Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.933
Filter
1.
Steroids ; 208: 109449, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851553

ABSTRACT

Chemical investigation of the fungus Trichoderma asperellum SCNU-F0048 led to the discovery of two new steroids, ergosta-4,6,8 (14),22-tetraen-3-(3'-methyl-4'-hydroxyl-γ-butenolide) (1) and camphosterol B (2), as well as two known compounds, i.e. stigmasta-4,6,8(14),22-tetraen-3-one (3) and 4-hydroxy-17- methylincisterol (4). Their structures were elucidated by extensive nuclear mangnetic resonance, spectrum analysis and single crystal X-ray diffraction analysis. Bioassay disclosed that compound 1 showed strong cytotoxicity to a panel of tumor cell lines. Moreover, compounds 1 and 2 showed excellent antifungal activity against Penicillium italicum with IC50 values of 0.016 and 0.022 µM, respectively.


Subject(s)
Steroids , Trichoderma , Steroids/chemistry , Steroids/pharmacology , Humans , Trichoderma/chemistry , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Penicillium/chemistry , Molecular Conformation , Models, Molecular , Molecular Structure , Drug Screening Assays, Antitumor
2.
Steroids ; 208: 109456, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38889811

ABSTRACT

Occupancy of prostate cancer (PCa) cell androgen receptors (AR) signals proliferation, therefore testosterone biosynthesis inhibitors and AR antagonists are important PCa treatments. Conversely, androgen mimics (e.g., prednisone) used in management of PCa might cause proliferation. The balance between PCa proliferation and inhibition predicts treatment success. We used in silico molecular modelling to explore interactions between ARs, androgens (testosterone, dihydrotestosterone (DHT)) and drugs used to treat (bicalutamide) and manage (dexamethasone, prednisone, hydrocortisone) PCa. We found that hydrogen (H-) bonds between testosterone, DHT and Arg752, Asn705 and Thr877 followed by ligand binding cleft hydrophobic interactions signal proliferation, whereas bicalutamide antagonism is via Phe764 interactions. Hydrocortisone, dexamethasone and prednisone H-bond Asn705 and Thr877, but not Arg752 in the absence of a water molecule. Studies with a bicalutamide agonist AR mutation showed different amino acid interactions, indicating testosterone and DHT would not promote proliferation as effectively as via the native receptor. However, hydrocortisone and bicalutamide form Arg752 and Asn705 H-bonds indicating agonism. Our results suggest that as PCa progresses the resulting mutations will change the proliferative response to androgens and their drug mimics, which have implications for the treatment of prostate cancer.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Male , Receptors, Androgen/metabolism , Humans , Anilides/pharmacology , Anilides/chemistry , Tosyl Compounds/pharmacology , Tosyl Compounds/chemistry , Tosyl Compounds/metabolism , Computer Simulation , Molecular Docking Simulation , Models, Molecular , Nitriles/chemistry , Nitriles/pharmacology , Nitriles/metabolism , Steroids/metabolism , Steroids/chemistry , Testosterone/metabolism , Testosterone/pharmacology , Protein Binding , Dihydrotestosterone/metabolism
3.
Molecules ; 29(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38893309

ABSTRACT

The possibility of cyanoacetohydrazide usage as a novel derivatizing agent is demonstrated in the presented article, and a comparison with hydroxylamine as the most commonly used reagent is provided. Optimal conditions for steroid derivatization with cyanoacetohydrazide are provided. According to the collected data, the maximum yield of derivatives was observed at pH 2.8 within 70 min at 40 °C with 5 ng/mL limit of detection for all investigated analytes. It was shown that cyanoacetohydrazide derivatives produces both syn- and anti-forms as well as hydroxylamine, and their ratios were evaluated and shown in presented work. An efficiency enchantment from two to up to five times was achieved with a novel derivatization reagent. Its applicability for qualitative analysis of steroids in urine was presented at real samples. Additionally, the reproducible fragmentation of the derivatizing agent in collision-induced dissociation offers opportunities for simplified non-targeted steroidomic screening. Furthermore, cyanoacetohydrazide increases ionization efficiency in positive mode, which can eliminate the need for redundant high-resolution instrument runs required for both positive and negative mode analyses.


Subject(s)
Steroids , Humans , Steroids/urine , Steroids/chemistry , Chromatography, High Pressure Liquid/methods , Hydrazines/chemistry , Tandem Mass Spectrometry/methods , Limit of Detection
4.
Biochem Pharmacol ; 225: 116266, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710333

ABSTRACT

Cancer continues to be a serious threat to human health worldwide. Lung, prostate and triple-negative breast cancers are amongst the most incident and deadliest cancers. Steroidal compounds are one of the most diversified therapeutic classes of compounds and they were proven to be efficient against several types of cancer. The epoxide function has been frequently associated with anticancer activity, particularly the 1,2-epoxide function. For this reason, three 1,2-epoxysteroid derivatives previously synthesised (EP1, EP2 and EP3) and one synthesised for the first time (oxysteride) were evaluated against H1299 (lung), PC3 (prostate) and HCC1806 (triple-negative breast) cancer cell lines. A human non-tumour cell line, MRC-5 (normal lung cell line) was also used. EP2 was the most active compound in all cell lines with IC50 values of 2.50, 3.67 and 1.95 µM, followed by EP3 with IC50 values of 12.65, 15.10 and 14.16 µM in H1299, PC3 and HCC1806 cells, respectively. Additional studies demonstrated that EP2 and EP3 induced cell death by apoptosis at lower doses and apoptosis/necrosis at higher doses, proving that their effects were dose-dependent. Both compounds also exerted their cytotoxicity by ROS production and by inducing double-strand breaks. Furthermore, EP2 and EP3 proved to be much less toxic against a normal lung cell line, MRC5, indicating that both compounds might be selective, and they also demonstrated suitable in silico ADME and toxicity parameters. Finally, none of the compounds induced haemoglobin release. Altogether, these results point out the extreme relevance of both compounds, especially EP2, in the potential treatment of these types of cancer.


Subject(s)
Antineoplastic Agents , Epoxy Compounds , Lung Neoplasms , Prostatic Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Epoxy Compounds/pharmacology , Epoxy Compounds/chemistry , Cell Line, Tumor , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Apoptosis/drug effects , Steroids/pharmacology , Steroids/chemistry , Dose-Response Relationship, Drug
5.
Phytochemistry ; 224: 114140, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38750709

ABSTRACT

Eight previously undescribed cevanine-type steroidal alkaloids, cirrhosinones I-N and cirrhosinols A-B, along with five known analogs, were isolated from the bulbs of Fritillaria cirrhosa D. Don. Their structures were elucidated on the basis of comprehensive analysis of HRESIMS, 1D and 2D NMR spectroscopic data, and single-crystal X-ray diffraction analyses. All compounds revealed weak NO inhibitory activities in the LPS-stimulated NR8383 cells at the concentration of 20 µM, with inhibition ratios ranging from 5.1% to 14.3%.


Subject(s)
Alkaloids , Fritillaria , Plant Roots , Fritillaria/chemistry , Plant Roots/chemistry , Molecular Structure , Alkaloids/chemistry , Alkaloids/isolation & purification , Alkaloids/pharmacology , Cevanes/chemistry , Cevanes/pharmacology , Cevanes/isolation & purification , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Animals , Molecular Conformation , Crystallography, X-Ray , Cell Line , Rats , Steroids/chemistry , Steroids/isolation & purification , Steroids/pharmacology , Dose-Response Relationship, Drug , Structure-Activity Relationship , Models, Molecular
6.
J Steroid Biochem Mol Biol ; 242: 106545, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38762058

ABSTRACT

Most breast and prostate cancers are caused by abnormal production or action of steroidal hormones. Hormonal drugs based on steroid scaffolds represent a significant class of chemotherapeutics that are routinely used in chemotherapy. In this study, the synthesis of new 17a-homo lactone and 17α-(pyridine-2-ylmethyl) androstane derivatives with hydrazide and semicarbazone motifs is presented. All compounds were screened for their effect on cell viability against a panel of five cancer cell lines and one healthy cell line. Two compounds showed significant cytotoxicity against cancer cells, with low toxicity against healthy cells. The relative binding affinities of compounds for the ligand-binding domains of estrogen receptor α, estrogen receptor ß, androgen receptor and glucocorticoid receptor were tested using a fluorescence screen in yeast. Potential for inhibition of aldo-keto reductase 1C3 and 1C4 activity was measured in vitro. Experimental results are analyzed in the context of molecular docking simulations. Our results could help guide design of steroid compounds with improved anticancer properties against androgen- and estrogen-dependent cancers.


Subject(s)
Antineoplastic Agents , Molecular Docking Simulation , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Hydrazines/pharmacology , Hydrazines/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Steroids/chemistry , Steroids/pharmacology , Semicarbazones/pharmacology , Semicarbazones/chemistry , Semicarbazones/chemical synthesis , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Drug Screening Assays, Antitumor
7.
Anal Chim Acta ; 1308: 342658, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38740458

ABSTRACT

BACKGROUND: The environmental impact of sample preparation should be minimized through simplification of the procedures and the use of natural, renewable and/or reusable materials. In such scenario, thin-film microextraction fulfils the former criteria, as it enables few steps and miniaturization, thus small amount of extraction phase. At the same time, the use of sorbents such as biochars obtained from biomass waste is even more promoted due to their availability at low cost and increased life-cycle in a circular economy vision. However, it is not always easy to combine these criteria in sample preparation. RESULTS: A thin film microextraction was developed for the determination of steroids in aqueous samples, entailing a membrane made of cellulose triacetate and a wood-derived biochar (Nuchar®) as carbon precursor. Different characterization techniques showed the successful preparation, whereas the sorption kinetics experiments demonstrated that biochar is responsible for the extraction with the polymer acting as a smart support. After a study about membranes' composition in terms of biochar amounts (4 %, 10 %, 16 % wt) and type of synthesis set up, the ceramic 3D-mold was selected, achieving reproducible and ready-to-use membranes with composition fixed as 10 %. Different elution conditions, viz. type and time of agitation, type, composition and volume of eluent, were evaluated. The final microextraction followed by HPLC-MS/MS quantification was successfully validated in river and wastewater treatment plant effluent samples in terms of accuracy (R% 64-123 %, RSD<19 % in river; R% 61-118 %, RSD <18 % in effluent, n = 4), sensitivity (MQLs 0.2-8.5 ng L-1) and robustness. SIGNIFICANCE: This novel biochar-based polymeric film proved to be a valid and sustainable sorbent, in terms of extraction capability, ease of preparation and greenness. By comparison with literature and the greenness evaluation with the most recent metric tools, this method expands the potential applicability of the thin-film microextraction and opens up innovative scenarios for sustainable procedures entailing the use of biochars entrapped in bio-polymers.


Subject(s)
Charcoal , Polymers , Wastewater , Water Pollutants, Chemical , Charcoal/chemistry , Wastewater/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Polymers/chemistry , Adsorption , Steroids/analysis , Steroids/chemistry , Steroids/isolation & purification , Solid Phase Microextraction/methods
8.
Eur J Med Chem ; 272: 116460, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38704943

ABSTRACT

It has been reported that 4,5-dihydropyrazole and thiazole derivatives have many biological functions, especially in the aspect of anti-inflammation. According to the strategy of pharmacophore combination, we introduced thiazolinone and dihydropyrazole moiety into steroid skeleton to design and synthesize a novel series of D-ring substituted steroidal 4,5-dihydropyrazole thiazolinone derivatives, and assessed their in vitro anti-inflammatory profiles against Lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. The anti-inflammatory activities assay demonstrated that compound 12e was considered as the most effective anti-inflammatory drug, which suppressed the expression of pro-inflammatory mediators including nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), it also dose-dependently inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-induced RAW 264.7 macrophage cells. Furthermore, the results of the Western blot analysis showed a correlation between the inhibition of the Nuclear factor-kappa B (NF-κB) and Mitogen-activated protein kinases (MAPKs) signaling pathways and the suppressive effects of compound 12e on pro-inflammatory cytokines. Molecular docking studies of compound 12e into the COX-2 protein receptor (PDB ID: 5IKQ) active site was performed to rationalize their COX-2 inhibitory potency. The results were found to be in line with the biological findings as they exerted more favorable interactions compared to that of dexamethasone (DXM), explaining their remarkable COX-2 inhibitory activity. The findings revealed that these candidates could be identified as potent anti-inflammatory agents, compound 12e could be a promising drug for the treatment of inflammatory diseases.


Subject(s)
Cyclooxygenase 2 , Down-Regulation , Drug Design , Lipopolysaccharides , Macrophages , NF-kappa B , Nitric Oxide Synthase Type II , Pyrazoles , Animals , Mice , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , RAW 264.7 Cells , Cyclooxygenase 2/metabolism , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/antagonists & inhibitors , Structure-Activity Relationship , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Macrophages/drug effects , Macrophages/metabolism , Down-Regulation/drug effects , Molecular Structure , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Models, Molecular , Dose-Response Relationship, Drug , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Thiazoles/pharmacology , Thiazoles/chemistry , Thiazoles/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Steroids/pharmacology , Steroids/chemistry , Steroids/chemical synthesis , Molecular Docking Simulation
9.
Int J Biol Macromol ; 269(Pt 1): 132020, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704061

ABSTRACT

A series of D-ring fused 16-substituted steroidal quinoxalin-2(1H)-one attached to an electron-releasing (ER) or electron-withdrawing (EW) groups via steroidal oxoacetate intermediate were synthesized to investigate their protein aggregation inhibition potential using human lysozyme (HLZ). The influence of the type of substituent at the C-6 positions of the quinoxalin-2(1H)-one ring on the protein aggregation inhibition potential was observed, showing that the EW moiety improved the protein aggregation inhibition potency. Of all the evaluated compounds, NO2-substituted quinoxalin-2(1H)-one derivative 13 was the most active compound and had a maximum protein aggregation inhibition effect. Significant stabilization effects strongly support the binding of the most biologically active steroidal quinoxalin-2(1H)-one with docking studies. The predicted physicochemical and ADME properties lie within a drug-like space which shows no violation of Lipinski's rule of five except compounds 12 and 13. Combined, our results suggest that D-ring fused 16-substituted steroidal quinoxalin-2(1H)-one has the potential to modulate the protein aggregation inhibition effect.


Subject(s)
Molecular Docking Simulation , Muramidase , Protein Aggregates , Quinoxalines , Quinoxalines/chemistry , Quinoxalines/pharmacology , Protein Aggregates/drug effects , Humans , Muramidase/chemistry , Muramidase/metabolism , Steroids/chemistry , Steroids/pharmacology , Protein Folding
10.
Chem Biodivers ; 21(6): e202400519, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38576052

ABSTRACT

One new highly degraded steroid, namely 21-nor-4-ene-chaxine A (1) furnishing a 5/6/5-tricyclic, along with one known related analogue (2), were isolated from the South China Sea sponge Spongia officinalis. Their structures including absolute configurations were established by extensive spectroscopic data analysis, TDDFT-ECD calculation, and comparison with the spectral data previously reported in the literature. Compound 1 represent the new member of incisterols family with a highly degradation in ring B. In vitro bioassays revealed compound 2 exhibited significant anti-microglial inflammatory effect on lipopolysaccharide (LPS)-induced inflammation in BV-2 microglial cells.


Subject(s)
Anti-Inflammatory Agents , Lipopolysaccharides , Porifera , Steroids , Animals , Porifera/chemistry , Steroids/chemistry , Steroids/isolation & purification , Steroids/pharmacology , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , China , Microglia/drug effects , Microglia/metabolism , Microglia/cytology , Cell Line , Molecular Conformation , Molecular Structure
11.
Steroids ; 206: 109420, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580048

ABSTRACT

The use of steroids in livestock animals is a source of concern for consumers because of the risks associated with the presence of their residues in foodstuffs of animal origin. Technological advances such as mass spectrometry have made it possible to play a fundamental role in controlling such practices, firstly for the discovery of marker metabolites but also for the monitoring of these compounds under the regulatory framework. Current control strategies rely on the monitoring of either the parent drug or its metabolites in various matrices of interest. As some of these steroids also have an endogenous status specific strategies have to be applied for control purposes. This review aims to provide a comprehensive and up-to-date knowledge of analytical strategies, whether targeted or non-targeted, and whether they focus on markers of exposure or effect in the specific context of chemical food safety regarding the use of anabolic steroids in livestock. The role of new approaches in data acquisition (e.g. ion mobility), processing and analysis, (e.g. molecular networking), is also discussed.


Subject(s)
Food Safety , Livestock , Animals , Livestock/metabolism , Anabolic Agents/analysis , Anabolic Agents/metabolism , Humans , Steroids/chemistry , Steroids/analysis , Steroids/metabolism , Testosterone Congeners/analysis , Testosterone Congeners/metabolism , Food Contamination/analysis , Anabolic Androgenic Steroids
12.
Eur J Med Chem ; 271: 116438, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38685141

ABSTRACT

One of the key strategies in chemotherapy involves crosslinking the DNA strands of cancer cells to impede their replication, with platinum (Pt) coordination compounds being a prominent class and cisplatin being its major representative. Steroidal ligands tethered to DNA interactive Pt core act as drug carriers for targeted therapy. While crosslinking of nuclear or mitochondrial DNA strands using coordination complexes has been studied for years, there remains a lack of comprehensive reviews addressing the advancements made in steroidal-Pt derivatives. This review specifically focuses on advancements made in steroid-tethered structural derivatives of Pt(II) or prodrug Pt(IV) for targeted chemotherapy, synthesized between 2000 and 2023. This period was deliberately chosen due to the widespread use of computational techniques for more accurate structure-based drug-design in last two decades. This review discusses the strategy behind tethering steroidal ligands such as testosterone, estrogen, bile acids, and cholesterol to the central DNA interactive Pt core through specific linker groups. The steroidal ligands function as drug delivery vehicles of DNA interactive Pt core and bind with their respective target receptors or proteins that are often overexpressed in cancer cells, thus enabling targeted delivery of Pt moiety to interact with DNA. We discussed structural features such as the location of the linker group on the steroid, the mono, bi, and tridentate configuration of the chelating arm in coordination with Pt, and the rigidity and flexibility of the linker group. The comparative in vitro, in vivo activities, and relative binding affinities of the designed compounds against standard Pt drugs are also discussed. We also provided a critique of observed trends and shortcomings. Our review will provide insights into future molecular designing of targeted DNA crosslinkers and their structural optimization to achieve desired drug properties. From this analysis, we proposed further research directions leading to the future of targeted chemotherapy.


Subject(s)
Antineoplastic Agents , Steroids , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Steroids/chemistry , Steroids/pharmacology , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/chemical synthesis , Neoplasms/drug therapy , Neoplasms/pathology , Animals , Molecular Structure , DNA/chemistry , DNA/metabolism
13.
Phytochemistry ; 222: 114091, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615926

ABSTRACT

A total of 14 previously undescribed steroidal saponins named capsicsaponins A-N were isolated from the leaves of Solanum capsicoides, encompassing various types, including cholesterol derivatives and pseudospirostanol saponins. The structures of all compounds were determined through comprehensive analysis of spectroscopic data (1D NMR and 2D NMR), along with physicochemical analysis methods (acid hydrolysis, OR, and UV). Moreover, in the H2O2-induced pheochromocytoma cell line model, compounds 1-14 were screened for their neuroprotective effects on cells. The bioassay results demonstrated compounds 8-14 were able to revive cell viability compared to the positive control edaravone. The damage neuroprotection of the most active compound was further explored.


Subject(s)
Cell Survival , Neuroprotective Agents , Plant Leaves , Saponins , Solanum , Saponins/pharmacology , Saponins/chemistry , Saponins/isolation & purification , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Solanum/chemistry , Plant Leaves/chemistry , Cell Survival/drug effects , Animals , Molecular Structure , PC12 Cells , Rats , Steroids/pharmacology , Steroids/chemistry , Steroids/isolation & purification , Hydrogen Peroxide/pharmacology , Structure-Activity Relationship , Dose-Response Relationship, Drug
14.
Angew Chem Int Ed Engl ; 63(24): e202406233, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38591161

ABSTRACT

The precise recognition and sensing of steroids, a type of vital biomolecules, hold immense practical value across various domains. In this study, we introduced corral[4]BINOLs (C[4]BINOLs), a pair of enantiomeric conjugated deep-cavity hosts, as novel synthetic receptors for binding steroids. Due to the strong hydrophobic effect of their deep nonpolar, chiral cavities, the two enantiomers of C[4]BINOLs demonstrated exceptionally high recognition affinities (up to 1012 M-1) for 16 important steroidal compounds as well as good enantioselectiviy (up to 15.5) in aqueous solutions, establishing them as the most potent known steroid receptors. Harnessing their ultrahigh affinity, remarkable enantioselectivity, and fluorescence emission properties, the two C[4]BINOL enantiomers were employed to compose a fluorescent sensor array which achieved discrimination and sensing of 16 structurally similar steroids at low concentrations.


Subject(s)
Naphthols , Steroids , Stereoisomerism , Steroids/chemistry , Steroids/analysis , Naphthols/chemistry , Molecular Structure
15.
Chem Biodivers ; 21(6): e202400588, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38651315

ABSTRACT

Trillium govanianum, a medicinal herb, exhibiting diverse morphometric traits and phytochemicals across developmental stages of plants. The changes in the chemical profile and steroidal saponin levels in the rhizome of T. govanianum across different developmental stages were previously unknown. This study categorizes rhizomes into three types based on scar presence: juvenile (5-10 scars, Type I), young (11-19 scars, Type II), and mature (21-29 scars, Type III). Rhizomes show varying sizes (length 1.2-4.7 cm, girth 0.3-1.6 cm), weight (0.18-5.0 g), and extractive yields (9.7-16.1 % w w-1), with notable differences in saponin content (5.95-21.9 mg g-1). Ultra-high performance liquid chromatography-MS/MS (UHPLC-QTOF-MS/MS)-based chemical profiling identifies 31 phytochemicals, mainly including diverse saponins. Ultra-high performance liquid chromatography coupled with evaporative light scattering detection (UHPLC-ELSD)-based quantitative analysis of seven key saponins reveals stage-specific accumulation patterns, with protodioscin (P) and dioscin (DS) predominant in mature rhizomes. Statistical analysis confirms significant variation (p=0.001) in saponin levels across developmental stages with chemical constituent protodioscin (P=4.03±0.03-15.76±0.14 mg g-1, PAve=9.79±3.03 mg g-1) and dioscin (DS=1.23±0.06-3.93±0.07 mg g-1, DSAve=2.59±0.70 mg g-1), with acceptable power (p=0.738; |δ|>0.5) statistics for effective sample size (n=27 samples used in the study) of T. govanianum. Principal Component Analysis (PCA) and Euclidean clustering further highlighted chemotype distinctions.


Subject(s)
Rhizome , Saponins , Steroids , Trillium , Trillium/chemistry , Saponins/chemistry , Saponins/isolation & purification , Rhizome/chemistry , Chromatography, High Pressure Liquid , Steroids/chemistry , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Tandem Mass Spectrometry , Humans
16.
Org Biomol Chem ; 22(18): 3559-3583, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38639195

ABSTRACT

Steroids are an important family of bioactive compounds. Steroid drugs are renowned for their multifaceted pharmacological activities and are the second-largest category in the global pharmaceutical market. Recent developments in biocatalysis and biosynthesis have led to the increased use of enzymes to enhance the selectivity, efficiency, and sustainability for diverse modifications of steroids. This review discusses the advancements achieved over the past five years in the enzymatic modifications of steroid scaffolds, focusing on enzymatic hydroxylation, reduction, dehydrogenation, cascade reactions, and other modifications for future research on the synthesis of novel steroid compounds and related drugs, and new therapeutic possibilities.


Subject(s)
Steroids , Steroids/chemistry , Steroids/metabolism , Humans , Biocatalysis , Enzymes/metabolism , Enzymes/chemistry , Hydroxylation , Molecular Structure
17.
J Am Chem Soc ; 146(17): 11811-11822, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38635880

ABSTRACT

The development of novel agents with immunoregulatory effects is a keen way to combat the growing threat of inflammatory storms to global health. To synthesize pseudo-steroidal glycosides tethered by ether bonds with promising immunomodulatory potential, we develop herein a highly effective deoxygenative functionalization of a novel steroidal donor (steroidation) facilitated by strain-release, leveraging cost-effective and readily available Sc(OTf)3 catalysis. This transformation produces a transient steroid-3-yl carbocation which readily reacts with O-, C-, N-, S-, and P-nucleophiles to generate structurally diverse steroid derivatives. DFT calculations were performed to shed light on the mechanistic details of the regioselectivity, underlying an acceptor-dependent steroidation mode. This approach can be readily extended to the etherification of sugar alcohols to enable the achievement of a diversity-oriented, pipeline-like synthesis of pseudo-steroidal glycosides in good to excellent yields with complete stereo- and regiospecific control for anti-inflammatory agent discovery. Immunological studies have demonstrated that a meticulously designed cholesteryl disaccharide can significantly suppress interleukin-6 secretion in macrophages, exhibiting up to 99% inhibition rates compared to the negative control. These findings affirm the potential of pseudo-steroidal glycosides as a prospective category of lead agents for the development of novel anti-inflammatory drugs.


Subject(s)
Anti-Inflammatory Agents , Glycosides , Steroids , Glycosides/chemistry , Glycosides/chemical synthesis , Glycosides/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Steroids/chemistry , Steroids/pharmacology , Steroids/chemical synthesis , Mice , Animals , Humans , Density Functional Theory , Molecular Structure , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Macrophages/drug effects
18.
Phytomedicine ; 128: 155432, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518645

ABSTRACT

BACKGROUND: Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE: This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS: The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS: A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION: In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.


Subject(s)
Antineoplastic Agents, Phytogenic , Saponins , Steroids , Saponins/pharmacology , Saponins/chemistry , Saponins/therapeutic use , Humans , Steroids/pharmacology , Steroids/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Neoplasms/drug therapy , Animals , Apoptosis/drug effects
19.
Chem Biodivers ; 21(4): e202301993, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342755

ABSTRACT

A new alkaloids, aplysingoniopora A (1), and new configuration pregnane type steroid compound, 9,17-α-pregn-1,4,20-en-3-one (2), and two known pregnane type steroid compounds (3 and 4) were isolated from hydranth of Goniopora columna corals. The compounds structures and absolute configurations were determined by extensive spectroscopic analysis, MS data, single-crystal X-ray diffraction analysis and quantum chemical calculation. The anticancer effect of the compounds were explored in human non-small-cell lung cancer (NSCLC) A549 cell lines. As the results, the compound 3 and 4 induces toxicity and has proliferation inhibitory effects on A549 cells (IC50=58.99 µM and 58.77 µM, respectively) in vitro.


Subject(s)
Alkaloids , Anthozoa , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Humans , Lung Neoplasms/drug therapy , Alkaloids/pharmacology , Alkaloids/chemistry , Steroids/pharmacology , Steroids/chemistry , Pregnanes/pharmacology , Molecular Structure
20.
Angew Chem Int Ed Engl ; 63(16): e202319624, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38376063

ABSTRACT

9,10-Secosteroids are an important group of marine steroids with diverse biological activities. Herein, we report a chemoenzymatic strategy for the concise, modular, and scalable synthesis of ten naturally occurring 9,10-secosteroids from readily available steroids in three to eight steps. The key feature lies in utilizing a Rieske oxygenase-like 3-ketosteroid 9α-hydroxylase (KSH) as the biocatalyst to achieve efficient C9-C10 bond cleavage and A-ring aromatization of tetracyclic steroids through 9α-hydroxylation and fragmentation. With synthesized 9,10-secosteroides, structure-activity relationship was evaluated based on bioassays in terms of previously unexplored anti-infective activity. This study provides experimental evidence to support the hypothesis that the biosynthetic pathway through which 9,10-secosteroids are formed in nature shares a similar 9α-hydroxylation and fragmentation cascade. In addition to the development of a biomimetic approach for 9,10-secosteroid synthesis, this study highlights the great potential of chemoenzymatic strategies in chemical synthesis.


Subject(s)
Secosteroids , Hydroxylation , Bacterial Proteins/metabolism , Steroids/chemistry , Mixed Function Oxygenases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...