Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.572
Filter
1.
Sci Rep ; 14(1): 21409, 2024 09 13.
Article in English | MEDLINE | ID: mdl-39271789

ABSTRACT

Streptococcus pneumoniae, a medically important opportunistic bacterial pathogen of the upper respiratory tract, is a major public health concern, causing a wide range of pneumococcal illnesses, both invasive and noninvasive. It is associated with significant global morbidity and mortality, including pneumonia, meningitis, sepsis, and acute otitis media. The major purpose of this study was to determine the molecular epidemiology of Streptococcus pneumoniae strains that cause invasive and noninvasive infections in Ethiopia. A prospective study was undertaken in two regional hospitals between January 2018 and December 2019. Whole-genome sequencing was used to analyze all isolates. Serotypes and multilocus sequence types (MLST) were derived from genomic data. The E-test was used for antimicrobial susceptibility testing. Patient samples obtained 54 Streptococcus pneumoniae isolates, 33 from invasive and 21 from noninvasive specimens. Our findings identified 32 serotypes expressed by 25 Global Pneumococcal Sequence Clusters (GPSCs) and 42 sequence types (STs), including 21 new STs. The most common sequence types among the invasive isolates were ST3500, ST5368, ST11162, ST15425, ST15555, ST15559, and ST15561 (2/33, 6% each). These sequence types were linked to serotypes 8, 7 C, 15B/C, 16 F, 10 A, 15B, and 6 A, respectively. Among the noninvasive isolates, only ST15432, associated with serotype 23 A, had numerous isolates (4/21, 19%). Serotype 14 was revealed as the most resistant strain to penicillin G, whereas isolates from serotypes 3, 8, 7 C, and 10 A were resistant to erythromycin. Notably, all serotype 6 A isolates were resistant to both erythromycin and penicillin G. Our findings revealed an abnormally significant number of novel STs, as well as extremely diversified serotypes and sequence types, implying that Ethiopia may serve as a breeding ground for novel STs. Recombination can produce novel STs that cause capsular switching. This has the potential to influence how immunization campaigns affect the burden of invasive pneumococcal illness. The findings highlight the importance of continuous genetic surveillance of the pneumococcal population as a vital step toward enhancing future vaccine design.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Molecular Epidemiology , Multilocus Sequence Typing , Pneumococcal Infections , Serogroup , Streptococcus pneumoniae , Whole Genome Sequencing , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/isolation & purification , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/classification , Humans , Ethiopia/epidemiology , Pneumococcal Infections/microbiology , Pneumococcal Infections/epidemiology , Male , Child , Female , Child, Preschool , Adolescent , Adult , Middle Aged , Prospective Studies , Infant , Young Adult , Anti-Bacterial Agents/pharmacology , Aged
2.
Commun Biol ; 7(1): 1130, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271946

ABSTRACT

Pneumolysin (Ply) of Streptococcus pneumoniae (pneumococcus) at relatively high and low levels facilitates pneumococcal invasion into the lung and brain, respectively; however, the regulatory mechanisms of Ply expression are poorly understood. Here, we find that a small RNA plyT, processed from the 3'UTR of the ply operon, is expressed higher in anaerobically- than in statically-cultured pneumococcus D39. Using bioinformatic, biochemical and genetic approaches, we reveal that PlyT inhibits Ply synthesis and hemolytic activities by pairing with an RBS-embedded intergenic region of the ply operon. The RNA-binding protein SPD_1558 facilitates the pairing. Importantly, PlyT inhibition of Ply synthesis is stronger in anaerobic culture and leads to lower Ply abundance. Deletion of plyT decreases the number of pneumococci in the infected mouse brain and reduces the virulence, demonstrating that PlyT-regulated lower Ply in oxygen-void microenvironments, such as the blood, is important for pneumococcus to cross the blood-brain barrier and invade the brain. PlyT-mediated repression of Ply synthesis at anoxic niches is also verified in pneumococcal serotype 4 and 14 strains; moreover, the ply operon with a 3'UTR-embedded plyT, and the pairing sequences of IGR and plyT are highly conserved among pneumococcal strains, implying PlyT-regulated Ply synthesis might be widely employed by pneumococcus.


Subject(s)
3' Untranslated Regions , Bacterial Proteins , Brain , Pneumococcal Infections , Streptococcus pneumoniae , Streptolysins , Streptolysins/metabolism , Streptolysins/genetics , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Streptococcus pneumoniae/pathogenicity , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Animals , Mice , Pneumococcal Infections/microbiology , Brain/metabolism , Brain/microbiology , Gene Expression Regulation, Bacterial , Virulence/genetics , Operon , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism
3.
World J Microbiol Biotechnol ; 40(10): 319, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39261358

ABSTRACT

The present work reports the development and validation of a chromosomal expression system in Streptococcus pneumoniae which permits gene expression under the control of Lactococcus lactis lantibiotic nisin. The system is based on the integrative and conjugative element (ICE) Tn5253 of S. pneumoniae capable of site-specific chromosomal integration and conjugal transfer to a variety of bacterial species. We constructed an insertion vector that integrates in Tn5251, an ICE contained in Tn5253, which carries the tetracycline resistance tet(M) gene. The vector contains the nisRK regulatory system operon, the L. lactis nisin inducible promoter PnisA upstream of a multiple cloning site for target DNA insertion, and is flanked by two DNA regions of Tn5251 which drive homologous recombination in ICE Tn5253. For system evaluation, the emm6.1::ha1 fusion gene was cloned and integrated into the chromosome of the Tn5253-carrying pneumococcal strain FR24 by transformation. This gene encodes a fusion protein containing the signal peptide, the 122 N-terminal and the 140 C-terminal aa of the Streptococcus pyogenes M6 surface protein joined to the HA1 subunit of the influenza virus A hemagglutinin. Quantitative RT-PCR analysis carried out on total RNA purified from nisin treated and untreated cultures showed an increase in emm6.1::ha1 transcript copy number with growing nisin concentration. The expression of M6-HA1 protein was detected by Western blot and quantified by Dot blot, while Flow cytometry analysis confirmed the presence on the pneumococcal surface. Recombinant ICE Tn5253::[nisRK]-[emm6.1::ha1] containing the nisin-inducible expression system was successfully transferred by conjugation in different streptococcal species including Streptococcus gordonii, S. pyogenes, Streptococcus agalactiae and Enterococcus faecalis. As for S. pneumoniae, the emm6.1::ha1 transcript copy number and the amount of M6-HA1 protein produced correlated with the nisin concentration used for induction in all investigated bacterial hosts. We demonstrated that this host-vector expression system is stably integrated as a single copy within the bacterial chromosome, is transferable to both transformable and non transformable bacterial species, and allows fine tuning of protein expression modulated by nisin concentration. These characteristics make our system suitable for a wide range of applications including complementation assays, physiological studies, host-pathogen interaction studies.


Subject(s)
Chromosomes, Bacterial , DNA Transposable Elements , Nisin , Streptococcus pneumoniae , Nisin/pharmacology , Nisin/genetics , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/drug effects , Chromosomes, Bacterial/genetics , DNA Transposable Elements/genetics , Gene Expression Regulation, Bacterial , Enterococcus/genetics , Enterococcus/drug effects , Genetic Vectors/genetics , Conjugation, Genetic , Streptococcus/genetics , Streptococcus/drug effects , Streptococcus/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
4.
Appl Environ Microbiol ; 90(9): e0101024, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39140740

ABSTRACT

The ability to genetically manipulate bacteria is a staple of modern molecular microbiology. Since the 2000s, marker-less mutants of Streptococcus pneumoniae (Spn) have been made by allelic exchange predominantly using the kanR-rpsL cassette known as "Janus." The conventional Janus protocol involves two transformation steps using multiple PCR-assembled products containing the Janus cassette and the target gene's flanking DNA. We present an innovative strategy to achieve marker-less allelic replacement through a single transformation step. Our strategy involves integrating an additional copy of the target's downstream region before the Janus cassette, leading to a modified genetic arrangement. This single modification reduced the number of required PCR fragments from five to four, lowered the number of assembly reactions from two to one, and simplified the transformation process to a single step. To validate the efficacy of our approach, we implemented this strategy to delete in Spn serotype 4 strain TIGR4 the virulence gene pspA, the entire capsular polysaccharide synthesis locus cps4, and to introduce a single-nucleotide replacement into the chromosome. Notably, beyond streamlining the procedure, our method markedly reduced false positives typically encountered during negative selection with streptomycin when employing the traditional Janus protocol. Furthermore, and as consequence of reducing the amount of exogenous DNA required for construct synthesis, we show that our new method is amendable to the use of commercially available synthetic DNA for construct creation, further reducing the work needed to obtain a mutant. Our streamlined strategy, termed easyJanus, substantially expedites the genetic manipulation of Spn facilitating future research endeavors. IMPORTANCE: We introduce a new strategy aimed at streamlining the process for marker-less allelic replacement in Streptococcus pneumoniae, a Gram-positive bacterium and leading cause of pneumonia, meningitis, and ear infections. Our approach involves a modified genetic arrangement of the Janus cassette to facilitate self-excision during the segregation step. Since this new method reduces the amount of exogenous DNA required, it is highly amendable to the use of synthetic DNA for construction of the mutagenic construct. Our streamlined strategy, called easyJanus, offers significant time and cost savings while concurrently enhancing the efficiency of obtaining marker-less allelic replacement in S. pneumoniae.


Subject(s)
Streptococcus pneumoniae , Streptococcus pneumoniae/genetics , Transformation, Bacterial , Alleles , Bacterial Proteins/genetics , Genetic Markers
5.
Genome Res ; 34(7): 1081-1088, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39134411

ABSTRACT

Studies of bacterial adaptation and evolution are hampered by the difficulty of measuring traits such as virulence, drug resistance, and transmissibility in large populations. In contrast, it is now feasible to obtain high-quality complete assemblies of many bacterial genomes thanks to scalable high-accuracy long-read sequencing technologies. To exploit this opportunity, we introduce a phenotype- and alignment-free method for discovering coselected and epistatically interacting genomic variation from genome assemblies covering both core and accessory parts of genomes. Our approach uses a compact colored de Bruijn graph to approximate the intragenome distances between pairs of loci for a collection of bacterial genomes to account for the impacts of linkage disequilibrium (LD). We demonstrate the versatility of our approach to efficiently identify associations between loci linked with drug resistance and adaptation to the hospital niche in the major human bacterial pathogens Streptococcus pneumoniae and Enterococcus faecalis.


Subject(s)
Enterococcus faecalis , Epistasis, Genetic , Genome, Bacterial , Streptococcus pneumoniae , Streptococcus pneumoniae/genetics , Enterococcus faecalis/genetics , Linkage Disequilibrium , Humans , Genomics/methods
6.
Bull Exp Biol Med ; 177(2): 248-251, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39090461

ABSTRACT

We compared the immunogenicity of recombinant S. pneumoniae pneumolysin (rPly) when administered with and without Al(OH)3 adjuvant, and evaluated the protective properties of recombinant protein in the active defense experiment. It was shown that double immunization with rPly+Al(OH)3 increases the levels of IgG antibodies in comparison with the control (p<0.01), while triple immunization results in a more significant increase in IgG antibody levels (p<0.001). Double immunization with rPly without Al(OH)3 does not induce a significant increase in antibody levels in comparison with the control, while triple immunization results in a slight but significant increase in antibody levels (p<0.05). The active defense test proved the protective activity of rPly against S. pneumoniae serotype 3 at intranasal infection.


Subject(s)
Antibodies, Bacterial , Bacterial Proteins , Immunoglobulin G , Recombinant Proteins , Streptococcus pneumoniae , Streptolysins , Streptolysins/immunology , Streptolysins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/genetics , Animals , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Immunoglobulin G/immunology , Immunoglobulin G/blood , Mice , Pneumococcal Infections/immunology , Pneumococcal Infections/prevention & control , Pneumococcal Infections/microbiology , Adjuvants, Immunologic , Aluminum Hydroxide/immunology , Aluminum Hydroxide/administration & dosage , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/administration & dosage , Female
7.
J Bacteriol ; 206(9): e0000424, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39171913

ABSTRACT

Streptococcus pneumoniae (pneumococcus) causes a wide range of important human infectious diseases, including pneumonia, pneumonia-derived sepsis, otitis media, and meningitis. Pneumococcus produces numerous secreted proteins that are critical for normal physiology and pathogenesis. The membrane targeting and translocation of these secreted proteins are partly mediated by the signal recognition particle (SRP) complex, which consists of 4.5S small cytoplasmic RNA (ScRNA), and the Ffh, and FtsY proteins. Here, we report that pneumococcal ∆scRNA, ∆ffh, and ∆ftsY mutants were significantly impaired in competence induction, competence pili production, exogenous DNA uptake, and genetic transformation. Also, the ∆scRNA mutant was significantly attenuated in the mouse models of bacteremia and pneumonia. Interestingly, unlike the ∆scRNA, both ∆ffh and ∆ftsY mutants had growth defects on Todd-Hewitt Agar, which were alleviated by the provision of free amino acids or serum. Differences in nutritional requirements between ∆ffh and ∆ftsY vs ∆scRNA suggest that Ffh and FtsY may be partially functional in the absence of ScRNA. Finally, the insertase YidC2, which could functionally rescue some SRP mutations in other streptococcal species, was not essential for pneumococcal genetic transformation. Collectively, these results indicate that ScRNA is crucial for the successful development of genetic competence and virulence in pneumococcus. IMPORTANCE: Streptococcus pneumoniae (pneumococcus) causes multiple important infectious diseases in humans. The signal recognition particle (SRP) complex, which comprised 4.5S small cytoplasmic RNA (ScRNA), and the Ffh and FtsY proteins, mediates membrane targeting and translocation of secreted proteins in all organisms. However, the role of SRP and ScRNA has not been characterized during the induction of the competence system for genetic transformation and virulence in pneumococcus. By using a combination of genetic, biochemical, proteomic, and imaging approaches, we demonstrated that the SRP complex plays a significant role in membrane targeting of competence system-regulated effectors important for genetic transformation, virulence during bacteremia and pneumonia infections, and nutritional acquisition.


Subject(s)
Bacterial Proteins , Streptococcus pneumoniae , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/pathogenicity , Streptococcus pneumoniae/metabolism , Mice , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence , Animals , Signal Recognition Particle/genetics , Signal Recognition Particle/metabolism , Pneumococcal Infections/microbiology , Gene Expression Regulation, Bacterial , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , DNA Transformation Competence , Bacteremia/microbiology
8.
Front Cell Infect Microbiol ; 14: 1391879, 2024.
Article in English | MEDLINE | ID: mdl-39104851

ABSTRACT

This study aimed to investigate the bacterial characteristics of pneumococcal isolates obtained from a tertiary care hospital in Japan. We analyzed the antimicrobial susceptibility, possession of macrolide resistance genes, pneumococcal serogroup/serotype, and sequence type (ST) of pneumococcal isolates from patients aged 15 years or older between 2011 and 2020 at Nagasaki University Hospital. Of the 73 isolates analyzed, 86.3% showed resistance to macrolides, and 28.8%, 46.6%, and 11.0% harbored mefA, ermB, and both, respectively. Of the isolates possessing ermB, 97.6% showed high levels of macrolide resistance [minimal inhibitory concentration (MIC) range, > 16 µg/mL]. Solithromycin (MIC range, 0.03-0.25 µg/mL), regardless of the presence of macrolide resistance genes, and lascufloxacin (MIC range, 0.06-0.5 µg/mL) showed potent in vitro activity against pneumococci. Serotype 19A was the most prevalent (six isolates), followed by serotypes 10A, 15A, and 15B/C (five isolates each). Four serotypes (11A, 19A, 22F, and 23B) and five STs (36, 99, 433, 558, and 3111) were significantly correlated with the presence of macrolide resistance genes. All four isolates with serotype 11A/ST99 and three isolates with serotype 19A/ST3111 harbored both mefA and ermB. No macrolide resistance genes were detected in either of the two isolates with serotype 22F/ST433, while all ten isolates with serogroup 15 (serotypes 15A and 15B/C, five isolates each) possessed ermB alone. Our study revealed the bacterial characteristics of the pneumococcal isolates obtained from our hospital. In vitro activity of solithromycin and lascufloxacin against these isolates was confirmed.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Macrolides , Microbial Sensitivity Tests , Pneumococcal Infections , Serogroup , Streptococcus pneumoniae , Tertiary Care Centers , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/isolation & purification , Streptococcus pneumoniae/classification , Humans , Pneumococcal Infections/microbiology , Japan , Anti-Bacterial Agents/pharmacology , Macrolides/pharmacology , Drug Resistance, Bacterial/genetics , Young Adult , Adolescent , Phenotype , Aged , Middle Aged , Adult , Bacterial Proteins/genetics , Female , Male , Methyltransferases/genetics , Aged, 80 and over , East Asian People , Membrane Proteins
9.
Microb Genom ; 10(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-39137139

ABSTRACT

Investigating the genomic epidemiology of major bacterial pathogens is integral to understanding transmission, evolution, colonization, disease, antimicrobial resistance and vaccine impact. Furthermore, the recent accumulation of large numbers of whole genome sequences for many bacterial species enhances the development of robust genome-wide typing schemes to define the overall bacterial population structure and lineages within it. Using the previously published data, we developed the Pneumococcal Genome Library (PGL), a curated dataset of 30 976 genomes and contextual data for carriage and disease pneumococci recovered between 1916 and 2018 in 82 countries. We leveraged the size and diversity of the PGL to develop a core genome multilocus sequence typing (cgMLST) scheme comprised of 1222 loci. Finally, using multilevel single-linkage clustering, we stratified pneumococci into hierarchical clusters based on allelic similarity thresholds and defined these with a taxonomic life identification number (LIN) barcoding system. The PGL, cgMLST scheme and LIN barcodes represent a high-quality genomic resource and fine-scale clustering approaches for the analysis of pneumococcal populations, which support the genomic epidemiology and surveillance of this leading global pathogen.


Subject(s)
DNA Barcoding, Taxonomic , Genome, Bacterial , Multilocus Sequence Typing , Pneumococcal Infections , Streptococcus pneumoniae , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/isolation & purification , Multilocus Sequence Typing/methods , Humans , DNA Barcoding, Taxonomic/methods , Pneumococcal Infections/microbiology , Pneumococcal Infections/epidemiology , Phylogeny , Gene Library , Whole Genome Sequencing/methods
10.
BMJ Open Respir Res ; 11(1)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097412

ABSTRACT

BACKGROUND: Pneumonia due to typical bacterial, atypical bacterial and viral pathogens can be difficult to clinically differentiate. Host response-based diagnostics are emerging as a complementary diagnostic strategy to pathogen detection. METHODS: We used murine models of typical bacterial, atypical bacterial and viral pneumonia to develop diagnostic signatures and understand the host's response to these types of infections. Mice were intranasally inoculated with Streptococcus pneumoniae, Mycoplasma pneumoniae, influenza or saline as a control. Peripheral blood gene expression analysis was performed at multiple time points. Differentially expressed genes were used to perform gene set enrichment analysis and generate diagnostic signatures. These murine-derived signatures were externally validated in silico using human gene expression data. The response to S. pneumoniae was the most rapid and robust. RESULTS: Mice infected with M. pneumoniae had a delayed response more similar to influenza-infected animals. Diagnostic signatures for the three types of infection had 0.94-1.00 area under the receiver operator curve (auROC). Validation in five human gene expression datasets revealed auROC of 0.82-0.96. DISCUSSION: This study identified discrete host responses to typical bacterial, atypical bacterial and viral aetiologies of pneumonia in mice. These signatures validated well in humans, highlighting the conserved nature of the host response to these pathogen classes.


Subject(s)
Disease Models, Animal , Mycoplasma pneumoniae , Pneumonia, Mycoplasma , Streptococcus pneumoniae , Animals , Humans , Mice , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/isolation & purification , Pneumonia, Mycoplasma/diagnosis , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/isolation & purification , Female , Pneumonia, Pneumococcal/microbiology , Orthomyxoviridae Infections/immunology , ROC Curve , Gene Expression Profiling , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Mice, Inbred C57BL , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/diagnosis , Host-Pathogen Interactions
11.
Nat Commun ; 15(1): 6577, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097620

ABSTRACT

Limited data from Asia are available on long-term effects of pneumococcal conjugate vaccine introduction on pneumococcal carriage. Here we assess the impact of 13-valent pneumococcal conjugate vaccine (PCV13) introduction on nasopharyngeal pneumococcal carriage prevalence, density and antimicrobial resistance. Cross-sectional carriage surveys were conducted pre-PCV13 (2015) and post-PCV13 introduction (2017 and 2022). Pneumococci were detected and quantified by real-time PCR from nasopharyngeal swabs. DNA microarray was used for molecular serotyping and to infer genetic lineage (Global Pneumococcal Sequence Cluster). The study included 1461 infants (5-8 weeks old) and 1489 toddlers (12-23 months old) enrolled from family health clinics. We show a reduction in PCV13 serotype carriage (with non-PCV13 serotype replacement) and a reduction in the proportion of samples containing resistance genes in toddlers six years post-PCV13 introduction. We observed an increase in pneumococcal nasopharyngeal density. Serotype 15 A, the most prevalent non-vaccine-serotype in 2022, was comprised predominantly of GPSC904;9. Reductions in PCV13 serotype carriage will likely result in pneumococcal disease reduction. It is important for ongoing surveillance to monitor serotype changes to potentially inform new vaccine development.


Subject(s)
Carrier State , Nasopharynx , Pneumococcal Infections , Pneumococcal Vaccines , Streptococcus pneumoniae , Vaccines, Conjugate , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/administration & dosage , Humans , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/isolation & purification , Streptococcus pneumoniae/classification , Infant , Pneumococcal Infections/prevention & control , Pneumococcal Infections/microbiology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/immunology , Nasopharynx/microbiology , Carrier State/epidemiology , Carrier State/microbiology , Carrier State/prevention & control , Mongolia/epidemiology , Cross-Sectional Studies , Vaccines, Conjugate/immunology , Female , Male , Serogroup , Prevalence , Serotyping
12.
Int J Mol Sci ; 25(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39125852

ABSTRACT

The rapid and accurate diagnosis of meningitis is critical for preventing severe complications and fatalities. This study addresses the need for accessible diagnostics in the absence of specialized equipment by developing a novel diagnostic assay. The assay utilizes dual-priming isothermal amplification (DAMP) with unique internal primers to significantly reduce non-specificity. For fluorescence detection, the dye was selected among Brilliant Green, Thioflavin T, and dsGreen. Brilliant Green is preferred for this assay due to its availability, high fluorescence level, and optimal sample-to-background (S/B) ratio. The assay was developed for the detection of the primary causative agents of meningitis (Haemophilus influenzae, Neisseria meningitidis, and Streptococcus pneumoniae), and tested on clinical samples. The developed method demonstrated high specificity, no false positives, sensitivity comparable to that of loop-mediated isothermal amplification (LAMP), and a high S/B ratio. This versatile assay can be utilized as a standalone test or an integrated assay into point-of-care systems for rapid and reliable pathogen detection.


Subject(s)
Haemophilus influenzae , Meningitis, Bacterial , Molecular Diagnostic Techniques , Neisseria meningitidis , Nucleic Acid Amplification Techniques , Streptococcus pneumoniae , Neisseria meningitidis/genetics , Neisseria meningitidis/isolation & purification , Nucleic Acid Amplification Techniques/methods , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/isolation & purification , Humans , Haemophilus influenzae/genetics , Haemophilus influenzae/isolation & purification , Meningitis, Bacterial/diagnosis , Meningitis, Bacterial/microbiology , Molecular Diagnostic Techniques/methods , Sensitivity and Specificity
13.
Vaccine ; 42(22): 126219, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39146858

ABSTRACT

Streptococcus pneumoniae carriage studies are crucial to monitor changes induced by use of pneumococcal conjugate vaccines and inform vaccination policies. In this cross-sectional study, we examined changes within the pneumococcal population following introduction of PCV13 in 2015 in the National Immunization Program (NIP), in Portugal. In 2018-2020 (NIP-PCV13), we obtained 1450 nasopharyngeal samples from children ≤6 years attending day-care. We assessed serotypes, antimicrobial resistance, and genotypes (MLST and GPSC) and compared findings with earlier periods: 2009-2010 (pre-PCV13), 2011-2012 (early-PCV13), and 2015-2016 (late-PCV13). Pneumococcal carriage prevalence remained stable at 60.2 %. Carriage of PCV13 serotypes was 10.7 %, markedly reduced compared to pre-PCV13 period (47.6 %). The most prevalent PCV13 serotypes were 19F, 3, and 19A all showing a significant decreasing trend compared to the pre-PCV13 period (from 7.1 % to 4.7 %, 10.1 % to 1.8 %, and 14.1 % to 1.8 %, respectively), a notable observation given the described limited effectiveness of PCV13 against serotype 3. Non-vaccinated children and children aged 4-6 years were more likely to carry PCV13 serotypes (2.5-fold, 95 %CI [1.1-5.6], and 2.9-fold, 95 %CI [1.3-6.8], respectively). The most prevalent non-PCV13 serotypes were 15B/C, 11A, 23B, 23A, and NT, collectively accounting for 51.9 % of all isolates. In total, 30.5 % of all pneumococci were potentially covered by PCV20. Resistance to penicillin (low-level) and macrolides increased significantly, from 9.3 % and 13.4 %, respectively, in the late-PCV13 period, to approximately 20 % each, mostly due to lineages expressing non-PCV13 serotypes, nearing pre-PCV13 levels. An expansion of lineages traditionally associated with PCV13 serotypes, like CC156-GPSC6 (serotype 14) and CC193-GPSC11 (serotype 19F), but now predominantly expressing non-PCV13 serotypes (11A, 15B/C, and 24F for GPSC6; and 15A and 21 for GPSC11) was noted. These findings indicate that the pneumococcal population is adapting to the pressures conferred by PCV13 and antimicrobial use and indicate the need to maintain close surveillance.


Subject(s)
Carrier State , Genotype , Immunization Programs , Nasopharynx , Pneumococcal Infections , Pneumococcal Vaccines , Serogroup , Streptococcus pneumoniae , Humans , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/immunology , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/administration & dosage , Cross-Sectional Studies , Portugal/epidemiology , Child, Preschool , Pneumococcal Infections/prevention & control , Pneumococcal Infections/epidemiology , Pneumococcal Infections/microbiology , Female , Male , Carrier State/epidemiology , Carrier State/microbiology , Infant , Nasopharynx/microbiology , Child , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Prevalence , Vaccines, Conjugate/immunology , Vaccines, Conjugate/administration & dosage , Microbial Sensitivity Tests
14.
Microb Genom ; 10(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-39196267

ABSTRACT

Defining the population structure of a pathogen is a key part of epidemiology, as genomically related isolates are likely to share key clinical features such as antimicrobial resistance profiles and invasiveness. Multiple different methods are currently used to cluster together closely related genomes, potentially leading to inconsistency between studies. Here, we use a global dataset of 26 306 Streptococcus pneumoniae genomes to compare four clustering methods: gene-by-gene seven-locus MLST, core genome MLST (cgMLST)-based hierarchical clustering (HierCC) assignments, life identification number (LIN) barcoding and k-mer-based PopPUNK clustering (known as GPSCs in this species). We compare the clustering results with phylogenetic and pan-genome analyses to assess their relationship with genome diversity and evolution, as we would expect a good clustering method to form a single monophyletic cluster that has high within-cluster similarity of genomic content. We show that the four methods are generally able to accurately reflect the population structure based on these metrics and that the methods were broadly consistent with each other. We investigated further to study the discrepancies in clusters. The greatest concordance was seen between LIN barcoding and HierCC (adjusted mutual information score=0.950), which was expected given that both methods utilize cgMLST, but have different methods for defining an individual cluster and different core genome schema. However, the existence of differences between the two methods shows that the selection of a core genome schema can introduce inconsistencies between studies. GPSC and HierCC assignments were also highly concordant (AMI=0.946), showing that k-mer-based methods which use the whole genome and do not require the careful selection of a core genome schema are just as effective at representing the population structure. Additionally, where there were differences in clustering between these methods, this could be explained by differences in the accessory genome that were not identified in cgMLST. We conclude that for S. pneumoniae, standardized and stable nomenclature is important as the number of genomes available expands. Furthermore, the research community should transition away from seven-locus MLST, whilst cgMLST, GPSC and LIN assignments should be used more widely. However, to allow for easy comparison between studies and to make previous literature relevant, the reporting of multiple clustering names should be standardized within the research.


Subject(s)
Genome, Bacterial , Multilocus Sequence Typing , Phylogeny , Streptococcus pneumoniae , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/classification , Multilocus Sequence Typing/methods , Cluster Analysis , Humans , Genomics/methods
15.
mBio ; 15(9): e0136024, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39120145

ABSTRACT

Antimicrobial resistance (AMR) is a public health threat worldwide. Next-generation sequencing (NGS) has opened unprecedented opportunities to accelerate AMR mechanism discovery and diagnostics. Here, we present an integrative approach to investigate trimethoprim (TMP) resistance in the key pathogen Streptococcus pneumoniae. We explored a collection of 662 S. pneumoniae genomes by conducting a genome-wide association study (GWAS), followed by functional validation using resistance reconstruction experiments, combined with machine learning (ML) approaches to predict TMP minimum inhibitory concentration (MIC). Our study showed that multiple additive mutations in the folA and sulA loci are responsible for TMP non-susceptibility in S. pneumoniae and can be used as key features to build ML models for digital MIC prediction, reaching an average accuracy within ±1 twofold dilution factor of 86.3%. Our roadmap of in silico analysis-wet-lab validation-diagnostic tool building could be adapted to explore AMR in other combinations of bacteria-antibiotic. IMPORTANCE: In the age of next-generation sequencing (NGS), while data-driven methods such as genome-wide association study (GWAS) and machine learning (ML) excel at finding patterns, functional validation can be challenging due to the high numbers of candidate variants. We designed an integrative approach combining a GWAS on S. pneumoniae clinical isolates, followed by whole-genome transformation coupled with NGS to functionally characterize a large set of GWAS candidates. Our study validated several phenotypic folA mutations beyond the standard Ile100Leu mutation, and showed that the overexpression of the sulA locus produces trimethoprim (TMP) resistance in Streptococcus pneumoniae. These validated loci, when used to build ML models, were found to be the best inputs for predicting TMP minimal inhibitory concentrations. Integrative approaches can bridge the genotype-phenotype gap by biological insights that can be incorporated in ML models for accurate prediction of drug susceptibility.


Subject(s)
Anti-Bacterial Agents , Genome-Wide Association Study , Machine Learning , Microbial Sensitivity Tests , Streptococcus pneumoniae , Trimethoprim Resistance , Trimethoprim , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/drug effects , Trimethoprim/pharmacology , Anti-Bacterial Agents/pharmacology , Humans , Trimethoprim Resistance/genetics , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Pneumococcal Infections/microbiology , Mutation
16.
Vaccine ; 42(23): 126238, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39168078

ABSTRACT

BACKGROUND: In early 2021, the 10-valent Pneumococcal conjugate vaccine (PCV10) was replaced with 13-valent (PCV13) by the federal directorate of immunization (FDI), Pakistan. We assessed the impact of a higher valent vaccine, PCV13, on the serotype distribution of nasopharyngeal carriage in rural Pakistan. METHODS: Children <2 years were randomly selected from two rural union councils of Matiari, Sindh in Pakistan between September-October,2022. Clinical, sociodemographic and vaccination histories were recorded. Nasopharyngeal swabs were collected and processed at Infectious Disease Research Laboratory, Aga Khan University, Karachi. Whole genome sequencing was performed on the culture positive isolates. RESULTS: Of the 200 children enrolled, pneumococcus was detected in 140(70 %) isolates. Majority of age-eligible children (60.1 %,110/183) received 3 PCV13 doses. PCV10 carriage declined from 13.2 %(78/590) in 2017/18 to 7.2 % (10/140) in 2022, additional PCV13 serotypes (3, 6A/6C and 19A) decreased from 18.5 %(109/590) to 11.4 %(16/140) while non-PCV13 serotypes increased from 68.3 %(403/590) to 81.4 %(114/140). There were 88.5 %(n = 124), 80.7 %(n = 113), 55.0 %(n = 77), and 46.0 %(n = 65) isolates predicted to be resistant to cotrimoxazole, penicillin(meningitis cut-off), tetracycline, and erythromycin respectively. CONCLUSION: Replacing PCV10 with PCV13 rapidly decreased prevalence of PCV13 carriage among vaccinated children in Matiari, Pakistan. Vaccine-driven selection pressure may have been responsible for the increase of non-PCV13 serotypes.


Subject(s)
Carrier State , Nasopharynx , Pneumococcal Infections , Pneumococcal Vaccines , Serogroup , Streptococcus pneumoniae , Humans , Pakistan/epidemiology , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/isolation & purification , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/drug effects , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/administration & dosage , Pneumococcal Infections/prevention & control , Pneumococcal Infections/epidemiology , Pneumococcal Infections/microbiology , Infant , Carrier State/epidemiology , Carrier State/microbiology , Male , Female , Nasopharynx/microbiology , Anti-Bacterial Agents/pharmacology , Child, Preschool , Whole Genome Sequencing , Rural Population/statistics & numerical data , Vaccines, Conjugate/immunology , Vaccines, Conjugate/administration & dosage
17.
mSphere ; 9(8): e0043224, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39058033

ABSTRACT

Tatum D. Mortimer works in the field of pathogen population genomics and evolution. In this mSphere of Influence article, she reflects on how "Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae" by Azarian et al. and "Contingency, repeatability, and predictability in the evolution of a prokaryotic pangenome" by Beavan et al. made an impact on her by highlighting the ways in which genomic data can be used to predict pathogen evolution.


Subject(s)
Evolution, Molecular , Streptococcus pneumoniae , Streptococcus pneumoniae/genetics , Genome, Bacterial , Genomics , Humans , Selection, Genetic
18.
Microbiol Spectr ; 12(9): e0059124, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39028185

