting CSCs, cellular plasticity, EMT, and epigenetic plasticity might be helpful for successful cancer therapy management. This review discussed the role of cellular plasticity, EMT, and stem cell factors in tumor initiation, progression, reprogramming, and therapy resistance. Finally, we discussed how the intervention in this axis will help better manage cancers and improve patient survivability.


Subject(s)
Cell Plasticity , Neoplasms , Humans , Stem Cell Factor/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Signal Transduction/genetics , Epithelial-Mesenchymal Transition/genetics , Stem Cells , Neoplastic Stem Cells/pathology
13.
J Control Release ; 363: 670-681, 2023 11.
Article in English | MEDLINE | ID: mdl-37838223

ABSTRACT

Herein, we present an approach for manipulating paracrine factors and signaling pathways in adipose-derived stem cells (ADSCs) to achieve highly effective tumor immunotherapy. Our method involves precise control of reactive oxygen species concentration using the CD90-maleimide-pluronic F68-chlorin e6 conjugate (CPFC) to create ACPFC, which is then attached to ADSCs through the CD90 receptor-specific interaction. By regulating the irradiated laser power, ACPFC promotes signaling pathways such as cascade-3, VEGFR2, α2ß1, C3AR1, CR1-4, and C5AR1, leading to the secretion of various inflammatory cytokines such as IFN-γ, TGF-ß, and IL-6, while inhibiting AKT, ERK, NFkB, PAR1, and PAR3/4 signaling pathways to reduce the secretion of cell growth factors like TIMP-1, TIMP-2, VEGF, Ang-2, FGF-2, and HGF. When ACPFC is injected intravenously into a tumor animal model, it autonomously targets and accumulates at the tumor site, and upon laser irradiation, it generates various anti-inflammatory factors while reducing angiogenesis growth factors. The resulting antitumor response recruits CD3+CD8+ cytotoxic T cells and CD3+CD4+ helper T cells into the tumor and spleen, leading to highly effective melanoma and pancreatic tumor treatment in mice. Our technology for regulating stem cell paracrine factors holds significant promise for the treatment of various diseases.


Subject(s)
Melanoma , Stem Cell Factor , Mice , Animals , Stem Cell Factor/metabolism , Reactive Oxygen Species/metabolism , Immunotherapy , Melanoma/metabolism , Stem Cells/metabolism
14.
Artif Organs ; 47(12): 1818-1830, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37698035

ABSTRACT

PURPOSE: Development of organoids using human primary testicular cells has remained a challenge due to the complexity of the mammalian testicular cytoarchitecture and culture methods. In this study, we generated testicular organoids derived from human primary testicular cells. Then, we evaluated the effect of stem cell factor (SCF) on cell differentiation and apoptosis in the testicular organoid model. METHODS: The testicular cells were harvested from the three brain-dead donors. Human spermatogonial stem cells (SSCs) were characterized using immunocytochemistry (ICC), RT-PCR and flow cytometry. Testicular organoids were generated from primary testicular cells by hanging drop culture method and were cultured in three groups: control group, experimental group 1 (treated FSH and retinoic acid (RA)), and experimental group 2 (treated FSH, RA and SCF), for five weeks. We assessed the expression of SCP3 (Synaptonemal Complex Protein 3) as a meiotic gene, PRM2 (Protamine 2) as a post-meiotic marker and apoptotic genes of Bax (BCL2-Associated X Protein) and Bcl-2 (B-cell lymphoma 2), respectively by using RT-qPCR. In addition, we identified the expression of PRM2 by immunohistochemistry (IHC). RESULTS: Relative expression of SCP3, PRM2 and Bcl-2 were highest in group 2 after five weeks of culture. In contrast, BAX expression level was lower in experimental group 2 in comparison with other groups. IHC analyses indicated the highest expression of PRM2 as a postmeiotic marker in group 2 in comparison to 2D culture and control groups but not find significant differences between experimental group 1 and experimental group 2 groups. Morphological evaluations revealed that organoids are compact spherical structures and in the peripheral region composed of uncharacterized elongated fibroblast-like cells. CONCLUSION: Our findings revealed that the testicular organoid culture system promote the spermatogonial stem cell (SSC) differentiation, especially in presence of SCF. Developed organoids are capable of recapitulating many important properties of a stem cell niche.


Subject(s)
Spermatogonia , Stem Cell Factor , Male , Animals , Humans , Stem Cell Factor/pharmacology , Stem Cell Factor/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology , Spermatogonia/metabolism , Spermatogenesis/genetics , Cell Differentiation , Organoids , Follicle Stimulating Hormone/metabolism , Follicle Stimulating Hormone/pharmacology , Cells, Cultured , Mammals
15.
J Cell Mol Med ; 27(19): 2983-2994, 2023 10.
Article in English | MEDLINE | ID: mdl-37603611

ABSTRACT

Short-chain fatty acid butyrate is produced from the bacterial fermentation of indigestible fiber in the intestinal lumen, and it has been shown to attenuate lung inflammation in murine asthma models. Mast cells (MCs) are initiators of inflammatory response to allergens, and they play an important role in asthma. MC survival and proliferation is regulated by its growth factor stem cell factor (SCF), which acts through the receptor, KIT. It has previously been shown that butyrate attenuates the activation of MCs by allergen stimulation. However, how butyrate mechanistically influences SCF signalling to impact MC function remains unknown. Here, we report that butyrate treatment triggered the modification of MC histones via butyrylation and acetylation, and inhibition of histone deacetylase (HDAC) activity. Further, butyrate treatment caused downregulation of SCF receptor KIT and associated phosphorylation, leading to significant attenuation of SCF-mediated MC proliferation, and pro-inflammatory cytokine secretion. Mechanistically, butyrate inhibited MC function by suppressing KIT and downstream p38 and Erk phosphorylation, and it mediated these effects via modification of histones, acting as an HDAC inhibitor and not via its traditional GPR41 (FFAR3) or GPR43 (FFAR2) butyrate receptors. In agreement, the pharmacological inhibition of Class I HDAC (HDAC1/3) mirrored butyrate's effects, suggesting that butyrate impacts MC function by HDAC1/3 inhibition. Taken together, butyrate epigenetically modifies histones and downregulates the SCF/KIT/p38/Erk signalling axis, leading to the attenuation of MC function, validating its ability to suppress MC-mediated inflammation. Therefore, butyrate supplementations could offer a potential treatment strategy for allergy and asthma via epigenetic alterations in MCs.


Subject(s)
Asthma , Histones , Humans , Mice , Animals , Histones/metabolism , Mast Cells/metabolism , Butyrates/pharmacology , Histone Code , Stem Cell Factor/genetics , Stem Cell Factor/metabolism , Epigenesis, Genetic , Asthma/metabolism
16.
Mucosal Immunol ; 16(5): 727-739, 2023 10.
Article in English | MEDLINE | ID: mdl-37557983

ABSTRACT

Eosinophilic esophagitis (EoE) is a T helper (Th)2-mediated inflammatory disorder characterized endoscopically by eosinophilic infiltration leading to fibrosis of the esophagus. Stem cell factor (SCF), a multifunctional cytokine, is upregulated in several allergic diseases, including in patients with EoE. Mast cells and eosinophils express c-kit, the cell surface receptor for SCF, and have been found to play an important role in EoE. Therefore, we investigated whether blocking SCF represents a potential therapeutic approach for EoE. Esophageal inflammation was induced in mice using peanut allergen. In mice with experimental EoE, we found that SCF was upregulated in the esophageal tissue. In EoE mice injected with a polyclonal antibody specific for SCF, we observed a decrease in both mast cells and eosinophils by histological and flow cytometric analysis. Furthermore, Th2 cytokines in the esophagus were decreased in anti-SCF treated mice, as were levels of Th2 cytokines from lung-draining and esophageal lymph nodes. Serum levels of peanut-specific immunoglobulin E were reduced following treatment with anti-SCF. In Kitlf/f-Col1-Cre-ERT mice, which have SCF deleted primarily in myofibroblasts that develop in EoE, we observed similar results as the anti-SCF treated animals for inflammatory cell accumulation, cytokines, and histopathology. These results indicate that therapeutic treatments targeting SCF can reduce allergic inflammation in EoE.


Subject(s)
Eosinophilic Esophagitis , Humans , Mice , Animals , Eosinophilic Esophagitis/drug therapy , Stem Cell Factor/metabolism , Inflammation/metabolism , Disease Models, Animal , Cytokines/metabolism , Eosinophils , Allergens
17.
Blood ; 142(19): 1622-1632, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37562000

ABSTRACT

A critical regulatory role of hematopoietic stem cell (HSC) vascular niches in the bone marrow has been implicated to occur through endothelial niche cell expression of KIT ligand. However, endothelial-derived KIT ligand is expressed in both a soluble and membrane-bound form and not unique to bone marrow niches, and it is also systemically distributed through the circulatory system. Here, we confirm that upon deletion of both the soluble and membrane-bound forms of endothelial-derived KIT ligand, HSCs are reduced in mouse bone marrow. However, the deletion of endothelial-derived KIT ligand was also accompanied by reduced soluble KIT ligand levels in the blood, precluding any conclusion as to whether the reduction in HSC numbers reflects reduced endothelial expression of KIT ligand within HSC niches, elsewhere in the bone marrow, and/or systemic soluble KIT ligand produced by endothelial cells outside of the bone marrow. Notably, endothelial deletion, specifically of the membrane-bound form of KIT ligand, also reduced systemic levels of soluble KIT ligand, although with no effect on stem cell numbers, implicating an HSC regulatory role primarily of soluble rather than membrane KIT ligand expression in endothelial cells. In support of a role of systemic rather than local niche expression of soluble KIT ligand, HSCs were unaffected in KIT ligand deleted bones implanted into mice with normal systemic levels of soluble KIT ligand. Our findings highlight the need for more specific tools to unravel niche-specific roles of regulatory cues expressed in hematopoietic niche cells in the bone marrow.


Subject(s)
Endothelial Cells , Stem Cell Factor , Mice , Animals , Stem Cell Factor/metabolism , Hematopoietic Stem Cells/metabolism , Bone Marrow/metabolism , Bone and Bones , Stem Cell Niche , Bone Marrow Cells/metabolism
18.
Nat Commun ; 14(1): 2754, 2023 05 13.
Article in English | MEDLINE | ID: mdl-37179330

ABSTRACT

Active thermogenesis in the brown adipose tissue (BAT) facilitating the utilization of lipids and glucose is critical for maintaining body temperature and reducing metabolic diseases, whereas inactive BAT accumulates lipids in brown adipocytes (BAs), leading to BAT whitening. Although cellular crosstalk between endothelial cells (ECs) and adipocytes is essential for the transport and utilization of fatty acid in BAs, the angiocrine roles of ECs mediating this crosstalk remain poorly understood. Using single-nucleus RNA sequencing and knock-out male mice, we demonstrate that stem cell factor (SCF) derived from ECs upregulates gene expressions and protein levels of the enzymes for de novo lipogenesis, and promotes lipid accumulation by activating c-Kit in BAs. In the early phase of lipid accumulation induced by denervation or thermoneutrality, transiently expressed c-Kit on BAs increases the protein levels of the lipogenic enzymes via PI3K and AKT signaling. EC-specific SCF deletion and BA-specific c-Kit deletion attenuate the induction of the lipogenic enzymes and suppress the enlargement of lipid droplets in BAs after denervation or thermoneutrality in male mice. These data provide insight into SCF/c-Kit signaling as a regulator that promotes lipid accumulation through the increase of lipogenic enzymes in BAT when thermogenesis is inhibited.


Subject(s)
Adipocytes, Brown , Hypercholesterolemia , Animals , Male , Mice , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Endothelial Cells/metabolism , Fatty Acids/metabolism , Hypercholesterolemia/metabolism , Lipogenesis/genetics , Mice, Knockout , Receptor Protein-Tyrosine Kinases/metabolism , Stem Cell Factor/genetics , Stem Cell Factor/metabolism , Thermogenesis/genetics , Proto-Oncogene Proteins c-kit
19.
Cells ; 12(9)2023 05 03.
Article in English | MEDLINE | ID: mdl-37174705

ABSTRACT

Mast cells (MCs) are key effector cells in allergic and inflammatory diseases, and the SCF/KIT axis regulates most aspects of the cells' biology. Using terminally differentiated skin MCs, we recently reported on proteome-wide phosphorylation changes initiated by KIT dimerization. C1orf186/RHEX was revealed as one of the proteins to become heavily phosphorylated. Its function in MCs is undefined and only some information is available for erythroblasts. Using public databases and our own data, we now report that RHEX exhibits highly restricted expression with a clear dominance in MCs. While expression is most pronounced in mature MCs, RHEX is also abundant in immature/transformed MC cell lines (HMC-1, LAD2), suggesting early expression with further increase during differentiation. Using RHEX-selective RNA interference, we reveal that RHEX unexpectedly acts as a negative regulator of SCF-supported skin MC survival. This finding is substantiated by RHEX's interference with KIT signal transduction, whereby ERK1/2 and p38 both were more strongly activated when RHEX was attenuated. Comparing RHEX and capicua (a recently identified repressor) revealed that each protein preferentially suppresses other signaling modules elicited by KIT. Induction of immediate-early genes strictly requires ERK1/2 in SCF-triggered MCs; we now demonstrate that RHEX diminution translates to this downstream event, and thereby enhances NR4A2, JUNB, and EGR1 induction. Collectively, our study reveals RHEX as a repressor of KIT signaling and function in MCs. As an abundant and selective lineage marker, RHEX may have various roles in the lineage, and the provided framework will enable future work on its involvement in other crucial processes.


Subject(s)
Mast Cells , Stem Cell Factor , Humans , Mast Cells/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Signal Transduction , Skin/metabolism , Stem Cell Factor/metabolism , Stem Cell Factor/pharmacology
20.
J Leukoc Biol ; 114(1): 92-105, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37141385

ABSTRACT

Mast cells are leukocytes that mediate various aspects of immunity and drive allergic hypersensitivity pathologies. Mast cells differentiate from hematopoietic progenitor cells in a manner that is largely IL-3 dependent. However, molecular mechanisms, including the signaling pathways that control this process, have yet to be thoroughly investigated. Here, we examine the role of the ubiquitous and critical mitogen-activated protein kinase signaling pathway due to its position downstream of the IL-3 receptor. Hematopoietic progenitor cells were harvested from the bone marrow of C57BL/6 mice and differentiated to bone marrow-derived mast cells in the presence of IL-3 and mitogen-activated protein kinase inhibitors. Inhibition of the JNK node of the mitogen-activated protein kinase pathway induced the most comprehensive changes to the mature mast cell phenotype. Bone marrow-derived mast cells differentiated during impaired JNK signaling expressed impaired c-kit levels on the mast cell surface, first detected at week 3 of differentiation. Following 1 wk of inhibitor withdrawal and subsequent stimulation of IgE-sensitized FcεRI receptors with allergen (TNP-BSA) and c-kit receptors with stem cell factor, JNK-inhibited bone marrow-derived mast cells exhibited impediments in early-phase mediator release through degranulation (80% of control), as well as late-phase secretion of CCL1, CCL2, CCL3, TNF, and IL-6. Experiments with dual stimulation conditions (TNP-BSA + stem cell factor or TNP-BSA alone) showed that impediments in mediator secretion were found to be mechanistically linked to reduced c-kit surface levels. This study is the first to implicate JNK activity in IL-3-mediated mast cell differentiation and also identifies development as a critical and functionally determinative period.


Subject(s)
Mast Cells , Stem Cell Factor , Animals , Mice , Cell Degranulation , Cell Differentiation , Interleukin-3/metabolism , Mast Cells/metabolism , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Receptors, IgE/metabolism , Stem Cell Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL