Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.316
Filter
1.
Int J Mol Sci ; 25(17)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39273489

ABSTRACT

The surface pre-reacted glass ionomer (S-PRG) filler is a type of bioactive functional glass that releases six different ions. This study examined the effects of the S-PRG filler eluate on Streptococcus mutans in the presence of sucrose. In a solution containing S. mutans, the concentrations of BO33-, Al3+, Sr2+, and F- were significantly higher in the presence of the S-PRG filler eluate than in its absence (p < 0.001). The concentrations of these ions further increased in the presence of sucrose. Additionally, the S-PRG filler eluate significantly reduced glucan formation by S. mutans (p < 0.001) and significantly increased the pH of the bacterial suspension (p < 0.001). Bioinformatic analyses revealed that the S-PRG filler eluate downregulated genes involved in purine biosynthesis (purC, purF, purL, purM, and purN) and upregulated genes involved in osmotic pressure (opuAa and opuAb). At a low pH (5.0), the S-PRG filler eluate completely inhibited the growth of S. mutans in the presence of sucrose and significantly increased the osmotic pressure of the bacterial suspension compared with the control (p < 0.001). These findings suggest that ions released from the S-PRG filler induce gene expression changes and exert an inhibitory effect on S. mutans in the presence of sucrose.


Subject(s)
Streptococcus mutans , Sucrose , Streptococcus mutans/drug effects , Streptococcus mutans/growth & development , Sucrose/pharmacology , Sucrose/chemistry , Hydrogen-Ion Concentration , Gene Expression Regulation, Bacterial/drug effects , Glucans/pharmacology , Glucans/chemistry , Surface Properties , Osmotic Pressure/drug effects , Acrylic Resins , Silicon Dioxide
2.
J Bacteriol ; 206(9): e0022724, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39171915

ABSTRACT

As a biological byproduct from both humans and microbes, glycerol's contribution to microbial homeostasis in the oral cavity remains understudied. In this study, we examined glycerol metabolism by Streptococcus sanguinis, a commensal associated with oral health. Genetic mutants of glucose-PTS enzyme II (manL), glycerol metabolism (glp and dha pathways), and transcriptional regulators were characterized with regard to glycerol catabolism, growth, production of hydrogen peroxide (H2O2), transcription, and competition with Streptococcus mutans. Biochemical assays identified the glp pathway as a novel source for H2O2 production by S. sanguinis that is independent of pyruvate oxidase (SpxB). Genetic analysis indicated that the glp pathway requires glycerol and a transcriptional regulator, GlpR, for expression and is negatively regulated by PTS, but not the catabolite control protein, CcpA. Conversely, deletion of either manL or ccpA increased the expression of spxB and a second, H2O2-non-producing glycerol metabolic pathway (dha), indicative of a mode of regulation consistent with conventional carbon catabolite repression (CCR). In a plate-based antagonism assay and competition assays performed with planktonic and biofilm-grown cells, glycerol greatly benefited the competitive fitness of S. sanguinis against S. mutans. The glp pathway appears to be conserved in several commensal streptococci and actively expressed in caries-free plaque samples. Our study suggests that glycerol metabolism plays a more significant role in the ecology of the oral cavity than previously understood. Commensal streptococci, though not able to use glycerol as a sole carbohydrate source for growth, benefit from the catabolism of glycerol through production of both ATP and H2O2. IMPORTANCE: Glycerol is an abundant carbohydrate in the oral cavity. However, little is understood regarding the metabolism of glycerol by commensal streptococci, some of the most abundant oral bacteria. This was in part because most streptococci cannot grow on glycerol as the sole carbon source. In this study, we show that Streptococcus sanguinis, a commensal associated with dental health, can degrade glycerol for persistence and competition through two pathways, one of which generates hydrogen peroxide at levels capable of inhibiting Streptococcus mutans. Preliminary studies suggest that several additional commensal streptococci are also able to catabolize glycerol, and glycerol-related genes are actively expressed in human dental plaque samples. Our findings reveal the potential of glycerol to significantly impact microbial homeostasis, which warrants further exploration.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Glycerol , Hydrogen Peroxide , Mouth , Streptococcus mutans , Glycerol/metabolism , Hydrogen Peroxide/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Streptococcus mutans/genetics , Streptococcus mutans/metabolism , Streptococcus mutans/growth & development , Mouth/microbiology , Streptococcus sanguis/metabolism , Streptococcus sanguis/genetics , Humans , Biofilms/growth & development
3.
Malays J Pathol ; 46(2): 295-298, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39207006

ABSTRACT

INTRODUCTION: Candida albicans and Streptococcus mutans co-exist in biofilms in the oral cavity. In this study, the impact of S. mutans on the growth of C. albicans within a mixed-species biofilm was examined. MATERIALS AND METHODS: Single species C. albicans biofilms and mixed species biofilms containing C. albicans and S. mutans at 1:3 and 1:10 ratios were constructed in 6-well microtiter plates. After 24 hours of incubation, the density of resuspended biofilm cells was determined as CFU/ml and used to compare the growth of C. albicans in single species and mixed species biofilms. RESULTS: The CFU/ml of C. albicans in mixed-species biofilms was found to be higher than that in single-species biofilms. CONCLUSION: S. mutans promotes the growth of C. albicans in a co-inhabited biofilm.


Subject(s)
Biofilms , Candida albicans , Streptococcus mutans , Biofilms/growth & development , Candida albicans/growth & development , Candida albicans/physiology , Streptococcus mutans/growth & development , Streptococcus mutans/physiology , Humans , Oral Health , Mouth/microbiology
4.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000090

ABSTRACT

The acidic byproducts of bacteria in plaque around orthodontic brackets contribute to white spot lesion (WSL) formation. Nitric oxide (NO) has antibacterial properties, hindering biofilm formation and inhibiting the growth of oral microbes. Materials that mimic NO release could prevent oral bacteria-related pathologies. This study aims to integrate S-nitroso-acetylpenicillamine (SNAP), a promising NO donor, into orthodontic elastomeric ligatures, apply an additional polymer coating, and evaluate the NO-release kinetics and antimicrobial activity against Streptococus mutans. SNAP was added to clear elastomeric chains (8 loops, 23 mm long) at three concentrations (50, 75, 100 mg/mL, and a control). Chains were then coated, via electrospinning, with additional polymer (Elastollan®) to aid in extending the NO release. NO flux was measured daily for 30 days. Samples with 75 mg/mL SNAP + Elastollan® were tested against S. mutans for inhibition of biofilm formation on and around the chain. SNAP was successfully integrated into ligatures at each concentration. Only the 75 mg/mL SNAP chains maintained their elasticity. After polymer coating, samples exhibited a significant burst of NO on the first day, exceeding the machine's reading capacity, which gradually decreased over 29 days. Ligatures also inhibited S. mutans growth and biofilm formation. Future research will assess their mechanical properties and cytotoxicity. This study presents a novel strategy to address white spot lesion (WSL) formation and bacterial-related pathologies by utilizing nitric oxide-releasing materials. Manufactured chains with antimicrobial properties provide a promising solution for orthodontic challenges, showing significant potential for academic-industrial collaboration and commercial viability.


Subject(s)
Biofilms , Elastomers , Nitric Oxide , Streptococcus mutans , Streptococcus mutans/drug effects , Streptococcus mutans/growth & development , Elastomers/chemistry , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Biofilms/drug effects , S-Nitroso-N-Acetylpenicillamine/pharmacology , S-Nitroso-N-Acetylpenicillamine/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Orthodontic Brackets/microbiology , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Nitric Oxide Donors/pharmacology , Nitric Oxide Donors/chemistry , Nitric Oxide Donors/chemical synthesis , Humans
5.
Biofouling ; 40(7): 390-401, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945827

ABSTRACT

This study investigated the antimicrobial activity of surface pre-reacted glass ionomer eluate (S-PRG) against oral microcosm biofilms collected from the oral cavity of patients. Dental biofilm samples were collected from three volunteers to form microcosm biofilms in vitro. Initially, screening tests were carried out to determine the biofilm treatment conditions with S-PRG eluate. The effects of a daily treatment for 5 min using three microcosm biofilms from different patients was then evaluated. For this, biofilms were formed on tooth enamel specimens for 120 h. Biofilms treated with 100% S-PRG for 5 min per day for 5 days showed a reduction in the number of total microorganisms, streptococci and mutans streptococci. SEM images confirmed a reduction in the biofilm after treatment. Furthermore, S-PRG also reduced lactic acid production. It was concluded that S-PRG eluate reduced the microbial load and lactic acid production in oral microcosm biofilms, reinforcing its promising use as a mouthwash agent.


Subject(s)
Biofilms , Mouth , Biofilms/drug effects , Humans , Mouth/microbiology , Streptococcus mutans/drug effects , Streptococcus mutans/growth & development , Anti-Infective Agents/pharmacology , Mouthwashes/pharmacology , Lactic Acid/pharmacology , Glass Ionomer Cements/pharmacology , Glass Ionomer Cements/chemistry , Acrylic Resins/pharmacology , Acrylic Resins/chemistry , Streptococcus/drug effects , Streptococcus/physiology , Surface Properties , Silicon Dioxide
6.
PLoS One ; 19(5): e0302717, 2024.
Article in English | MEDLINE | ID: mdl-38718045

ABSTRACT

Bacterial pathogens have remained a major public health concern for several decades. This study investigated the antibacterial activities of Miang extracts (at non-neutral and neutral pH) against Bacillus cereus TISTR 747, Escherichia coli ATCC 22595, Salmonella enterica serovar Typhimurium TISTR 292 and Streptococcus mutans DMST 18777. The potential of Polyvinylpolypyrrolidone (PVPP)-precipitated tannin-free Miang extracts in growth-inhibition of the cariogenic Streptococcus mutans DMST 18777 and its biofilms was also evaluated. The tannin-rich fermented extracts had the best bacterial growth inhibition against S. mutans DMST 18777 with an MIC of 0.29 and 0.72 mg/mL for nonfilamentous fungi (NFP) Miang and filamentous-fungi-processed (FFP) Miang respectively. This observed anti-streptococcal activity still remained after PVPP-mediated precipitation of bioactive tannins especially, in NFP and FFP Miang. Characterization of the PVPP-treated extracts using High performance liquid chromatography quadrupole-time of flight-mass spectrometry (HPLC-QToF-MS) analysis, also offered an insight into probable compound classes responsible for the activities. In addition, Crystal violet-staining also showed better IC50 values for NFP Miang (4.30 ± 0.66 mg/mL) and FFP Miang (12.73 ± 0.11 mg/mL) against S. mutans DMST 18777 biofilms in vitro. Homology modeling and molecular docking analysis using HPLC-MS identified ligands in tannin-free Miang supernatants, was performed against modelled S. mutans DMST 18777 sortase A enzyme. The in silico analysis suggested that the inhibition by NFP and FFP Miang might be attributed to the presence of ellagic acid, flavonoid aglycones, and glycosides. Thus, these Miang extracts could be optimized and explored as natural active pharmaceutical ingredients (NAPIs) for applications in oral hygienic products.


Subject(s)
Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Molecular Docking Simulation , Plant Extracts , Streptococcus mutans , Tannins , Streptococcus mutans/drug effects , Streptococcus mutans/growth & development , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tannins/pharmacology , Tannins/chemistry , Biofilms/drug effects , Biofilms/growth & development , Plant Extracts/pharmacology , Plant Extracts/chemistry , Bacterial Proteins/metabolism
7.
Methods Enzymol ; 696: 155-174, 2024.
Article in English | MEDLINE | ID: mdl-38658078

ABSTRACT

The interactions between communities of microorganisms inhabiting the dental biofilm is a major determinant of oral health. These biofilms are periodically exposed to high concentrations of fluoride, which is present in almost all oral healthcare products. The microbes resist fluoride through the action of membrane export proteins. This chapter describes the culture, growth and harvest conditions of model three-species dental biofilm comprised of cariogenic pathogens Streptococcus mutans and Candida albicans and the commensal bacterium Streptococcus gordonii. In order to examine the role of fluoride export by S. mutans in model biofilms, procedures for generating a strain of S. mutans with a genetic knockout of the fluoride exporter are described. We present a case study examining the effects of this mutant strain on the biofilm mass, acid production and mineral dissolution under exposure to low levels of fluoride. These general approaches can be applied to study the effects of any gene of interest in physiologically realistic multispecies oral biofilms.


Subject(s)
Biofilms , Candida albicans , Fluorides , Streptococcus gordonii , Streptococcus mutans , Biofilms/drug effects , Biofilms/growth & development , Streptococcus mutans/drug effects , Streptococcus mutans/genetics , Streptococcus mutans/physiology , Streptococcus mutans/metabolism , Streptococcus mutans/growth & development , Fluorides/pharmacology , Fluorides/metabolism , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/metabolism , Candida albicans/physiology , Streptococcus gordonii/drug effects , Streptococcus gordonii/genetics , Streptococcus gordonii/physiology , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Dental Caries/microbiology
8.
Pediatr Dent ; 46(2): 135-141, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38664912

ABSTRACT

Purpose: To compare surface roughness and bacterial colonization of Streptococcus mutans to 3D printed (3DP), milled (M), and conventional (CV) acrylic resin. Methods: Thirty-six discs (n equals 12 per group) were fabricated from 3DP, M, and CV materials. One surface of sample was polished (Po); the opposite surface was left unpolished (UPo). Surface roughness (µm) was assessed using a contact profilometer. The specimens were placed in S. mutans suspension and incubated at 37 degrees Celsius overnight. The attached colonies were separated using a sonicator, and the resulting solution was diluted to 10-3 to assess colony-forming units per milliliter (CFU/ml) after 48 hours. The colonies were categorized into a quantitative S. mutans (QS) index. Data were analyzed using one-way ANOVA, chi-squares, and multivariate analysis of variance analysis with the least significant difference (LSD) post-hoc test (P<0.05). Results: Roughness average (Ra) values of CV were higher than 3DP and M for UPo surfaces (P<0.001; 3DP=0.10; M=0.13; CV=0.26 µm, respectively). For Po and UPo surfaces, the CV harbored more S. mutans colonies than M and 3DP (P<0.001; 3DP=5.2x10 6 ; M=4.7x10 6 ; CV=1.49x10 7 CFU/ml, respectively). M group had the lowest range of QS scores, while CV had the highest range (P<0.001). Conclusions: Digitally manufactured material provides smoother surfaces than the conventional group, resulting in fewer Streptococcus mutans colonies. However, all the material groups must still be adequately polished to prevent the colonization of S. mutans, regardless of the manufacturing methods, as higher S. mutans counts were observed with an increase in surface roughness values.


Subject(s)
Acrylic Resins , Printing, Three-Dimensional , Streptococcus mutans , Surface Properties , Streptococcus mutans/growth & development , In Vitro Techniques , Dental Materials , Materials Testing , Humans , Colony Count, Microbial
9.
Z Naturforsch C J Biosci ; 79(7-8): 179-186, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38454808

ABSTRACT

The current study describes the chemical composition, antifungal, antibiofilm, antibacterial and molecular docking studies of Syzygium dyerianum growing in Malaysia. The essential oil was obtained through hydrodistillation and characterized using gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The antifungal and antibacterial activities were developed using the broth microdilution assay, whereas the effect on the microbial biofilms was determined using a semi-quantitative static biofilm assay. A total of 31 components were identified, which represent 99.5 % of the essential oil. The results revealed that the essential oil consisted mainly of ß-pinene (15.6 %), α-terpineol (13.3 %), α-pinene (11.1 %), caryophyllene oxide (8.8 %), limonene (8.1 %), borneol (6.0 %) and viridiflorol (5.1 %). The results of the microdilution method showed that essential oil exhibited activity against Candida albicans and Streptococcus mutans with minimal inhibitory concentration values of 125 and 250 µg/mL, respectively. Furthermore, essential oil decreased the biofilm of C. albicans and S. mutans by 20.11 ± 0.27 % and 32.10 ± 4.81 % when treated with 250 µg/mL. The best docking energy was observed with viridiflorol (-29.7 kJ/mol). This study highlights that essential oil can potentially be a natural antifungal, antibacterial, and antibiofilm agent that could be applied in the pharmaceutical and food industries.


Subject(s)
Antifungal Agents , Biofilms , Candida albicans , Microbial Sensitivity Tests , Molecular Docking Simulation , Oils, Volatile , Syzygium , Biofilms/drug effects , Biofilms/growth & development , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Candida albicans/drug effects , Candida albicans/growth & development , Syzygium/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Streptococcus mutans/drug effects , Streptococcus mutans/growth & development , Gas Chromatography-Mass Spectrometry
10.
Mol Oral Microbiol ; 39(5): 334-343, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38224336

ABSTRACT

Numerous cellular processes are regulated in response to the metabolic state of the cell, and one such regulatory mechanism involves lysine acetylation. Lysine acetylation has been proven to play an important role in the virulence of Streptococcus mutans, a major cariogenic bacterial species. S. mutans' glucosyltransferases (Gtfs) are responsible for synthesizing extracellular polysaccharides (EPS) and contributing to biofilm formation. One of the most common nonsteroidal anti-inflammatory drugs is acetylsalicylic acid (ASA), which can acetylate proteins through a nonenzymatic transacetylation reaction. Herein, we investigated the inhibitory effects of ASA on S. mutans. ASA treatment was observed to impede the growth of S. mutans, leading to a reduction in the production of water-insoluble EPS and the formation of biofilm. Moreover, ASA decreased the enzyme activity of Gtfs while increasing the protein acetylation level. The in vivo anticaries efficacy of ASA has further been proved using the rat caries model. In conclusion, ASA as an acetylation agent attenuated the cariogenic virulence of S. mutans, suggesting the potential value of protein acetylation on antimicrobial and anti-biofilm applications to S. mutans.


Subject(s)
Aspirin , Biofilms , Dental Caries , Glucosyltransferases , Streptococcus mutans , Streptococcus mutans/drug effects , Streptococcus mutans/metabolism , Streptococcus mutans/growth & development , Biofilms/drug effects , Biofilms/growth & development , Acetylation , Glucosyltransferases/metabolism , Dental Caries/microbiology , Aspirin/pharmacology , Animals , Rats , Virulence , Bacterial Proteins/metabolism , Polysaccharides, Bacterial/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Disease Models, Animal , Lysine/metabolism
11.
Int J Biol Macromol ; 195: 124-131, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34896463

ABSTRACT

The study aimed to develop pre-gelatinized starch-based orally disintegrating films (ODFs) containing catechin/ß-cyclodextrin (CAT/ß-CD) complex and to evaluate the influence of the complex on the physicochemical properties of the ODFs. SEM images showed that a compacter and more homogeneous ODFs were formed due to interactions between starch matrix and CAT/ß-CD. FTIR spectra demonstrated that the interactions between starches or starch and CAT/ß-CD were enhanced by hydrogen bonds. Thermal stability of ODFs was improved by incorporating CAT/ß-CD, its peak decomposition temperature was enhanced from 310.74 to 321.83 °C. Tensile strength was increased from 11.597 ± 0.153 to 22.172 ± 0.752 MPa, while elongation at break decreased by from 11.233% ± 1.079% to 3.633% ± 0.058%. The prepared ODFs have an acceptable in vitro disintegration time, which were between 9.03 ± 0.79 s and 42.23 ± 1.76 s. Antimicrobial test showed that ODFs incorporating CAT/ß-CD inhibited the growth of S. aureus and S. mutans successfully. The limited release of CAT molecules from the ODFs was also found. In addition, the ODFs have excellent antioxidant capacity. Its antioxidant activity remained at around 70% after 28 days of storage. The study indicated that the combination of ODFs and ß-CD complex have a high potential for the delivery of natural active ingredients.


Subject(s)
Catechin/chemistry , Staphylococcus aureus/growth & development , Starch/chemistry , Streptococcus mutans/growth & development , beta-Cyclodextrins/pharmacology , Administration, Oral , Drug Stability , Hydrogen Bonding , Microbial Viability/drug effects , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Streptococcus mutans/drug effects , Temperature , Tensile Strength , beta-Cyclodextrins/chemistry
12.
J Microbiol Methods ; 192: 106386, 2022 01.
Article in English | MEDLINE | ID: mdl-34848194

ABSTRACT

In vitro biofilm models have been extensively used, but only few of the models available to date had been validated in terms of the dose-response effect of anti-caries and/or antimicrobial substances. Additionally, none of the validated models allow the use of microliter volumes of the treatment solutions, needed mainly to test (screen) novel but expensive substances under development. This study aimed at modifying an in vitro cariogenic Streptococcus mutans biofilm model and validating it by assessing the dose-response effect of fluoride on enamel demineralization. S. mutans cariogenic biofilms were developed on saliva-coated enamel slabs previously bonded to acrylic holders fixed to a lid of a culture plate. Biofilms were incubated 8 h/day in culture medium supplemented with 1% sucrose and then overnight in culture medium with glucose 0.1 mM. Biofilms were also treated 2×/day with 2.0 mL of solutions containing 0, 125, 275 and 1250 µg F/mL (n = 10/group). The replaced culture medium was used to: determine the biofilm acidogenicity; estimate the demineralization of enamel; and monitor the fluoride concentration. At 144 h, biofilms were collected for fluoride concentration analyses, and the fluoride uptake by enamel was determined in each slab. The model showed a dose-response effect of fluoride (R2 = 0.96, p < 0.001) between enamel demineralization and the fluoride concentration of the treatments. Water-soluble and bound biofilm fluoride concentrations (p < 0.007), as well as the firmly-bound fluoride concentration found in enamel (p < 0.0001), increased in a dose-dependent manner. Our model constitutes a validated approach that would allow the assessment of the anticaries potential of novel biotechnological strategies, as in the case of expensive salivary peptides, because it would allow to test the treatment solutions using smaller volumes.


Subject(s)
Biofilms/growth & development , Cariostatic Agents/pharmacology , Dental Enamel/metabolism , Fluorides/pharmacology , Streptococcus mutans/growth & development , Tooth Demineralization/microbiology , Animals , Cattle , Dental Caries/microbiology , Dental Caries/prevention & control , Dental Enamel/drug effects , Saliva/microbiology , Sucrose/pharmacology , Tooth Demineralization/drug therapy , Tooth Demineralization/prevention & control
13.
PLoS One ; 16(11): e0259895, 2021.
Article in English | MEDLINE | ID: mdl-34780570

ABSTRACT

The increased incidence of dental caries by cigarette smoking (CS) has been widely reported in epidemiological studies, but the relationship between CS and cariogenic biofilm growth has been rarely studied. This study aims to investigate the effects of CS exposure on the growth and virulence of Streptococcus mutans biofilms (S. mutans). Briefly, S. mutans biofilms were formed on saliva-coated hydroxyapatite disks, which were exposed to CS 1, 3, and 6 times per day, respectively. In addition, S. mutans biofilms without CS exposure were considered as the control group. Acidogenicity, dry weight, colony-forming units (CFUs), water-soluble/insoluble extracellular polysaccharides (EPSs), and intracellular polysaccharides (IPSs) were analyzed and confocal laser scanning microscopy (CLSM) images of 74-h-old S. mutans biofilms were obtained. The lowest accumulation of biofilms and EPSs were detected in the 6 times/day CS exposure group compared with those of the control group and other CS exposure groups in 74-h-old S. mutans biofilms. CLSM also revealed the lowest bacterial count (live and dead cells) and EPSs biovolume in the six times/day CS exposure group in 74-h-old S. mutans biofilms. CS exposure inhibited the growth of S. mutans biofilm in vitro study, the anti-cariogenic biofilm formation was enhanced with a dose (frequency)-dependent at which frequency has more influence in the present findings.


Subject(s)
Biofilms/drug effects , Cigarette Smoking/adverse effects , Saliva/microbiology , Streptococcus mutans/growth & development , Biofilms/growth & development , Durapatite/chemistry , Humans , In Vitro Techniques , Microscopy, Confocal , Polysaccharides, Bacterial/metabolism , Saliva/drug effects , Streptococcus mutans/drug effects , Streptococcus mutans/metabolism , Streptococcus mutans/pathogenicity , Virulence/drug effects
14.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34544866

ABSTRACT

Genome evolution is an essential and stringently regulated aspect of biological fitness. For bacteria, natural competence is one of the principal mechanisms of genome evolution and is frequently subject to multiple layers of regulation derived from a plethora of environmental and physiological stimuli. Here, we present a regulatory mechanism that illustrates how such disparate stimuli can be integrated into the Streptococcus mutans natural competence phenotype. S. mutans possesses an intriguing, but poorly understood ability to coordinately control its independently regulated natural competence and bacteriocin genetic pathways as a means to acquire DNA released from closely related, bacteriocin-susceptible streptococci. Our results reveal how the bacteriocin-specific transcription activator BrsR directly mediates this coordination by serving as an anti-adaptor protein responsible for antagonizing the proteolysis of the inherently unstable, natural competence-specific alternative sigma factor ComX. This BrsR ability functions entirely independent of its transcription regulator function and directly modulates the timing and severity of the natural competence phenotype. Additionally, many of the DNA uptake proteins produced by the competence system were surprisingly found to possess adaptor abilities, which are employed to terminate the BrsR regulatory circuit via negative feedback. BrsR-competence protein heteromeric complexes directly inhibit nascent brsR transcription as well as stimulate the Clp-dependent proteolysis of extant BrsR proteins. This study illustrates how critical genetic regulatory abilities can evolve in a potentially limitless variety of proteins without disrupting their conserved ancestral functions. These unrecognized regulatory abilities are likely fundamental for transducing information through complex genetic networks.


Subject(s)
Bacterial Proteins/metabolism , Bacteriocins/metabolism , Gene Expression Regulation, Bacterial , Protein Interaction Maps , Streptococcus mutans/metabolism , Transcription Factors/metabolism , Bacterial Proteins/genetics , Streptococcus mutans/genetics , Streptococcus mutans/growth & development , Transcription Factors/genetics
15.
Sci Rep ; 11(1): 18290, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34521969

ABSTRACT

Although fluoride has been widely used as a preventive agent for dental caries, the effects of fluoride on the activities of biofilms in different stages of cariogenic biofilm formation are less studied. This study was designed to investigate the antibiofilm activity of sodium fluoride during the early and mature stages of Streptococcus mutans (S. mutans) biofilm formation. S. mutans biofilms were formed on saliva-coated hydroxyapatite disks. In the early (0-46 h) and mature (46-94 h) biofilm stages, the biofilms were treated with different concentrations of fluoride (250, 500, 1000, 2000 ppm; 5 times in total, 1 min/treatment). Acidogenicity, dry weight, colony-forming units (CFUs), water-soluble/insoluble extracellular polysaccharides (EPSs), and intracellular polysaccharides were analysed, and confocal laser scanning microscopy images were obtained of the two stages of biofilms to determine antibiofilm activities of fluoride at varying concentrations during the formation of early and mature biofilms. In the early stages of cariogenic biofilm formation, test groups with all fluoride concentrations significantly inhibited the growth of S. mutans biofilms. The antibiofilm and anti-EPS formation activities of the brief fluoride treatments increased with a concentration-dependent pattern. At the mature biofilm stage, only the 2000 ppm fluoride treatment group significantly inhibited biofilm accumulation, activity, and intracellular/extracellular polysaccharide content compared with those of the control and other fluoride treatment groups. The antimicrobial effect of fluoride treatment on the growth of S. mutans biofilms was linked with the stage of cariogenic biofilm formation. The inhibition of S. mutans biofilm growth by fluoride treatment was easier in the early formation stage than in the mature stage. Fluoride treatment in the early stage of cariogenic biofilm formation may be an effective approach to controlling cariogenic biofilm development and preventing dental caries.


Subject(s)
Biofilms/drug effects , Sodium Fluoride/pharmacology , Streptococcus mutans/drug effects , Adult , Biofilms/growth & development , Dose-Response Relationship, Drug , Humans , Male , Microscopy, Confocal , Sodium Fluoride/administration & dosage , Streptococcus mutans/growth & development , Streptococcus mutans/ultrastructure
16.
Int J Mol Sci ; 22(12)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201389

ABSTRACT

The objective of this study was to determine reactive oxygen species (ROS) produced by fagopyrin F-rich fraction (FFF) separated from Tartary buckwheat flower extract exposed to lights and to investigate its antibacterial photodynamic inactivation (PDI) against Streptococcus mutans and its biofilm. ROS producing mechanisms involving FFF with light exposure were determined using a spectrophotometer and a fluorometer. S. mutans and its biofilm inactivation after PDI treatment of FFF using blue light (BL; 450 nm) were determined by plate count method and crystal violet assay, respectively. The biofilm destruction by ROS produced from FFF after exposure to BL was visualized using confocal laser scanning microscopy (CLSM) and field emission scanning electron microscope (FE-SEM). BL among 3 light sources produced type 1 ROS the most when applying FFF as a photosensitizer. FFF exposed to BL (5 and 10 J/cm2) significantly more inhibited S. mutans viability and biofilm formation than FFF without the light exposure (p < 0.05). In the PDI of FFF exposed to BL (10 J/cm2), an apparent destruction of S. mutans and its biofilm were observed by the CLSM and FE-SEM. Antibacterial PDI effect of FFF was determined for the first time in this study.


Subject(s)
Biofilms/growth & development , Fagopyrum/chemistry , Flowers/chemistry , Photosensitizing Agents/pharmacology , Plant Extracts/pharmacology , Quinones/pharmacology , Streptococcus mutans/growth & development , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Light , Photochemotherapy , Streptococcus mutans/drug effects
17.
Commun Biol ; 4(1): 846, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34267305

ABSTRACT

Dental plaques are biofilms that cause dental caries by demineralization with acidogenic bacteria. These bacteria reside inside a protective sheath which makes any curative treatment challenging. We propose an antibiotic-free strategy to disrupt the biofilm by engineered clustered carbon dot nanoparticles that function in the acidic environment of the biofilms. In vitro and ex vivo studies on the mature biofilms of Streptococcus mutans revealed >90% biofilm inhibition associated with the contact-mediated interaction of nanoparticles with the bacterial membrane, excessive reactive oxygen species generation, and DNA fragmentation. An in vivo examination showed that these nanoparticles could effectively suppress the growth of S. mutans. Importantly, 16S rRNA analysis of the dental microbiota showed that the diversity and richness of bacterial species did not substantially change with nanoparticle treatment. Overall, this study presents a safe and effective approach to decrease the dental biofilm formation without disrupting the ecological balance of the oral cavity.


Subject(s)
Biofilms/drug effects , Microbiota/physiology , Nanoparticles/toxicity , Polymers/toxicity , Streptococcus mutans/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Female , Humans , Mice , Microbial Viability/drug effects , Microbiota/genetics , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , NIH 3T3 Cells , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Polymers/chemistry , RNA, Ribosomal, 16S/genetics , Rats, Sprague-Dawley , Streptococcus mutans/growth & development , Streptococcus mutans/ultrastructure
18.
PLoS One ; 16(5): e0251534, 2021.
Article in English | MEDLINE | ID: mdl-33970960

ABSTRACT

Melicope glabra (Blume) T. G. Hartley from the Rutaceae family is one of the richest sources of plant secondary metabolites, including coumarins and flavanoids. This study investigates the free radical scavenging and antibacterial activities of M. glabra and its isolated compounds. M. glabra ethyl acetate and methanol extracts were prepared using the cold maceration technique. The isolation of compounds was performed with column chromatography. The free radical scavenging activity of the extracts and isolated compounds were evaluated based on their oxygen radical absorbance capacity (ORAC) activities. The extracts and compounds were also subjected to antibacterial evaluation using bio-autographic and minimal inhibitory concentration (MIC) techniques against two oral pathogens, Enterococcus faecalis and Streptococcus mutans. Isolation of phytoconstituents from ethyl acetate extract successfully yielded quercetin 3, 5, 3'-trimethyl ether (1) and kumatakenin (2), while the isolation of the methanol extract resulted in scoparone (3), 6, 7, 8-trimethoxycoumarin (4), marmesin (5), glabranin (6), umbelliferone (7), scopoletin (8), and sesamin (9). The study is the first to isolate compound (1) from Rutaceae plants, and also the first to report the isolation of compounds (2-5) from M. glabra. The ORAC evaluation showed that the methanol extract is stronger than the ethyl acetate extract, while umbelliferone (7) exhibited the highest ORAC value of 24 965 µmolTE/g followed by glabranin (6), sesamin (9) and scopoletin (8). Ethyl acetate extract showed stronger antibacterial activity towards E. faecalis and S. mutans than the methanol extract with MIC values of 4166.7 ± 1443.4 µg/ml and 8303.3 ± 360.8 µg/ml respectively. Ethyl acetate extract inhibited E. faecalis growth, as shown by the lowest optical density value of 0.046 at a concentration of 5.0 mg/mL with a percentage inhibition of 95%. Among the isolated compounds tested, umbelliferone (7) and sesamin (9) exhibited promising antibacterial activity against S. mutans with both exhibiting MIC values of 208.3 ± 90.6 µg/ml. Findings from this study suggests M. glabra as a natural source of potent antioxidant and antibacterial agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enterococcus faecalis/growth & development , Free Radical Scavengers/pharmacology , Plant Bark/chemistry , Plant Extracts/chemistry , Rutaceae/chemistry , Streptococcus mutans/growth & development , Anti-Bacterial Agents/chemistry , Free Radical Scavengers/chemistry
19.
Nat Chem Biol ; 17(5): 576-584, 2021 05.
Article in English | MEDLINE | ID: mdl-33664521

ABSTRACT

Cariogenic Streptococcus mutans is known as a predominant etiological agent of dental caries due to its exceptional capacity to form biofilms. From strains of S. mutans isolated from dental plaque, we discovered, in the present study, a polyketide/nonribosomal peptide biosynthetic gene cluster, muf, which directly correlates with a strong biofilm-forming capability. We then identified the muf-associated bioactive product, mutanofactin-697, which contains a new molecular scaffold, along with its biosynthetic logic. Further mode-of-action studies revealed that mutanofactin-697 binds to S. mutans cells and also extracellular DNA, increases bacterial hydrophobicity, and promotes bacterial adhesion and subsequent biofilm formation. Our findings provided an example of a microbial secondary metabolite promoting biofilm formation via a physicochemical approach, highlighting the importance of secondary metabolism in mediating critical processes related to the development of dental caries.


Subject(s)
Biofilms/drug effects , Biological Factors/biosynthesis , Genes, Bacterial , Secondary Metabolism/genetics , Streptococcus mutans/metabolism , Bacterial Adhesion/drug effects , Biofilms/growth & development , Biological Factors/isolation & purification , Biological Factors/pharmacology , Computational Biology/methods , DNA/genetics , DNA/metabolism , Dental Caries/microbiology , Dental Caries/pathology , Gene Expression Regulation, Bacterial , Humans , Hydrophobic and Hydrophilic Interactions , Multigene Family , Peptide Biosynthesis, Nucleic Acid-Independent , Protein Binding , Streptococcus mutans/genetics , Streptococcus mutans/growth & development , Streptococcus mutans/pathogenicity
20.
PLoS One ; 16(3): e0248308, 2021.
Article in English | MEDLINE | ID: mdl-33667279

ABSTRACT

Periodontitis can result in tooth loss and the associated chronic inflammation can provoke several severe systemic health risks. Adjunctive to mechanical treatment of periodontitis and as alternatives to antibiotics, the use of probiotic bacteria was suggested. In this study, the inhibitory effect of the probiotic Streptococcus salivarius subsp. salivarius strains M18 and K12, Streptococcus oralis subsp. dentisani 7746, and Lactobacillus reuteri ATCC PTA 5289 on anaerobic periodontal bacteria and Aggregatibacter actinomycetemcomitans was tested. Rarely included in other studies, we also quantified the inverse effect of pathogens on probiotic growth. Probiotics and periodontal pathogens were co-incubated anaerobically in a mixture of autoclaved saliva and brain heart infusion broth. The resulting genome numbers of the pathogens and of the probiotics were measured by quantitative real-time PCR. Mixtures of the streptococcal probiotics were also used to determine their synergistic, additive, or antagonistic effects. The overall best inhibitor of the periodontal pathogens was L. reuteri ATCC PTA 5289, but the effect is coenzyme B12-, anaerobiosis-, as well as glycerol-dependent, and further modulated by L. reuteri strain DSM 17938. Notably, in absence of glycerol, the pathogen-inhibitory effect could even turn into a growth spurt. Among the streptococci tested, S. salivarius M18 had the most constant inhibitory potential against all pathogens, followed by K12 and S. dentisani 7746, with the latter still having significant inhibitory effects on P. intermedia and A. actinomycetemcomitans. Overall, mixtures of the streptococcal probiotics did inhibit the growth of the pathogens equally or-in the case of A. actinomycetemcomitans- better than the individual strains. P. gingivalis and F. nucleatum were best inhibited by pure cultures of S. salivarius K12 or S. salivarius M18, respectively. Testing inverse effects, the growth of S. salivarius M18 was enhanced when incubated with the periodontal pathogens minus/plus other probiotics. In contrast, S. oralis subsp. dentisani 7746 was not much influenced by the pathogens. Instead, it was significantly inhibited by the presence of other streptococcal probiotics. In conclusion, despite some natural limits such as persistence, the full potential for probiotic treatment is by far not utilized yet. Especially, further exploring concerted activity by combining synergistic strains, together with the application of oral prebiotics and essential supplements and conditions, is mandatory.


Subject(s)
Anaerobiosis/drug effects , Periodontitis/drug therapy , Porphyromonas gingivalis/drug effects , Probiotics/pharmacology , Aggregatibacter actinomycetemcomitans/chemistry , Aggregatibacter actinomycetemcomitans/growth & development , Antibiosis/drug effects , Humans , Limosilactobacillus reuteri/chemistry , Limosilactobacillus reuteri/growth & development , Periodontitis/microbiology , Periodontitis/pathology , Porphyromonas gingivalis/pathogenicity , Probiotics/chemistry , Saliva/drug effects , Saliva/microbiology , Streptococcus/chemistry , Streptococcus/growth & development , Streptococcus mutans/chemistry , Streptococcus mutans/growth & development , Streptococcus salivarius/chemistry , Streptococcus salivarius/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL