Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.067
1.
Int J Med Microbiol ; 315: 151625, 2024 Jun.
Article En | MEDLINE | ID: mdl-38824713

OBJECTIVES: We report a case of bacteremia with pyelonephritis in an adult male with an underlying disease caused by α-hemolytic streptococci. α-Hemolytic streptococci were isolated from blood, but it was challenging to identify its species. This study aimed to characterize the causative bacterium SP4011 and to elucidate its species. METHODS: The whole-genome sequence and biochemical characteristics of SP4011 were determined. Based on the genome sequence, phylogenetic analysis was performed with standard strains of each species of α-hemolytic streptococci. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values were calculated. RESULTS: SP4011 showed optochin susceptibility and bile solubility, but did not react with pneumococcal omni antiserum. Phylogenetic analysis of the whole-genome sequence showed that SP4011 clustered with S. pneumoniae and S. pseodopneumoniae and was most closely related to S. pseodopneumoniae. Genomic analysis revealed that ANI and dDDH values between SP4011 and S. pseodopneumoniae were 94.0 % and 56.0 %, respectively, and between SP4011 and S. pneumoniae were 93.3 % and 52.2 %, respectively. Biochemical characteristics also showed differences between SP4011 and S. pseodopneumoniae and between SP4011 and S. pneumoniae. These results indicate that SP4011 is a novel species. CONCLUSION: Our findings indicate that SP4011 is a novel species of the genus Streptococcus. SP4011 has biochemical characteristics similar to S. pneumoniae, making it challenging to differentiate and requiring careful clinical diagnosis. This isolate was proposed to be a novel species, Streptococcus parapneumoniae sp. nov. The strain type is SP4011T (= JCM 36068T = KCTC 21228T).


Bacteremia , Phylogeny , Pyelonephritis , Streptococcal Infections , Streptococcus , Humans , Male , Streptococcal Infections/microbiology , Bacteremia/microbiology , Streptococcus/genetics , Streptococcus/isolation & purification , Streptococcus/classification , Pyelonephritis/microbiology , Genome, Bacterial , DNA, Bacterial/genetics , Whole Genome Sequencing , Anti-Bacterial Agents/pharmacology , Nucleic Acid Hybridization , Bacterial Typing Techniques , Microbial Sensitivity Tests , Middle Aged
2.
Acta Derm Venereol ; 104: adv34892, 2024 Jun 19.
Article En | MEDLINE | ID: mdl-38898675

Psoriasis results from both genetic predisposition and environmental triggers, such as Streptococcal infections. This study aimed to explore the correlation between the abundance of the Streptococcus genus on the skin and psoriasis severity in individuals carrying specific psoriasis-associated genetic variants. Studying 39 chronic plaque psoriasis patients, the elbow skin microbiome and 49 psoriasis-related single nucleotide polymorphisms (SNPs) were analysed using a MiSeq instrument for 16S rDNA sequencing, and CLC Genomic Workbench for processing and analysis. Through multivariate linear regression analysis, a positive correlation was found between Streptococcus genus abundance and psoriasis severity in patients with certain FBXL19 gene-related heterozygous SNPs (rs12924903, rs10782001, rs12445568). Conversely, a negative association was observed in patients with homozygous genotypes. Moreover, we identified an association between Streptococcus abundance and psoriasis severity in patients with genetic variants related to IL-22, ERAP1, NOS2, and ILF3. This is the first study highlighting a positive association between Streptococcus skin colonization and psoriasis severity in patients with heterozygous genotypes within the FBXL19 gene region. FXBL19 targets the IL-33/IL1RL1 axis, crucial in infectious diseases and innate immunity promotion. These novel results suggests an intricate interaction among host genetics, Streptococcus skin colonization, and psoriasis inflammation, offering potential avenues for novel treatment approaches.


F-Box Proteins , Polymorphism, Single Nucleotide , Psoriasis , Severity of Illness Index , Skin , Streptococcus , Humans , Male , Psoriasis/genetics , Psoriasis/microbiology , Female , Middle Aged , Adult , Skin/microbiology , Streptococcus/genetics , Streptococcus/isolation & purification , F-Box Proteins/genetics , Genetic Predisposition to Disease , Phenotype , Heterozygote , Host-Pathogen Interactions , Homozygote , Ribotyping , Aged
3.
BMC Pregnancy Childbirth ; 24(1): 412, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849751

BACKGROUND: Human breast milk (HBM) is a contributing factor in modulating the infant's gut microbiota, as it contains bacteria that are directly transferred to the infant during breastfeeding. It has been shown that children of women diagnosed with gestational diabetes mellitus (GDM) have a different gut microbiota compared to children of women without GDM. Our hypothesis is therefore that women with GDM have a different HBM microbiota, which may influence the metabolic function and capacity of the child later in life. The aim of this study was to investigate whether women with GDM have a different breast milk microbiota 1-3 weeks postpartum compared to women without GDM. METHODS: In this case-control study, a total of 45 women were included: 18 women with GDM and 27 women without GDM. A milk sample was collected from each participant 1 to 3 weeks postpartum and the bacterial composition was examined by 16 S rRNA gene sequencing targeting the V4 region. RESULTS: High relative abundances of Streptococcus and Staphylococcus were present in samples from both women with and without GDM. No difference could be seen in either alpha diversity, beta diversity, or specific taxa between groups. CONCLUSION: Our results did not support the existence of a GDM-associated breast milk microbiota at 1-3 weeks postpartum. Further research is needed to fully understand the development of the gut microbiota of infants born to mothers with GDM.


Diabetes, Gestational , Gastrointestinal Microbiome , Milk, Human , Humans , Female , Milk, Human/microbiology , Diabetes, Gestational/microbiology , Pregnancy , Adult , Case-Control Studies , RNA, Ribosomal, 16S/analysis , Postpartum Period , Microbiota , Streptococcus/isolation & purification , Breast Feeding , Staphylococcus/isolation & purification
4.
BMC Vet Res ; 20(1): 249, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849801

BACKGROUND: Intramammary infection is the result of invasion and multiplication of microorganisms in the mammary gland and commonly leads to mastitis in dairy animals. Although much has been done to improve cows' udder health, mastitis remains a significant and costly health issue for dairy farmers, especially if subclinical. In this study, quarter milk samples from clinically healthy cows were harvested to detect pathogens via quantitative PCR (qPCR) and evaluate changes in individual milk traits according to the number of quarters infected and the type of microorganism(s). A commercial qPCR kit was used for detection of Mycoplasma bovis, Mycoplasma spp., Staphylococcus aureus, coagulase-negative staphylococci (CNS), Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis, Prototheca spp., Escherichia coli, Klebsiella spp., Enterococcus spp. and Lactococcus lactis ssp. lactis. Quarter and pooled milk information of 383 Holstein, 132 Simmental, 129 Rendena, and 112 Jersey cows in 9 Italian single-breed herds was available. RESULTS: Among the cows with pathogen(s) present in at least 1 quarter, CNS was the most commonly detected DNA, followed by Streptococcus uberis, Mycoplasma bovis, and Streptococcus agalactiae. Cows negative to qPCR were 206 and had the lowest milk somatic cell count. Viceversa, cows with DNA isolated in ≥ 3 quarters were those with the highest somatic cell count. Moreover, when major pathogens were isolated in ≥ 3 quarters, milk had the lowest casein index and lactose content. In animals with pathogen(s) DNA isolated, the extent with whom milk yield and major solids were impaired did not significantly differ between major and minor pathogens. CONCLUSIONS: The effect of the number of affected quarters on the pool milk quality traits was investigated in clinically healthy cows using a commercial kit. Results remark the important negative effect of subclinical udder inflammations on milk yield and quality, but more efforts should be made to investigate the presence of untargeted microorganisms, as they may be potentially dangerous for cows. For a smarter use of antimicrobials, analysis of milk via qPCR is advisable - especially in cows at dry off - to identify quarters at high risk of inflammation and thus apply a targeted/tailored treatment.


Mastitis, Bovine , Milk , Animals , Cattle , Milk/microbiology , Milk/chemistry , Female , Mastitis, Bovine/microbiology , DNA, Bacterial/analysis , Streptococcus/isolation & purification , Lactation , Real-Time Polymerase Chain Reaction/veterinary
5.
Article En | MEDLINE | ID: mdl-38695863

Human breast milk contains lactic acid bacteria (LAB), which have an important influence on the composition of the intestinal microbia of infants. In this study, one strain of an α-hemolytic species of the genus Streptococcus, IMAU99199T, isolated from the breast milk of a healthy nursing mother in Hohhot city PR China, was studied to characterise its taxonomic status using phenotypic and molecular taxonomic methods. The results indicated that it represented a member of the mitis-suis clade, pneumoniae subclade of the genus Streptococcus. It is a Gram-stain-positive, catalase-negative and oxidase-negative bacterium, and the cells are globular, paired or arranged in short chains. The results of a phylogenetic analysis of its 16S rRNA gene and two housekeeping genes (gyrB and rpoB) placed it in the genus Streptococcus. A phylogenetic tree based on 135 single-copy genes sequences indicated that IMAU99199T formed a closely related branch well separated from 'Streptococcus humanilactis' IMAU99125, 'Streptococcus bouchesdurhonensis' Marseille Q6994, Streptococcus mitis NCTC 12261T, 'Streptococcus vulneris' DM3B3, Streptococcus toyakuensis TP1632T, Streptococcus pseudopneumoniae ATCC BAA-960T and Streptococcus pneumoniae NCTC 7465T. IMAU99199T and 'S. humanilactis' IMAU99125 had the highest average nucleotide identity (93.7 %) and digital DNA-DNA hybridisation (55.3 %) values, which were below the accepted thresholds for novel species. The DNA G+C content of the draft genome of IMAU99199T was 39.8 %. The main cellular fatty acids components of IMAU99199T were C16 : 0 and C16 : 1ω7. It grew at a temperature range of 25-45 °C (the optimum growth temperature was 37 °C) and a pH range of 5.0-8.0 (the optimum growth pH was 7.0). These data indicate that strain IMAU99199T represents a novel species in the genus Streptococcus, for which the name Streptococcus hohhotensis sp. nov. is proposed. The type strain is IMAU99199T (=GDMCC 1.1874T=KCTC 21155T).


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Milk, Human , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Streptococcus , RNA, Ribosomal, 16S/genetics , Humans , Female , China , DNA, Bacterial/genetics , Milk, Human/microbiology , Streptococcus/genetics , Streptococcus/isolation & purification , Streptococcus/classification , Fatty Acids/analysis , Nucleic Acid Hybridization , Genes, Bacterial
6.
Anim Sci J ; 95(1): e13959, 2024.
Article En | MEDLINE | ID: mdl-38769761

This study investigates the relationships between subclinical mastitis and milk quality with selected microRNAs in cow milk. California Mastitis Test (CMT)-positive (n = 20) and negative (n = 20) samples were compared (Experiment I). Additionally, samples with CMT-positive but microbiological-negative, as well as positive for only Staphylococcus subspecies (Staph spp.) and only Streptococcus subspecies (Strep spp.) were examined (Experiment II). Four groups were formed in Experiment II: Group I (CMT and microbiological-negative) (n = 20), Group II (CMT-positive but microbiological-negative) (n = 10), Group III (Staph spp.) (n = 5), Group IV (Strep spp.) (n = 5). While electrical conductivity, somatic cell count (SCC), malondialdehyde (MDA) increased, miR-27a-3p and miR-223 upregulated and miR-125b downregulated in the CMT-positive group in Experiment I. SCC and MDA were higher in CMT-positive groups. miR-27a-3p and miR-223 upregulated in Groups III and IV. While miR-155 is upregulated, miR-125b downregulated in Group IV. Milk fat is positively correlated with miR-148a and miR-223. As miR-27a-3p positively correlated with SCC and MDA, miR-125b negatively correlated with electrical conductivity and SCC. miR-148a and MDA were positively correlated. miR-155 was correlated with fat-free dry matter, protein, lactose, and freezing point. miR-223 was positively correlated with SCC and miR-148a. Results particularly highlight miR-27a-3p and miR-223 as potential biomarkers in subclinical mastitis, especially those caused by Staph spp. and Strep spp., while miR-148a, miR-155, and miR-223 stand out in determining milk quality.


Mastitis, Bovine , MicroRNAs , Milk , Animals , Milk/microbiology , MicroRNAs/metabolism , MicroRNAs/genetics , Cattle , Female , Mastitis, Bovine/microbiology , Mastitis, Bovine/diagnosis , Mastitis, Bovine/genetics , Mastitis, Bovine/metabolism , Staphylococcus/isolation & purification , Cell Count/veterinary , Streptococcus/isolation & purification , Food Quality , Malondialdehyde/metabolism , Malondialdehyde/analysis , Electric Conductivity , Asymptomatic Infections
7.
Biosensors (Basel) ; 14(5)2024 May 17.
Article En | MEDLINE | ID: mdl-38785731

Loop-mediated isothermal amplification (LAMP) technology is extensively utilized for the detection of infectious diseases owing to its rapid processing and high sensitivity. Nevertheless, conventional LAMP signaling methods frequently suffer from a lack of sequence specificity. This study integrates a triplex-forming oligonucleotide (TFO) probe into the LAMP process to enhance sequence specificity. This TFO-LAMP technique was applied for the detection of Group B Streptococcus (GBS). The TFO probe is designed to recognize a specific DNA sequence, termed the TFO targeting sequence (TTS), within the amplified product, facilitating detection via fluorescent instrumentation or lateral flow biosensors. A screening method was developed to identify TFO sequences with high affinity to integrate TFO into LAMP, subsequently incorporating a selected TTS into an LAMP primer. In the TFO-LAMP assay, a FAM-labeled TFO is added to target the TTS. This TFO can be captured by an anti-FAM antibody on lateral flow test strips, thus creating a nucleic acid testing biosensor. The efficacy of the TFO-LAMP assay was confirmed through experiments with specimens spiked with varying concentrations of GBS, demonstrating 85% sensitivity at 300 copies and 100% sensitivity at 30,000 copies. In conclusion, this study has successfully developed a TFO-LAMP technology that offers applicability in lateral flow biosensors and potentially other biosensor platforms.


Biosensing Techniques , Nucleic Acid Amplification Techniques , Oligonucleotides , Streptococcus/genetics , Streptococcus/isolation & purification , Humans , DNA, Bacterial/analysis , Molecular Diagnostic Techniques
8.
BMC Vet Res ; 20(1): 193, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734661

BACKGROUND: Bovine mastitis is a widespread disease affecting dairy cattle worldwide and it generates substantial losses for dairy farmers. Mastitis may be caused by bacteria, fungi or algae. The most common species isolated from infected milk are, among others, Streptococcus spp., Escherichia coli, Staphylococcus aureus and non-aureus staphylococci and mammaliicocci. The aim of this paper is to determine the frequency of occurrence of bacterial species in milk samples from cows with mastitis from three regions of Poland: the north-east, the south-west and the south. To this end 203 milk samples taken from cows with a clinical form (CM) of mastitis (n = 100) and healthy animals (n = 103) were examined, which included culture on an appropriate medium followed by molecular detection of E. coli, S. aureus, Streptococcus agalactiae and Streptococcus uberis, as one of the most common species isolated from mastitis milk. RESULTS: The results obtained indicated that S. uberis was the most commonly cultivated CM species (38%, n = 38), followed by S. aureus (22%, n = 22), E. coli (21%, n = 21) and S. agalactiae (18%, n = 18). Similar frequencies in molecular methods were obtained for S. uberis (35.1%) and S. aureus (28.0%). The variation of sensitivity of both methods may be responsible for the differences in the E. coli (41.0%, p = 0.002) and S. agalactiae (5.0%, p = 0.004) detection rates. Significant differences in composition of species between three regions of Poland were noted for E. coli incidence (p < 0.001), in both the culture and molecular methods, but data obtained by the PCR method indicated that this species was the least common in north-eastern Poland, while the culture method showed that in north-eastern Poland E. coli was the most common species. Significant differences for the molecular method were also observed for S. uberis (p < 0.001) and S. aureus (p < 0.001). Both species were most common in southern and south-western Poland. CONCLUSIONS: The results obtained confirm the need to introduce rapid molecular tests for veterinary diagnostics, as well as providing important epidemiological data, to the best of our knowledge data on Polish cows in selected areas of Poland is lacking.


Mastitis, Bovine , Milk , Streptococcus , Animals , Cattle , Mastitis, Bovine/microbiology , Mastitis, Bovine/epidemiology , Poland/epidemiology , Female , Milk/microbiology , Streptococcus/isolation & purification , Streptococcus/genetics , Streptococcus/classification , Escherichia coli/isolation & purification , Escherichia coli/genetics , Escherichia coli/classification , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/genetics , Streptococcus agalactiae/isolation & purification , Streptococcus agalactiae/genetics , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics
9.
BMC Vet Res ; 20(1): 169, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698383

BACKGROUND: Bovine mastitis is one of the most widespread diseases affecting cattle, leading to significant losses for the dairy industry. Currently, the so-called gold standard in mastitis diagnosis involves determining the somatic cell count (SCC). Apart from a number of advantages, this method has one serious flaw: It does not identify the etiological factor causing a particular infection, making it impossible to introduce targeted antimicrobial therapy. This can contribute to multidrug-resistance in bacterial species. The diagnostic market lacks a test that has the advantages of SCC and also recognizes the species of pathogen causing the inflammation. Therefore, the aim of our study was to develop a lateral flow immunoassay (LFIA) based on elongation factor Tu for identifying most prevalent Gram-positive cocci responsible for causing mastitis including Streptococcus uberis, Streptococcus agalactiae and Staphylococcus aureus. RESULTS: As a result, we showed that the assay for S. uberis detection demonstrated a specificity of 89.02%, a sensitivity of 43.59%, and an accuracy of 80.3%. In turn, the second variant - assay for Gram-positive cocci reached a specificity of 95.59%, a sensitivity of 43.28%, and an accuracy of 78.33%. CONCLUSIONS: Our study shows that EF-Tu is a promising target for LFIA and we have delivered evidence that further evaluation could improve test parameters and fill the gap in the mastitis diagnostics market.


Mastitis, Bovine , Streptococcus agalactiae , Streptococcus , Mastitis, Bovine/diagnosis , Mastitis, Bovine/microbiology , Animals , Cattle , Female , Streptococcus agalactiae/isolation & purification , Streptococcus/isolation & purification , Staphylococcus aureus/isolation & purification , Sensitivity and Specificity , Streptococcal Infections/veterinary , Streptococcal Infections/diagnosis , Streptococcal Infections/microbiology , Gram-Positive Cocci/isolation & purification , Immunoassay/veterinary , Immunoassay/methods , Staphylococcal Infections/veterinary , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology , Milk/microbiology , Milk/cytology
10.
J Dent ; 146: 105018, 2024 Jul.
Article En | MEDLINE | ID: mdl-38679133

OBJECTIVES: This study aimed to identify the oral microbiota factors contributing to low birth weight (LBW) in Chinese pregnant women and develop a prediction model using machine learning. METHODS: A nested case-control study was conducted in a prospective cohort of 580 Chinese pregnant women, with 23 LBW cases and 23 healthy delivery controls matched for age and smoking habit. Saliva samples were collected at early and late pregnancy, and microbiome profiles were analyzed through 16S rRNA gene sequencing. RESULTS: The relative abundance of Streptococcus was over-represented (median 0.259 vs. 0.116) and Saccharibacteria_TM7 was under-represented (median 0.033 vs. 0.068) in the LBW case group than in controls (p < 0.001, p = 0.015 respectively). Ten species were identified as microbiome biomarkers of LBW by LEfSe analysis, which included 7 species within the genus of Streptococcus or as part of 'nutritionally variant streptococci' (NVS), 2 species of opportunistic pathogen Leptotrichia buccalis and Gemella sanguinis (all LDA score>3.5) as risk biomarkers, and one species of Saccharibacteria TM7 as a beneficial biomarker (LDA= -4.5). The machine-learning model based on these 10 distinguished oral microbiota species could predict LBW, with an accuracy of 82 %, sensitivity of 91 %, and specificity of 73 % (AUC-ROC score 0.89, 95 % CI: 0.75-1.0). Results of α-diversity showed that mothers who delivered LBW infants had less stable salivary microbiota construction throughout pregnancy than the control group (measured by Shannon, p = 0.048; and Pielou's, p = 0.021), however the microbiome diversity did not improve the prediction accuracy of LBW. CONCLUSIONS: A machine-learning oral microbiome model shows promise in predicting low-birth-weight delivery. Even in cases where oral health is not significantly compromised, opportunistic pathogens or rarer taxa associated with adverse pregnancy outcomes can still be identified in the oral cavity. CLINICAL SIGNIFICANCE: This study highlights the potential complexity of the relationship between oral microbiome and pregnancy outcomes, indicating that mechanisms underlying the association between oral microbiota and adverse pregnancy outcomes may involve complex interactions between host factors, microbiota, and systemic conditions. Using machine learning to develop a predictive model based on specific oral microbiota biomarkers provides a potential for personalized medicine approaches. Future prediction models should incorporate clinical metadata to be clinically useful for improving maternal and child health.


Infant, Low Birth Weight , Machine Learning , Microbiota , Mouth , RNA, Ribosomal, 16S , Saliva , Streptococcus , Humans , Female , Pregnancy , Case-Control Studies , Infant, Newborn , Adult , Saliva/microbiology , Mouth/microbiology , Prospective Studies , RNA, Ribosomal, 16S/analysis , Streptococcus/isolation & purification , Biomarkers/analysis , China , Leptotrichia , Risk Factors
11.
J Vet Med Sci ; 86(5): 468-473, 2024 May 06.
Article En | MEDLINE | ID: mdl-38569837

Streptococcus uberis is one of major pathogens causing bovine mastitis. However, there is poor information on antimicrobial resistance (AMR) among the Japanese isolates. To provide treatment information for the mastitis caused by S. uberis in Japan, we aimed to clarify AMR patterns of the isolates from bovine milk mainly in Chiba. AMR phenotyping/genotyping [blaZ-erm(A)-erm(B)-mef(A)-linB-lnuD-tet(M)-tet(O)-tet(K)-tet(L)-tet(S)] and multilocus sequence typing were performed to analyze relationships between AMR patterns and clonal complexes (CCs). Resistance to tetracycline-, macrolide-, and lincosamide-classes was mainly associated with possession of tet(O), tet(S), erm(B), linB, and lnuD genes. CC996 was significantly associated with multidrug resistance (P<0.0001). These findings will aid Chiba farm animal clinics in treating bovine mastitis.


Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Mastitis, Bovine , Milk , Streptococcal Infections , Streptococcus , Animals , Cattle , Streptococcus/drug effects , Streptococcus/genetics , Streptococcus/isolation & purification , Japan , Milk/microbiology , Mastitis, Bovine/microbiology , Female , Anti-Bacterial Agents/pharmacology , Streptococcal Infections/veterinary , Streptococcal Infections/microbiology , Streptococcal Infections/drug therapy , Multilocus Sequence Typing , Genotype , Microbial Sensitivity Tests
12.
Res Vet Sci ; 173: 105242, 2024 Jun.
Article En | MEDLINE | ID: mdl-38640833

Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) is a mucosal commensal of the lower genital tract in horses and is the most isolated bacterium causing endometritis in mares. The aim of this study was to determine the molecular diversity of S. zooepidemicus obtained from endometritis in mares in Buenos Aires province, Argentina. Thirty isolates obtained from the uterus of mares in 2005 and 2017 were studied. The MLST scheme was applied to identify the Argentinian genotypes and the clonal relationships and patterns of evolutionary descent were identified using the eBURST algorithm - goeBURST. Twenty six different Sequence types (STs) were identified, being only 11 of them previously reported in horses and also, from several host species and tissues. The other 15 STs were reported in Argentinian reproductive strains of mares in our study for the first time. The genotypes obtained from uterus in Argentina were not evenly distributed when all the published S. zooepidemicus STs were analysed, thus, it was not possible to establish that the same lineage circulates in our equine population. The fact that the identified genotypes were also reported in other countries, diverse samples and host species suggest that there is not a host, and an anatomical niche adaptation. Finally, the isolation of the same genotype in the vagina/clitoris and the uterus of the same mare highlights the versatility of S. zooepidemicus and its role as an opportunistic pathogen.


Endometritis , Genotype , Horse Diseases , Streptococcal Infections , Animals , Horses/microbiology , Horse Diseases/microbiology , Female , Argentina , Endometritis/veterinary , Endometritis/microbiology , Streptococcal Infections/veterinary , Streptococcal Infections/microbiology , Genetic Variation , Multilocus Sequence Typing/veterinary , Uterus/microbiology , Streptococcus/genetics , Streptococcus/isolation & purification , Streptococcus/classification , Streptococcus equi/genetics , Streptococcus equi/isolation & purification , Streptococcus equi/classification
13.
Nat Commun ; 15(1): 3477, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658529

Streptococcus dysgalactiae subspecies equisimilis (SDSE) and Streptococcus pyogenes share skin and throat niches with extensive genomic homology and horizontal gene transfer (HGT) possibly underlying shared disease phenotypes. It is unknown if cross-species transmission interaction occurs. Here, we conduct a genomic analysis of a longitudinal household survey in remote Australian First Nations communities for patterns of cross-species transmission interaction and HGT. Collected from 4547 person-consultations, we analyse 294 SDSE and 315 S. pyogenes genomes. We find SDSE and S. pyogenes transmission intersects extensively among households and show that patterns of co-occurrence and transmission links are consistent with independent transmission without inter-species interference. We identify at least one of three near-identical cross-species mobile genetic elements (MGEs) carrying antimicrobial resistance or streptodornase virulence genes in 55 (19%) SDSE and 23 (7%) S. pyogenes isolates. These findings demonstrate co-circulation of both pathogens and HGT in communities with a high burden of streptococcal disease, supporting a need to integrate SDSE and S. pyogenes surveillance and control efforts.


Gene Transfer, Horizontal , Interspersed Repetitive Sequences , Streptococcal Infections , Streptococcus pyogenes , Streptococcus , Streptococcus pyogenes/genetics , Streptococcus pyogenes/isolation & purification , Streptococcus pyogenes/classification , Streptococcal Infections/transmission , Streptococcal Infections/microbiology , Humans , Streptococcus/genetics , Streptococcus/isolation & purification , Interspersed Repetitive Sequences/genetics , Australia , Genome, Bacterial/genetics , Female , Male , Child , Family Characteristics , Adult , Child, Preschool , Adolescent , Longitudinal Studies , Drug Resistance, Bacterial/genetics , Young Adult
14.
J Vet Med Sci ; 86(5): 474-479, 2024 May 06.
Article En | MEDLINE | ID: mdl-38494699

Mastitis causes significant economic losses to the dairy industry due to decreased milk production in infected cows. Identification of mastitis-causing pathogens, such as streptococci, is necessary for selecting an effective antibiotic for treating mastitis. Although bacterial cultivation is widely used for pathogen identification, it requires more than 24 hr to complete. Contrarily, Lateral flow assays are simple, rapid, and inexpensive testing procedures. In this study, the effectiveness of an immunochromatographic test kit for detecting streptococci in milk samples from cows with clinical mastitis was evaluated as an alternative to bacterial cultivation. The performance of the immunochromatographic test kit for detecting mastitis-causing pathogens was compared with that of bacterial cultivation and real-time quantitative polymerase chain reaction (qPCR). The sensitivity and specificity of the immunochromatographic test kit were 0.800 and 0.875, respectively, compared with bacterial cultivation. Additionally, the κ statistic values of the immunochromatographic test kit was 0.667, indicating substantial agreement with the results of bacterial cultivation. Statistically, sensitivity and specificity of the immunochromatographic kit and real-time qPCR did not differ significantly; thus, the immunochromatographic test kit detected mastitis-causing streptococci as effectively as real-time qPCR. Therefore, the immunochromatographic kit is a rapid, inexpensive, and simple method for detecting streptococci and contributes to the timely selection of appropriate antibiotics for treatment and promotes early recovery from mastitis.


Chromatography, Affinity , Mastitis, Bovine , Milk , Sensitivity and Specificity , Streptococcal Infections , Streptococcus , Animals , Cattle , Mastitis, Bovine/microbiology , Mastitis, Bovine/diagnosis , Female , Streptococcal Infections/veterinary , Streptococcal Infections/diagnosis , Streptococcal Infections/microbiology , Streptococcus/isolation & purification , Milk/microbiology , Chromatography, Affinity/veterinary , Chromatography, Affinity/methods , Real-Time Polymerase Chain Reaction/veterinary , Real-Time Polymerase Chain Reaction/methods , Reagent Kits, Diagnostic/veterinary
15.
Int J Clin Pract ; 2022: 4752880, 2022.
Article En | MEDLINE | ID: mdl-36567774

Background: Pyogenic liver abscess (PLA) is an uncommon but potentially life-threatening condition. In recent years, advances in diagnostics and management have led to early diagnosis and treatment and decreased mortality. We present recent data from a large series of patients with PLA and examine the trends in the management of PLA over a period of 50 years. Methods: The medical records of all patients admitted to the Shaare Zedek Medical Center, Israel, between January 2011 and December 2021 with a primary or secondary diagnosis of PLA were reviewed retrospectively. Results: : Ninety-five patients with PLA were identified. Thirty-eight (40%) were female. The median patient age was 66 years (range 18-93). The diagnosis of PLA in all patients was confirmed with abdominal computed tomography (CT). In twenty patients (21.1%), PLA was not diagnosed by the initial abdominal US. Most abscesses were right-sided. Biliary tract origin was the most common underlying cause of PLA (n = 57, 60%), followed by cryptogenic etiology (n = 28, 30%). Escherichia coli, Klebsiella pneumoniae, and Streptococcus species were most commonly identified. The most common primary treatment modality was percutaneous drainage (PD), which was performed in 81 patients (85.3%). Fourteen patients (14.7%) were treated medically without intervention, and two patients (2.1%) were treated surgically following a failure of PD. Four patients died as a direct result of PLA. Conclusions: Patients diagnosed with PLA are older, the male predominance is less pronounced, and the offending pathogens are likely to originate from the biliary tract. This study questions the utility of abdominal US as the initial diagnostic imaging in patients with suspected PLA (versus CT) and demonstrates improved outcomes for patients with PLA over the years.


Bacterial Infections , Liver Abscess, Pyogenic , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Young Adult , Causality , Escherichia coli/isolation & purification , Hospitalization , Liver Abscess, Pyogenic/diagnosis , Liver Abscess, Pyogenic/epidemiology , Liver Abscess, Pyogenic/therapy , Retrospective Studies , Drainage , Klebsiella pneumoniae/isolation & purification , Streptococcus/isolation & purification
16.
Appl Environ Microbiol ; 88(13): e0045322, 2022 07 12.
Article En | MEDLINE | ID: mdl-35730938

Dental caries is a multifactorial disease driven by interactions between the highly complex microbial biofilm community and host factors like diet, oral hygiene habits, and age. The oral streptococci are one of the most dominant members of the plaque biofilm and are implicated in disease but also in maintaining oral health. Current methods used for studying the supragingival plaque community commonly sequence portions of the16S rRNA gene, which often cannot taxonomically resolve members of the streptococcal community past the genus level due to their sequence similarity. The goal of this study was to design and evaluate a more reliable and cost-effective method to identify oral streptococci at the species level by applying a new locus, the 30S-S11 rRNA gene, for high-throughput amplicon sequencing. The study results demonstrate that the newly developed single-copy 30S-S11 gene locus resolved multiple amplicon sequence variants (ASVs) within numerous species, providing much improved taxonomic resolution over 16S rRNA V4. Moreover, the results reveal that different ASVs within a species were found to change in abundance at different stages of caries progression. These findings suggest that strains of a single species may perform distinct roles along a biochemical spectrum associated with health and disease. The improved identification of oral streptococcal species will provide a better understanding of the different ecological roles of oral streptococci and inform the design of novel oral probiotic formulations for prevention and treatment of dental caries. IMPORTANCE The microbiota associated with the initiation and progression of dental caries has yet to be fully characterized. Although much insight has been gained from 16S rRNA hypervariable region DNA sequencing, this approach has several limitations, including poor taxonomic resolution at the species level. This is particularly relevant for oral streptococci, which are abundant members of oral biofilm communities and major players in health and caries disease. Here, we develop a new method for taxonomic profiling of oral streptococci based on the 30S-S11 rRNA gene, which provides much improved resolution over 16S rRNA V4 (resolving 10 as opposed to 2 species). Importantly, 30S-S11 can resolve multiple amplicon sequence variants (ASVs) within species, providing an unprecedented insight into the ecological progression of caries. For example, our findings reveal multiple incidences of different ASVs within a species with contrasting associations with health or disease, a finding that has high relevance toward the informed design of prebiotic and probiotic therapy.


Dental Caries , Microbiota , Streptococcus/classification , Dental Caries/microbiology , Genes, rRNA , High-Throughput Nucleotide Sequencing/methods , Humans , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Streptococcus/isolation & purification
17.
BMC Nephrol ; 23(1): 10, 2022 01 03.
Article En | MEDLINE | ID: mdl-34979948

BACKGROUND: The pathogenesis of Henoch-Schönlein purpura nephritis (HSPN) is closely associated with mucosal infection. But whether intestinal microbiota dysbiosis plays a role in it is not clear. METHODS: A total of 52 participants including 26 HSPN patients and 26 healthy controls were included. By using 16S ribosomal RNA gene sequencing, the intestinal microbiota composition between HSPN and healthy controls was compared. The diagnostic potency was evaluated by Receiver operating characteristic (ROC) with area under curves (AUC). Meanwhile, correlation analysis was also performed. RESULTS: The lower community richness and diversity of fecal microbiota was displayed in HSPN patients and the structure of gut microbiota was remarkedly different. A genus-level comparison indicated a significant increase in the proportions of g-Bacteroides, g-Escherichia-Shigella and g-Streptococcus, and a marked reduction of g-Prevotella_9 in HSPN patients, suggesting that the overrepresentation of potential pathogens and reduction of profitable strains were the main feature of the dysbiosis. The differential taxonomic abundance might make sense for distinguishing HSPN from healthy controls, with AUC of 0.86. The relative abundance of the differential bacteria was also concerned with clinical indices. Among them, Streptococcus spp. was positively associated with the severity of HSPN (P < 0.050). It was found that HSPN patients with higher level of Streptococcus spp. were more likely to suffering from hematuria and hypoalbuminemia (P < 0.050). CONCLUSIONS: The dysbiosis of gut microbiota was obvious in HSPN patients, and the intestinal mucosal streptococcal infection was distinctive, which was closely related to its severity.


Dysbiosis/physiopathology , Gastrointestinal Microbiome/physiology , IgA Vasculitis/microbiology , IgA Vasculitis/physiopathology , Streptococcus/isolation & purification , Adult , Case-Control Studies , Feces/microbiology , Female , Humans , IgA Vasculitis/diagnosis , Male , RNA, Ribosomal, 16S , Sequence Analysis, RNA , Severity of Illness Index
18.
Microbiol Spectr ; 10(1): e0076421, 2022 02 23.
Article En | MEDLINE | ID: mdl-35019696

Streptococcus equi subsp. equi (SEE) is a host-restricted equine pathogen considered to have evolved from Streptococcus equi subsp. zooepidemicus (SEZ). SEZ is promiscuous in host range and is commonly recovered from horses as a commensal. Comparison of a single strain each of SEE and SEZ using whole-genome sequencing, supplemented by PCR of selected genes in additional SEE and SEZ strains, was used to characterize the evolution of SEE. But the known genetic variability of SEZ warrants comparison of the whole genomes of multiple SEE and SEZ strains. To fill this knowledge gap, we utilized whole-genome sequencing to characterize the accessory genome elements (AGEs; i.e., elements present in some SEE strains but absent in SEZ or vice versa) and methylomes of 50 SEE and 50 SEZ isolates from Texas. Consistent with previous findings, AGEs consistently found in all SEE isolates were primarily from mobile genetic elements that might contribute to host restriction or pathogenesis of SEE. Fewer AGEs were identified in SEZ because of the greater genomic variability among these isolates. The global methylation patterns of SEE isolates were more consistent than those of the SEZ isolates. Among homologous genes of SEE and SEZ, differential methylation was identified only in genes of SEE encoding proteins with functions of quorum sensing, exopeptidase activity, and transitional metal ion binding. Our results indicate that effects of genetic mobile elements in SEE and differential methylation of genes shared by SEE and SEZ might contribute to the host specificity of SEE. IMPORTANCE Strangles, caused by the host-specific bacterium Streptococcus equi subsp. equi (SEE), is the most commonly diagnosed infectious disease of horses worldwide. Its ancestor, Streptococcus equi subsp. zooepidemicus (SEZ), is frequently isolated from a wide array of hosts, including horses and humans. A comparison of the genomes of a single strain of SEE and SEZ has been reported, but sequencing of further isolates has revealed variability among SEZ strains. Thus, the importance of this study is that it characterizes genomic and methylomic differences of multiple SEE and SEZ isolates from a common geographic region (viz., Texas). Our results affirm many of the previously described differences between the genomes of SEE and SEZ, including the role of mobile genetic elements in contributing to host restriction. We also provide the first characterization of the global methylome of Streptococcus equi and evidence that differential methylation might contribute to the host restriction of SEE.