ABSTRACT

Molecular methods have improved the sensitivity of the detection of pneumococcal carriage in saliva. However, they typically require sample culture enrichment and nucleic acid extraction prior to performing the detection assay and may limit scalability for extensive surveillance of pneumococcus, particularly in low-resource settings. We evaluated the performance of a DNA-extraction-free method for the detection of pneumococcus in saliva. We developed a streamlined qPCR-based protocol for the detection of pneumococcus, omitting culture enrichment and DNA extraction. Using saliva samples collected from children attending childcare centers (New Haven, CT, USA), we evaluated the detection of pneumococcus using saliva lysates as compared to purified DNA extracted from culture-enriched aliquots of the paired samples using qPCR targeting the pneumococcal piaB gene. Of the 759 saliva samples tested from 92 children [median age 3.65 years; IQR (2.46-4.78)], pneumococcus was detected in 358 (47.2%) saliva lysates prepared using the extraction-free protocol and in 369 (48.6%) DNA extracted from culture-enriched samples. We observed near-perfect agreement between the two protocols (Cohen's kappa: 0.92; 95% CI: 0.90-0.95). Despite a high correlation between CT values generated by the two methods (r = 0.93, P < 0.0001), the CT values generated from saliva lysates were higher (lower concentration) than those from culture-enriched samples (ΔCT = 6.69, P < 0.00001). The cost of detecting pneumococcus using saliva lysates was at least fivefold lower (US$2.53) compared to the cost of the culture-enriched method (range: US$13.60-US$19.46). For pneumococcal carriage surveillance in children, our findings suggest that a DNA extraction-free approach may offer a cost-effective alternative to the resource-intensive culture-enrichment method.IMPORTANCESurveillance for carriage of pneumococcus is a key component of evaluating the performance of pneumococcal vaccines and informing new vaccination strategies. To improve the scalability of pneumococcal carriage surveillance, we show that molecular detection of pneumococcus in saliva from children can be performed without culture enrichment and DNA extraction. Our findings show that using the extraction-free method can improve surveillance efforts for pneumococcal carriage in children, overcoming the resource-intensive hurdle that comes with the use of molecular methods, particularly in low-resource settings.


Subject(s)
Carrier State , DNA, Bacterial , Pneumococcal Infections , Saliva , Streptococcus pneumoniae , Humans , Saliva/microbiology , Streptococcus pneumoniae/isolation & purification , Streptococcus pneumoniae/genetics , Child, Preschool , Pneumococcal Infections/diagnosis , Pneumococcal Infections/microbiology , DNA, Bacterial/isolation & purification , DNA, Bacterial/genetics , Female , Male , Carrier State/diagnosis , Carrier State/microbiology , Child , Real-Time Polymerase Chain Reaction/methods , Infant , Sensitivity and Specificity
19.
Nat Microbiol ; 9(9): 2395-2409, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39030344

ABSTRACT

Genetic interactions identify functional connections between genes and pathways, establishing gene functions or druggable targets. Here we use CRISPRi-TnSeq, CRISPRi-mediated knockdown of essential genes alongside TnSeq-mediated knockout of non-essential genes, to map genome-wide interactions between essential and non-essential genes in Streptococcus pneumoniae. Transposon-mutant libraries constructed in 13 CRISPRi strains enabled screening of ~24,000 gene pairs. This identified 1,334 genetic interactions, including 754 negative and 580 positive interactions. Network analyses show that 17 non-essential genes pleiotropically interact with more than half the essential genes tested. Validation experiments confirmed that a 7-gene subset protects against perturbations. Furthermore, we reveal hidden redundancies that compensate for essential gene loss, relationships between cell wall synthesis, integrity and cell division, and show that CRISPRi-TnSeq identifies synthetic and suppressor-type relationships between both functionally linked and disparate genes and pathways. Importantly, in species where CRISPRi and Tn-Seq are established, CRISPRi-TnSeq should be straightforward to implement.


Subject(s)
CRISPR-Cas Systems , DNA Transposable Elements , Genes, Essential , Genome, Bacterial , Streptococcus pneumoniae , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Genes, Essential/genetics , Genome, Bacterial/genetics , DNA Transposable Elements/genetics , Gene Regulatory Networks , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genes, Bacterial/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Knockout Techniques
20.
J Mol Biol ; 436(18): 168708, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39009072

ABSTRACT

Nucleoside triphosphates are indispensable in numerous biological processes, with enzymes involved in their biogenesis playing pivotal roles in cell proliferation. Pyruvate kinase (PYK), commonly regarded as the terminal glycolytic enzyme that generates ATP in tandem with pyruvate, is also capable of synthesizing a wide range of nucleoside triphosphates from their diphosphate precursors. Despite their substrate promiscuity, some PYKs show preference towards specific nucleotides, suggesting an underlying mechanism for differentiating nucleotide bases. However, the thorough characterization of this mechanism has been hindered by the paucity of nucleotide-bound PYK structures. Here, we present crystal structures of Streptococcus pneumoniae PYK in complex with four different nucleotides. These structures facilitate direct comparison of the protein-nucleotide interactions and offer structural insights into its pronounced selectivity for GTP synthesis. Notably, this selectivity is dependent on a sequence motif in the nucleotide recognition site that is widely present among prokaryotic PYKs, particularly in Firmicutes species. We show that pneumococcal cell growth is significantly impaired when expressing a PYK variant with compromised GTP and UTP synthesis activity, underscoring the importance of PYK in maintaining nucleotide homeostasis. Our findings collectively advance our understanding of PYK biochemistry and prokaryotic metabolism.


Subject(s)
Guanosine Triphosphate , Models, Molecular , Nucleotides , Pyruvate Kinase , Streptococcus pneumoniae , Pyruvate Kinase/metabolism , Pyruvate Kinase/chemistry , Pyruvate Kinase/genetics , Streptococcus pneumoniae/enzymology , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Substrate Specificity , Crystallography, X-Ray , Nucleotides/metabolism , Guanosine Triphosphate/metabolism , Protein Conformation , Binding Sites , Protein Binding , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL