Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 72.583
1.
J Transl Med ; 22(1): 526, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822352

BACKGROUND: Neutrophils are granulocytes with essential antimicrobial effector functions and short lifespans. During infection or sterile inflammation, emergency granulopoiesis leads to release of immature neutrophils from the bone marrow, serving to boost circulating neutrophil counts. Steady state and emergency granulopoiesis are incompletely understood, partly due to a lack of genetically amenable models of neutrophil development. METHODS: We optimised a method for ex vivo production of human neutrophils from CD34+ haematopoietic progenitors. Using flow cytometry, we phenotypically compared cultured neutrophils with native neutrophils from donors experiencing emergency granulopoiesis, and steady state neutrophils from non-challenged donors. We carry out functional and proteomic characterisation of cultured neutrophils and establish genome editing of progenitors. RESULTS: We obtain high yields of ex vivo cultured neutrophils, which phenotypically resemble immature neutrophils released into the circulation during emergency granulopoiesis. Cultured neutrophils have similar rates of ROS production and bacterial killing but altered degranulation, cytokine release and antifungal activity compared to mature neutrophils isolated from peripheral blood. These differences are likely due to incomplete synthesis of granule proteins, as demonstrated by proteomic analysis. CONCLUSION: Ex vivo cultured neutrophils are genetically tractable via genome editing of precursors and provide a powerful model system for investigating the properties and behaviour of immature neutrophils.


Antigens, CD34 , Neutrophils , Humans , Neutrophils/metabolism , Neutrophils/cytology , Antigens, CD34/metabolism , Cells, Cultured , Reactive Oxygen Species/metabolism , Proteomics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Gene Editing , Cell Degranulation , Stem Cells/metabolism , Stem Cells/cytology , Cytokines/metabolism , Phenotype
2.
J Vis Exp ; (207)2024 May 17.
Article En | MEDLINE | ID: mdl-38829121

In the realm of regenerative medicine and therapeutic applications, stem cell research is rapidly gaining traction. Dental pulp stem cells (DPSCs), which are present in both deciduous and permanent teeth, have emerged as a vital stem cell source due to their accessibility, adaptability, and innate differentiation capabilities. DPSCs offer a readily available and abundant reservoir of mesenchymal stem cells, showcasing impressive versatility and potential, particularly for regenerative purposes. Despite their promise, the main hurdle lies in effectively isolating and characterizing DPSCs, given their representation as a minute fraction within dental pulp cells. Equally crucial is the proper preservation of this invaluable cellular resource. The two predominant methods for DPSC isolation are enzymatic digestion (ED) and outgrowth from tissue explants (OG), often referred to as spontaneous growth. This protocol concentrates primarily on the enzymatic digestion approach for DPSC isolation, intricately detailing the steps encompassing extraction, in-lab processing, and cell preservation. Beyond extraction and preservation, the protocol delves into the differentiation prowess of DPSCs. Specifically, it outlines the procedures employed to induce these stem cells to differentiate into adipocytes, osteoblasts, and chondrocytes, showcasing their multipotent attributes. Subsequent utilization of colorimetric staining techniques facilitates accurate visualization and confirmation of successful differentiation, thereby validating the caliber and functionality of the isolated DPSCs. This comprehensive protocol functions as a blueprint encompassing the entire spectrum of dental pulp stem cell extraction, cultivation, preservation, and characterization. It underscores the substantial potential harbored by DPSCs, propelling forward stem cell exploration and holding promise for future regenerative and therapeutic breakthroughs.


Dental Pulp , Stem Cells , Tooth, Deciduous , Dental Pulp/cytology , Humans , Stem Cells/cytology , Tooth, Deciduous/cytology , Dentition, Permanent , Cell Culture Techniques/methods , Cell Differentiation/physiology , Cell Separation/methods
3.
Mol Biol Rep ; 51(1): 710, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824241

BACKGROUND: Circular RNA (circRNA) is a key player in regulating the multidirectional differentiation of stem cells. Previous research by our group found that the blue light-emitting diode (LED) had a promoting effect on the osteogenic/odontogenic differentiation of human stem cells from apical papilla (SCAPs). This research aimed to investigate the differential expression of circRNAs during the osteogenic/odontogenic differentiation of SCAPs regulated by blue LED. MATERIALS AND METHODS: SCAPs were divided into the irradiation group (4 J/cm2) and the control group (0 J/cm2), and cultivated in an osteogenic/odontogenic environment. The differentially expressed circRNAs during osteogenic/odontogenic differentiation of SCAPs promoted by blue LED were detected by high-throughput sequencing, and preliminarily verified by qRT-PCR. Functional prediction of these circRNAs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the circRNA-miRNA-mRNA networks were also constructed. RESULTS: It showed 301 circRNAs were differentially expressed. GO and KEGG analyses suggested that these circRNAs were associated with some signaling pathways related to osteogenic/odontogenic differentiation. And the circRNA-miRNA-mRNA networks were also successfully constructed. CONCLUSION: CircRNAs were involved in the osteogenic/odontogenic differentiation of SCAPs promoted by blue LED. In this biological process, circRNA-miRNA-mRNA networks served an important purpose, and circRNAs regulated this process through certain signaling pathways.