Epigenome , Genome, Bacterial , Horse Diseases/microbiology , Respiratory System/microbiology , Streptococcal Infections/veterinary , Streptococcus equi/genetics , Streptococcus/genetics , Animals , DNA Methylation , Genetic Variation , Horses , Streptococcal Infections/microbiology , Streptococcus/classification , Streptococcus/isolation & purification , Streptococcus equi/classification , Streptococcus equi/isolation & purification , Texas
19.
Sci Rep ; 12(1): 1432, 2022 01 26.
Article En | MEDLINE | ID: mdl-35082322

Faecal (FM) and colon mucosal associated microbiota (MAM) were studied in a model of colorectal cancer (CRC), the Apc-mutated Pirc rats, and in age-paired wt F344 rats. Principal Coordinates Analysis indicated that samples' distribution was driven by age, with samples of young rats (1 month old; without tumours) separated from older ones (11-month-old; bearing tumours). Diversity analysis showed significant differences between FM and MAM in older Pirc rats, and between MAM of both Pirc and wt rats and the tumour microbiota, enriched in Enterococcus, Escherichia/Shigella, Proteus and Bifidobacteriaceae. In young animals, Pirc FM was enriched in the genus Delftia, while wt FM was enriched in Lactobacillus and Streptococcus. Some CRC biomarkers and faecal short chain fatty acids (SCFAs) were also measured. Colon proliferation and DClK1 expression, a pro-survival mucosal marker, were higher in Pirc than in wt rats, while the mucin MUC2, was lower in Pirc rats. Branched SCFAs were higher in Pirc than in wt animals. By Spearman analysis CRC biomarkers correlated with FM (in both young and old rats) and with MAM (in young rats), suggesting a specific relationship between the gut microbiota profile and these functional mucosal parameters deserving further investigation.


Biomarkers, Tumor/genetics , Carcinogenesis/genetics , Colon/microbiology , Colonic Neoplasms/genetics , Doublecortin-Like Kinases/genetics , Mucin-2/genetics , Age Factors , Animals , Bifidobacterium/growth & development , Bifidobacterium/isolation & purification , Biomarkers, Tumor/metabolism , Carcinogenesis/metabolism , Carcinogenesis/pathology , Colon/metabolism , Colonic Neoplasms/metabolism , Colonic Neoplasms/microbiology , Colonic Neoplasms/pathology , Disease Models, Animal , Doublecortin-Like Kinases/metabolism , Enterococcus/growth & development , Enterococcus/isolation & purification , Escherichia/growth & development , Escherichia/isolation & purification , Fatty Acids, Volatile/metabolism , Feces/microbiology , Gene Expression Regulation , Lactobacillus/growth & development , Lactobacillus/isolation & purification , Male , Mucin-2/metabolism , Principal Component Analysis , Proteus/growth & development , Proteus/isolation & purification , Rats , Rats, Inbred F344 , Shigella/growth & development , Shigella/isolation & purification , Streptococcus/growth & development , Streptococcus/isolation & purification
20.
Eur J Clin Microbiol Infect Dis ; 41(2): 325-329, 2022 Feb.
Article En | MEDLINE | ID: mdl-34654986

Non-ß-hemolytic streptococci (NBHS) cause infective endocarditis (IE) and a short blood culture time to positivity (TTP) is associated with risk of IE in bacteremia with other pathogens. In this retrospective population-based cohort study, we investigate if TTP is associated to IE or mortality. Of 263 episodes with NBHS bacteremia, 28 represented IE and the median TTP did not differ significantly between episodes with IE (15 h) and non-IE (15 h) (p=0.51). TTP was similar among those who survived and those who died within 30 days. However, TTP significantly differed when comparing the different streptococcal groups (p<0.001).


Bacteremia/diagnosis , Blood Culture/methods , Endocarditis, Bacterial/diagnosis , Streptococcal Infections/diagnosis , Streptococcus/isolation & purification , Aged , Aged, 80 and over , Bacteremia/microbiology , Bacteremia/mortality , Cohort Studies , Endocarditis/diagnosis , Endocarditis/microbiology , Endocarditis, Bacterial/microbiology , Endocarditis, Bacterial/mortality , Female , Humans , Male , Middle Aged , Retrospective Studies , Streptococcal Infections/microbiology , Streptococcal Infections/mortality
...