Cell Differentiation , Dental Papilla , Light , Odontogenesis , Osteogenesis , RNA, Circular , Stem Cells , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Osteogenesis/genetics , Cell Differentiation/genetics , Stem Cells/metabolism , Stem Cells/cytology , Odontogenesis/genetics , Dental Papilla/cytology , Dental Papilla/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Ontology , Cells, Cultured , Gene Expression Profiling/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing/methods , Gene Expression Regulation/radiation effects , Blue Light
4.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 135-141, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38836669

Epigenetic change has been found to play an important role in cell differentiation and regulation and the dental pulp stem cell in tissue engineering is gaining attention due to the ability of cells to differentiate into odontoblast and other cells. This study evaluated the influence of poly L- lactic acid with hydroxyapatite-coated with polyaniline scaffold (PLLA/HA/PANI) on dental pulp stem cell (DPSC) proliferation and differentiation. After scaffold preparation and DPSCs seeding, the cells proliferation and differentiation were evaluated by immunocytochemistry assay and cell viability was measured by cytotoxicity / MTT assay. The results showed (PLLA/HA/PANI) scaffold facilitates DPSC proliferation and differentiation with gene expression. This finding underscores the promise of this biomaterial combination as a scaffold for dental tissue regeneration and application.


Biocompatible Materials , Cell Differentiation , Cell Proliferation , Dental Pulp , Durapatite , Odontoblasts , Osteoblasts , Stem Cells , Tissue Scaffolds , Dental Pulp/cytology , Humans , Cell Differentiation/drug effects , Odontoblasts/cytology , Odontoblasts/drug effects , Odontoblasts/metabolism , Tissue Scaffolds/chemistry , Stem Cells/cytology , Stem Cells/metabolism , Stem Cells/drug effects , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Cell Proliferation/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Durapatite/chemistry , Durapatite/pharmacology , Aniline Compounds/pharmacology , Aniline Compounds/chemistry , Polyesters/chemistry , Polyesters/pharmacology , Cell Survival/drug effects , Cells, Cultured , Tissue Engineering/methods
5.
Arch Dermatol Res ; 316(6): 330, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38837051

Lichen planopilaris (LPP) and frontal fibrosing alopecia (FFA) are primary cicatricial alopecia that cause a major impact on quality of life due to irreversible hair loss and symptoms as itching, burning and pain. They are characterized by permanent loss of hair follicle stem cells (HFSCs) by pathomechanisms still poorly understood, resulting in poor efficacy of currently available treatments. Caveolae are flask-shaped lipid rafts invaginated within the plasma membrane of multiple cell types. Although their role in the HF physiology and pathophysiology is relatively unknown, we have previously demonstrated that the primary structural component of caveolae (caveolin-1 or Cav1) is upregulated in FFA. Thus, we propose to investigate the expression and localization of caveolae-associated structural proteins (Cav1, Cav2, and Cavin-1) and HFSCs (identified by K15) in both LPP and FFA. We analyzed 4 patients with LPP biopsied in affected and non-affected (NA) scalp, 4 patients with FFA biopsied in affected scalp and 4 healthy controls. Affected scalp of LPP and FFA demonstrated increased levels of Cav1 and Cavin-1 compared with HC and LPP-NA. Moreover, Cav1, Cav2 and Cavin1 all exhibit high colocalization with K15 and their expression appears to be negatively correlated, supporting the hypothesis that these proteins are important players in LPP/FFA and may serve as therapeutic targets in future treatments.


Alopecia , Caveolae , Caveolin 1 , Hair Follicle , Lichen Planus , Up-Regulation , Humans , Alopecia/pathology , Alopecia/metabolism , Hair Follicle/pathology , Hair Follicle/metabolism , Lichen Planus/metabolism , Lichen Planus/pathology , Middle Aged , Female , Caveolin 1/metabolism , Male , Caveolae/metabolism , Scalp/pathology , Adult , Keratin-15/metabolism , Aged , Biopsy , Fibrosis , Stem Cells/metabolism , Stem Cells/pathology , RNA-Binding Proteins/metabolism
6.
Front Endocrinol (Lausanne) ; 15: 1397783, 2024.
Article En | MEDLINE | ID: mdl-38846497

Objective: Various stem cell-loaded scaffolds have demonstrated promising endometrial regeneration and fertility restoration. This study aimed to evaluate the efficacy of stem cell-loaded scaffolds in treating uterine injury in animal models. Methods: The PubMed, Embase, Scopus, and Web of Science databases were systematically searched. Data were extracted and analyzed using Review Manager version 5.4. Improvements in endometrial thickness, endometrial glands, fibrotic area, and number of gestational sacs/implanted embryos were compared after transplantation in the stem cell-loaded scaffolds and scaffold-only group. The standardized mean difference (SMD) and confidence interval (CI) were calculated using forest plots. Results: Thirteen studies qualified for meta-analysis. Overall, compared to the scaffold groups, stem cell-loaded scaffolds significantly increased endometrial thickness (SMD = 1.99, 95% CI: 1.54 to 2.44, P < 0.00001; I² = 16%) and the number of endometrial glands (SMD = 1.93, 95% CI: 1.45 to 2.41, P < 0.00001; I² = 0). Moreover, stem cell-loaded scaffolds present a prominent effect on improving fibrosis area (SMD = -2.50, 95% CI: -3.07 to -1.93, P < 0.00001; I² = 36%) and fertility (SMD = 3.34, 95% CI: 1.58 to 5.09, P = 0.0002; I² = 83%). Significant heterogeneity among studies was observed, and further subgroup and sensitivity analyses identified the source of heterogeneity. Moreover, stem cell-loaded scaffolds exhibited lower inflammation levels and higher angiogenesis, and cell proliferation after transplantation. Conclusion: The evidence indicates that stem cell-loaded scaffolds were more effective in promoting endometrial repair and restoring fertility than the scaffold-only groups. The limitations of the small sample sizes should be considered when interpreting the results. Thus, larger animal studies and clinical trials are needed for further investigation. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO, identifier CRD42024493132.


Endometrium , Regeneration , Tissue Scaffolds , Female , Endometrium/physiology , Endometrium/cytology , Regeneration/physiology , Tissue Scaffolds/chemistry , Animals , Humans , Fertility/physiology , Stem Cells/cytology , Infertility, Female/therapy , Stem Cell Transplantation/methods
7.
Development ; 151(11)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38832825

Germ stem cells in Drosophila reside within a specialized stem cell niche, but the effects of stress on these stem cell populations have been elusive. In a new study, Roach and Lenhart show that repeated mating stress induces reversible changes in the germ stem cell niche. To know more about their work, we spoke to first author, Tiffany Roach, and corresponding author, Kari Lenhart, Principal Investigator at Drexel University in Philadelphia, USA.


Germ Cells , Animals , History, 21st Century , Germ Cells/cytology , History, 20th Century , Stem Cell Niche/physiology , Drosophila , Humans , Developmental Biology/history , Stem Cells/cytology
8.
Development ; 151(11)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38832826

Germline maintenance relies on adult stem cells to continually replenish lost gametes over a lifetime and respond to external cues altering the demands on the tissue. Mating worsens germline homeostasis over time, yet a negative impact on stem cell behavior has not been explored. Using extended live imaging of the Drosophila testis stem cell niche, we find that short periods of mating in young males disrupts cytokinesis in germline stem cells (GSCs). This defect leads to failure of abscission, preventing release of differentiating cells from the niche. We find that GSC abscission failure is caused by increased Ecdysone hormone signaling induced upon mating, which leads to disrupted somatic encystment of the germline. Abscission failure is rescued by isolating males from females, but recurs with resumption of mating. Importantly, reiterative mating also leads to increased GSC loss, requiring increased restoration of stem cells via symmetric renewal and de-differentiation. Together, these results suggest a model whereby acute mating results in hormonal changes that negatively impact GSC cytokinesis but preserves the stem cell population.


Cytokinesis , Drosophila melanogaster , Ecdysone , Germ Cells , Testis , Animals , Male , Ecdysone/metabolism , Testis/metabolism , Female , Drosophila melanogaster/metabolism , Germ Cells/metabolism , Germ Cells/cytology , Stem Cell Niche , Stem Cells/metabolism , Stem Cells/cytology , Cell Differentiation , Signal Transduction , Drosophila Proteins/metabolism , Drosophila Proteins/genetics
9.
Life Sci Alliance ; 7(8)2024 Aug.
Article En | MEDLINE | ID: mdl-38843935

Age-related reduction in muscle stem cell (MuSC) regenerative capacity is associated with cell-autonomous and non-cell-autonomous changes caused by alterations in systemic and skeletal muscle environments, ultimately leading to a decline in MuSC number and function. Previous studies demonstrated that STAT3 plays a key role in driving MuSC expansion and differentiation after injury-activated regeneration, by regulating autophagy in activated MuSCs. However, autophagy gradually declines in MuSCs during lifespan and contributes to the impairment of MuSC-mediated regeneration of aged muscles. Here, we show that STAT3 inhibition restores the autophagic process in aged MuSCs, thereby recovering MuSC ability to promote muscle regeneration in geriatric mice. We show that STAT3 inhibition could activate autophagy at the nuclear level, by promoting transcription of autophagy-related genes, and at the cytoplasmic level, by targeting STAT3/PKR phosphorylation of eIF2α. These results point to STAT3 inhibition as a potential intervention to reverse the age-related autophagic block that impairs MuSC ability to regenerate aged muscles. They also reveal that STAT3 regulates MuSC function by both transcription-dependent and transcription-independent regulation of autophagy.


Aging , Autophagy , Muscle, Skeletal , Regeneration , STAT3 Transcription Factor , STAT3 Transcription Factor/metabolism , Animals , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Muscle, Skeletal/cytology , Aging/physiology , Aging/metabolism , Mice, Inbred C57BL , Stem Cells/metabolism , Stem Cells/cytology , Phosphorylation , Male , Cell Differentiation , Signal Transduction
10.
Nat Commun ; 15(1): 4827, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844451

Adipose progenitor cells (APCs) are heterogeneous stromal cells and help to maintain metabolic homeostasis. However, the influence of obesity on human APC heterogeneity and the role of APC subpopulations on regulating glucose homeostasis remain unknown. Here, we find that APCs in human visceral adipose tissue contain four subsets. The composition and functionality of APCs are altered in patients with type 2 diabetes (T2D). CD9+CD55low APCs are the subset which is significantly increased in T2D patients. Transplantation of these cells from T2D patients into adipose tissue causes glycemic disturbance. Mechanistically, CD9+CD55low APCs promote T2D development through producing bioactive proteins to form a detrimental niche, leading to upregulation of adipocyte lipolysis. Depletion of pathogenic APCs by inducing intracellular diphtheria toxin A expression or using a hunter-killer peptide improves obesity-related glycemic disturbance. Collectively, our data provide deeper insights in human APC functionality and highlights APCs as a potential therapeutic target to combat T2D. All mice utilized in this study are male.


Diabetes Mellitus, Type 2 , Glucose , Homeostasis , Obesity , Single-Cell Analysis , Stem Cells , Humans , Animals , Single-Cell Analysis/methods , Diabetes Mellitus, Type 2/metabolism , Male , Mice , Stem Cells/metabolism , Glucose/metabolism , Obesity/metabolism , Obesity/pathology , Adipocytes/metabolism , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/cytology , Adipose Tissue/metabolism , Adipose Tissue/cytology , Mice, Inbred C57BL , Lipolysis , Female , Middle Aged
11.
J Extracell Vesicles ; 13(6): e12446, 2024 Jun.
Article En | MEDLINE | ID: mdl-38844736

Dendritic cells (DCs) are essential orchestrators of immune responses and represent potential targets for immunomodulation in autoimmune diseases. Human amniotic fluid secretome is abundant in immunoregulatory factors, with extracellular vesicles (EVs) being a significant component. However, the impact of these EVs on dendritic cells subsets remain unexplored. In this study, we investigated the interaction between highly purified dendritic cell subsets and EVs derived from amniotic fluid stem cell lines (HAFSC-EVs). Our results suggest that HAFSC-EVs are preferentially taken up by conventional dendritic cell type 2 (cDC2) through CD29 receptor-mediated internalization, resulting in a tolerogenic DC phenotype characterized by reduced expression and production of pro-inflammatory mediators. Furthermore, treatment of cDC2 cells with HAFSC-EVs in coculture systems resulted in a higher proportion of T cells expressing the regulatory T cell marker Foxp3 compared to vehicle-treated control cells. Moreover, transfer of HAFSC-EV-treated cDC2s into an EAE mouse model resulted in the suppression of autoimmune responses and clinical improvement. These results suggest that HAFSC-EVs may serve as a promising tool for reprogramming inflammatory cDC2s towards a tolerogenic phenotype and for controlling autoimmune responses in the central nervous system, representing a potential platform for the study of the effects of EVs in DC subsets.


Amniotic Fluid , Dendritic Cells , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental , Extracellular Vesicles , Multiple Sclerosis , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mice , Amniotic Fluid/cytology , Amniotic Fluid/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Humans , Multiple Sclerosis/therapy , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Female , Stem Cells/metabolism , Stem Cells/cytology , Mice, Inbred C57BL
12.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(5): 496-502, 2024 May.
Article Zh | MEDLINE | ID: mdl-38845496

OBJECTIVE: To analyze the impact of cecal ligation and puncture (CLP)-induced sepsis on the proliferation and differentiation of intestinal epithelial cells. METHODS: (1) Animal experiment: sixteen male C57BL/6 mice were divided into sham operation group (Sham group) and CLP-induced sepsis model group (CLP group) by random number table method, with 8 mice in each group. After 5 days of operation, the jejunal tissues were taken for determination of leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5) and intestinal alkaline phosphatase (IAP) by polymerase chain reaction (PCR). The translation of LGR5 was detected by Western blotting. The expression of proliferating cell nuclear antigen (Ki67) was analyzed by immunohistochemistry. IAP level was detected by modified calcium cobalt staining and colorimetry. Immunofluorescence staining was used to detect the expression of Paneth cell marker molecule lysozyme 1 (LYZ1) and goblet cell marker molecule mucin 2 (MUC2). (2) Cell experiment: IEC6 cells in logarithmic growth stage were divided into blank control group and lipopolysaccharide (LPS) group (LPS 5 µg/mL). Twenty-four hours after treatment, PCR and Western blotting were used to analyze the transcription and translation of LGR5. The proliferation of IEC6 cells were detected by 5-ethynyl-2'-deoxyuridine (EdU) staining. The transcription and translation of IAP were detected by PCR and colorimetric method respectively. RESULTS: (1) Animal experiment: the immunohistochemical results showed that the positive rate of Ki67 staining in the jejunal tissue of CLP group was lower than that of Sham group [(41.7±2.5)% vs. (48.7±1.4)%, P = 0.01]. PCR and Western blotting results showed that there were no statistical differences in the mRNA and protein expressions of LGR5 in the jejunal tissue between the CLP group and Sham group (Lgr5 mRNA: 0.7±0.1 vs. 1.0±0.2, P = 0.11; LGR5/ß-actin: 0.83±0.17 vs. 0.68±0.19, P = 0.24). The mRNA (0.4±0.1 vs. 1.0±0.1, P < 0.01) and protein (U/g: 47.3±6.0 vs. 73.1±15.3, P < 0.01) levels of IAP in the jejunal tissue were lower in CLP group. Immunofluorescence saining analysis showed that the expressions of LYZ1 and MUC2 in the CLP group were lower than those in the Sham group. (2) Cell experiment: PCR and Western blotting results showed that there was no significant difference in the expression of LGR5 between the LPS group and the blank control group (Lgr5 mRNA: 0.9±0.1 vs. 1.0±0.2, P = 0.33; LGR5/ß-actin: 0.71±0.18 vs. 0.69±0.04, P = 0.81). The proliferation rate of IEC6 cells in the LPS group was lower than that in the blank control group, but there was no significant difference [positivity rate of EdU: (40.5±3.8)% vs. (46.5±3.6)%, P = 0.11]. The mRNA (0.5±0.1 vs. 1.0±0.2, P < 0.01) and protein (U/g: 15.0±4.0 vs. 41.2±10.4, P < 0.01) of IAP in the LPS group were lower than those in the blank control group. CONCLUSIONS: CLP-induced sepsis inhibits the proliferation and differentiation of intestinal epithelial cells, impairing the self-renewal ability of intestinal epithelium.


Cell Differentiation , Cell Proliferation , Mice, Inbred C57BL , Receptors, G-Protein-Coupled , Sepsis , Stem Cells , Animals , Male , Sepsis/metabolism , Mice , Receptors, G-Protein-Coupled/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Cecum , Intestinal Mucosa/metabolism , Ligation , Mucin-2
13.
Breast Cancer Res ; 26(1): 91, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38835038

BACKGROUND: The aberrant amplification of mammary luminal progenitors is at the origin of basal-like breast cancers associated with BRCA1 mutations. Integrins mediate cell-matrix adhesion and transmit mechanical and chemical signals that drive epithelial stem cell functions and regulate tumor progression, metastatic reactivation, and resistance to targeted therapies. Consistently, we have recently shown that laminin-binding integrins are essential for the expansion and differentiation of mammary luminal progenitors in physiological conditions. As over-expression of the laminin-binding α6 integrin (Itgα6) is associated with poor prognosis and reduced survival in breast cancer, we here investigate the role of Itgα6 in mammary tumorigenesis. METHODS: We used Blg-Cre; Brca1F/F; Trp53F/F mice, a model that phenocopies human basal-like breast cancer with BRCA1 mutations. We generated mutant mice proficient or deficient in Itgα6 expression and followed tumor formation. Mammary tumors and pretumoral tissues were characterized by immunohistochemistry, flow cytometry, RT-qPCR, Western blotting and organoid cultures. Clonogenicity of luminal progenitors from preneoplastic glands was studied in 3D Matrigel cultures. RESULTS: We show that Itga6 deletion favors activation of p16 cell cycle inhibitor in the preneoplastic tissue. Subsequently, the amplification of luminal progenitors, the cell of origin of Brca1-deficient tumors, is restrained in Itgα6-deficient gland. In addition, the partial EMT program operating in Brca1/p53-deficient epithelium is attenuated in the absence of Itgα6. As a consequence of these events, mammary tumor formation is delayed in Itgα6-deficient mice. After tumor formation, the lack of Itgα6 does not affect tumor growth but rather alters their differentiation, resulting in reduced expression of basal cell markers. CONCLUSIONS: Our data indicate that Itgα6 has a pro-tumorigenic role in Blg-Cre; Brca1F/F; Trp53F/F mice developing basal-like mammary tumors. In particular, we reveal that Itgα6 is required for the luminal progenitor expansion and the aberrant partial EMT program that precedes the formation of BRCA1 deficient tumors.


BRCA1 Protein , Breast Neoplasms , Integrin alpha6 , Tumor Suppressor Protein p53 , Animals , Integrin alpha6/metabolism , Integrin alpha6/genetics , Female , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Mice , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Cell Proliferation , Stem Cells/metabolism , Gene Deletion , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism
14.
Arch Dermatol Res ; 316(6): 323, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822901

Refractory diabetic wounds are still a clinical challenge that can cause persistent inflammation and delayed healing. Exosomes of adipose stem cells (ADSC-exos) are the potential strategy for wound repair; however, underlying mechanisms remain mysterious. In this study, we isolated ADSC-exos and identified their characterization. High glucose (HG) stimulated human umbilical vein endothelial cells (HUVECs) to establish in vitro model. The biological behaviors were analyzed by Transwell, wound healing, and tube formation assays. The underlying mechanisms were analyzed using quantitative real-time PCR, co-immunoprecipitation (Co-IP), IP, and western blot. The results showed that ADSC-exos promoted HG-inhibited cell migration and angiogenesis. In addition, ADSC-exos increased the levels of TRIM32 in HG-treated HUVECs, which promoted the ubiquitination of STING and downregulated STING protein levels. Rescue experiments affirmed that ADSC-exos promoted migration and angiogenesis of HG-treated HUVECs by regulating the TRIM32/STING axis. In conclusion, ADSC-exos increased the levels of TRIM32, which interacted with STING and promoted its ubiquitination, downregulating STING levels, thus promoting migration and angiogenesis of HG-treated HUVECs. The findings suggested that ADSC-exos could promote diabetic wound healing and demonstrated a new mechanism of ADSC-exos.


Cell Movement , Exosomes , Glucose , Human Umbilical Vein Endothelial Cells , Membrane Proteins , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Wound Healing , Humans , Adipose Tissue/metabolism , Adipose Tissue/cytology , Cells, Cultured , Exosomes/metabolism , Glucose/metabolism , Membrane Proteins/metabolism , Neovascularization, Physiologic , Signal Transduction , Stem Cells/metabolism , Transcription Factors , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
15.
Sci Rep ; 14(1): 12750, 2024 06 03.
Article En | MEDLINE | ID: mdl-38830952

The current practice of restoring the anatomical structure in the treatment of pelvic floor dysfunction includes implantation of synthetic sling, which carries potential complications. This study aimed to develop biological substitutes to improve tissue function using scaffolds as a support to the host cells, through formation of new tissue. Human amniotic fluid stem cells (hAFSCs) were seeded on synthetic mesh-scaffold of AlloDerm Regenerative Tissue Matrix (RTM), Poly-DL-lactico-glycolic acid (PLGA) mesh (VICRYL) and Polydioxanone (PDS) meshes. In vitro study evaluates the metabolic activity of hAFSCs seeded mesh-scaffolds. In vivo study involving Sprague-Dawley rats was performed by assigning into 7 groups of sham control with fascia operation, AlloDerm implant, PDS implant, PLGA implant, AlloDerm harvest with hAFSC (AlloDerm-SC), PDS harvest with hAFSC(PDS-SC) and PLGS harvest with hAFSC (PGLA-SC). In vitro study reveals cell viability and proliferation of hAFSC on mesh scaffolds varies between meshes, with AlloDerm growing the fastest. The biomechanical properties of tissue-mesh-complex tension strength declined over time, showing highest tension strength on week-1, deteriorated similar to control group on week-12. All hAFSC-seeded mesh provides higher tension strength, compared to without. This study shed the potential of synthetic mesh as a scaffold for hAFSC for the surgical treatment of pelvic floor dysfunction.


Amniotic Fluid , Rats, Sprague-Dawley , Stem Cells , Tissue Scaffolds , Animals , Tissue Scaffolds/chemistry , Humans , Amniotic Fluid/cytology , Rats , Stem Cells/cytology , Female , Plastic Surgery Procedures/methods , Tissue Engineering/methods , Surgical Mesh , Cell Proliferation , Pelvic Floor/surgery , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
16.
J Contemp Dent Pract ; 25(3): 267-275, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38690701

AIM: To study the effect of glycyrrhizin (GA) on the viability and proliferation of dental pulp stem cells (DPSCs) compared with intracanal medicaments. MATERIALS AND METHODS: Third molars of an adult donor were used to obtain the DPSCs. Flow cytometry was utilized to conduct phenotypic analysis for DPSCs. The methyl-thiazol tetrazolium (MTT) test was used to detect the cell viability. Cell proliferation assay was conducted at distinct time intervals: 3, 5, and 7 days. RESULTS: The flow cytometry analysis verified the positive expression of mesenchymal cell surface antigen molecules (CD73, CD90, and CD105) and the absence of hematological markers (CD14, CD34, and CD45) in the DPSCs. The cells that treated with concentrations more than 0.5 mg/mL of Ca(OH2) and triple antibiotic paste (TAP) gave significant decrease in viability in comparison to the untreated cells (p < 0.05). Also, the cells treated with concentrations 50 and 25 µM of GA showed no significant difference compared with the untreated cells (p > 0.05), while concentrations 12.5 and 6.25 µM expressed a significant increase in viability compared with the untreated cells (p < 0.05). At 7 days, cells treated with the three different concentrations of GA (12.5, 25, and 50 µM) demonstrated a significant increase in cell density compared with Ca(OH)2 and TAP-treated cells (p < 0.05). CONCLUSION: Based upon the potential of GA on DPSCs proliferation compared with Ca(OH)2 and TAP, It is conceivable to acknowledge that GA could be used as an intracanal medicaments for revascularization process of necrotic immature teeth. CLINICAL SIGNIFICANCE: This study emphasizes the significance of assessing alternative root canal medicaments and their impact on the proliferation and viability of DPSCs. The results regarding GA, specifically its impact on the viability and growth of DPSCs, provide essential understanding for its potential application as an intracanal medicine. This study adds to the continuous endeavors in identifying safer and more efficient intracanal therapies, which are essential for improving patient outcomes in endodontic operations. How to cite this article: Alrashidi MA, Badawi MF, Elbeltagy MG, et al. The Effect of Glycyrrhizin on the Viability and Proliferation of Dental Pulp Stem Cells Compared to Intracanal Medicaments. J Contemp Dent Pract 2024;25(3):267-275.


Cell Proliferation , Cell Survival , Dental Pulp , Glycyrrhizic Acid , Root Canal Irrigants , Stem Cells , Humans , Dental Pulp/cytology , Dental Pulp/drug effects , Glycyrrhizic Acid/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Root Canal Irrigants/pharmacology , Stem Cells/drug effects , Flow Cytometry , Calcium Hydroxide/pharmacology , Cells, Cultured , Adult
17.
Nat Commun ; 15(1): 3873, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719882

Human glial progenitor cells (hGPCs) exhibit diminished expansion competence with age, as well as after recurrent demyelination. Using RNA-sequencing to compare the gene expression of fetal and adult hGPCs, we identify age-related changes in transcription consistent with the repression of genes enabling mitotic expansion, concurrent with the onset of aging-associated transcriptional programs. Adult hGPCs develop a repressive transcription factor network centered on MYC, and regulated by ZNF274, MAX, IKZF3, and E2F6. Individual over-expression of these factors in iPSC-derived hGPCs lead to a loss of proliferative gene expression and an induction of mitotic senescence, replicating the transcriptional changes incurred during glial aging. miRNA profiling identifies the appearance of an adult-selective miRNA signature, imposing further constraints on the expansion competence of aged GPCs. hGPC aging is thus associated with acquisition of a MYC-repressive environment, suggesting that suppression of these repressors of glial expansion may permit the rejuvenation of aged hGPCs.


Aging , MicroRNAs , Neuroglia , Transcription Factors , Humans , Neuroglia/metabolism , Neuroglia/cytology , Aging/genetics , Aging/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cellular Senescence/genetics , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Stem Cells/metabolism , Stem Cells/cytology , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Adult , Gene Regulatory Networks , Cell Proliferation/genetics , Gene Expression Regulation, Developmental , Gene Expression Profiling
18.
Int J Biol Sci ; 20(7): 2339-2355, 2024.
Article En | MEDLINE | ID: mdl-38725853

Chronic cholestatic damage is associated to both accumulation of cytotoxic levels of bile acids and expansion of adult hepatic progenitor cells (HPC) as part of the ductular reaction contributing to the regenerative response. Here, we report a bile acid-specific cytotoxic response in mouse HPC, which is partially impaired by EGF signaling. Additionally, we show that EGF synergizes with bile acids to trigger inflammatory signaling and NLRP3 inflammasome activation in HPC. Aiming at understanding the impact of this HPC specific response on the liver microenvironment we run a proteomic analysis of HPC secretome. Data show an enrichment in immune and TGF-ß regulators, ECM components and remodeling proteins in HPC secretome. Consistently, HPC-derived conditioned medium promotes hepatic stellate cell (HSC) activation and macrophage M1-like polarization. Strikingly, EGF and bile acids co-treatment leads to profound changes in the secretome composition, illustrated by an abolishment of HSC activating effect and by promoting macrophage M2-like polarization. Collectively, we provide new specific mechanisms behind HPC regulatory action during cholestatic liver injury, with an active role in cellular interactome and inflammatory response regulation. Moreover, findings prove a key contribution for EGFR signaling jointly with bile acids in HPC-mediated actions.


Bile Acids and Salts , ErbB Receptors , Inflammation , Mice, Inbred C57BL , Signal Transduction , Animals , Bile Acids and Salts/metabolism , ErbB Receptors/metabolism , Mice , Inflammation/metabolism , Stem Cells/metabolism , Liver/metabolism , Liver/pathology , Male , Proteomics , Macrophages/metabolism , Hepatic Stellate Cells/metabolism
19.
Stem Cell Res Ther ; 15(1): 136, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715083

BACKGROUND: Alzheimer's disease (AD) is a prevalent form of dementia leading to memory loss, reduced cognitive and linguistic abilities, and decreased self-care. Current AD treatments aim to relieve symptoms and slow disease progression, but a cure is elusive due to limited understanding of the underlying disease mechanisms. MAIN CONTENT: Stem cell technology has the potential to revolutionize AD research. With the ability to self-renew and differentiate into various cell types, stem cells are valuable tools for disease modeling, drug screening, and cell therapy. Recent advances have broadened our understanding beyond the deposition of amyloidß (Aß) or tau proteins in AD to encompass risk genes, immune system disorders, and neuron-glia mis-communication, relying heavily on stem cell-derived disease models. These stem cell-based models (e.g., organoids and microfluidic chips) simulate in vivo pathological processes with extraordinary spatial and temporal resolution. Stem cell technologies have the potential to alleviate AD pathology through various pathways, including immunomodulation, replacement of damaged neurons, and neurotrophic support. In recent years, transplantation of glial cells like oligodendrocytes and the infusion of exosomes have become hot research topics. CONCLUSION: Although stem cell-based models and therapies for AD face several challenges, such as extended culture time and low differentiation efficiency, they still show considerable potential for AD treatment and are likely to become preferred tools for AD research.


Alzheimer Disease , Stem Cell Transplantation , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , Stem Cell Transplantation/methods , Animals , Stem Cells/metabolism , Stem Cells/cytology
20.
J Nanobiotechnology ; 22(1): 219, 2024 May 03.
Article En | MEDLINE | ID: mdl-38698419

BACKGROUND: Adipose-derived stem cells (ASCs) represent the most advantageous choice for soft tissue regeneration. Studies proved the recruitment of ASCs post tissue injury was mediated by chemokine CXCL12, but the mechanism by which CXCL12 is generated after tissue injury remains unclear. Migrasomes are newly discovered membrane-bound organelles that could deliver CXCL12 spatially and temporally in vivo. In this study, we sought to investigate whether migrasomes participate ASC-mediated tissue regeneration. METHODS: Discrepant and asymmetrical soft tissue regeneration mice model were established, in which HE staining, immunofluorescent staining, western blot and qPCR were conducted to confirm the role of CXCL12 and migrasomes in ASC-mediated tissue regeneration. Characterization of ASC-derived migrasomes were carried out by confocal microscopy, scanning electron microscopy, transmission electron microscopy as well as western blot analysis. The function and mechanism of migrasomes were further testified by assisting tissue regeneration with isolated migrasomes in vivo and by in vitro transwell combined with co-culture system. RESULTS: Here, we show for the first time that migrasomes participate in soft tissue regeneration. ASCs generate migrasomes enriched with CXCL12 to mediate tissue regeneration. Migrasomes from ASCs could promote stem cells migration by activating CXCR4/RhoA signaling in vivo and in vitro. Chemoattracted ASCs facilitate regeneration, as demonstrated by the upregulation of an adipogenesis-associated protein. This positive feed-back-loop creates a favorable microenvironment for soft tissue regeneration. Thus, migrasomes represent a new therapeutic target for ASC-mediated tissue regeneration. CONCLUSIONS: Our findings reveal a previously unknown function of ASCs in mediating tissue regeneration by generating migrasomes. The ASC-derived migrasomes can restore tissue regeneration by recruiting stem cells, which highlighting the potential application of ASC-derived migrasomes in regenerative medicine.


Adipose Tissue , Chemokine CXCL12 , Receptors, CXCR4 , Regeneration , Stem Cells , rhoA GTP-Binding Protein , Chemokine CXCL12/metabolism , Animals , Receptors, CXCR4/metabolism , Mice , Adipose Tissue/cytology , Adipose Tissue/metabolism , rhoA GTP-Binding Protein/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Mice, Inbred C57BL , Feedback, Physiological , Cell Movement , Cells, Cultured , Male , Signal Transduction
...