ABSTRACT
BACKGROUND: The significant role of embryonic cerebrospinal fluid (eCSF) in the initial stages of brain development has been thoroughly studied. This fluid contains crucial molecules for proper brain development such as members of the Wnt and FGF families, apolipoproteins, and retinol binding protein. Nevertheless, the source of these molecules remains uncertain since they are present before the formation of the choroid plexus, which is conventionally known as the primary producer of cerebrospinal fluid. The subcommissural organ (SCO) is a highly conserved gland located in the diencephalon and is one of the earliest differentiating brain structures. The SCO secretes molecules into the eCSF, prior to the differentiation of the choroid plexus, playing a pivotal role in the homeostasis and dynamics of this fluid. One of the key molecules secreted by the SCO is SCO-spondin, a protein involved in maintenance of the normal ventricle size, straight spinal axis, neurogenesis, and axonal guidance. Furthermore, SCO secretes transthyretin and basic fibroblast growth factor 2, while other identified molecules in the eCSF could potentially be secreted by the SCO. Additionally, various transcription factors have been identified in the SCO. However, the precise mechanisms involved in the early SCO development are not fully understood. RESULTS: To uncover key molecular players and signaling pathways involved in the role of the SCO during brain development, we conducted a transcriptomic analysis comparing the embryonic chick SCO at HH23 and HH30 stages (4 and 7 days respectively). Additionally, a public transcriptomic data from HH30 entire chick brain was used to compare expression levels between SCO and whole brain transcriptome. These analyses revealed that, at both stages, the SCO differentially expresses several members of bone morphogenic proteins, Wnt and fibroblast growth factors families, diverse proteins involved in axonal guidance, neurogenic and differentiative molecules, cell receptors and transcription factors. The secretory pathway is particularly upregulated at stage HH30 while the proliferative pathway is increased at stage HH23. CONCLUSION: The results suggest that the SCO has the capacity to secrete several morphogenic molecules to the eCSF prior to the development of other structures, such as the choroid plexus.
Subject(s)
Brain , Gene Expression Profiling , Subcommissural Organ , Animals , Brain/metabolism , Brain/embryology , Brain/growth & development , Subcommissural Organ/metabolism , Subcommissural Organ/embryology , Chick Embryo , Gene Expression Regulation, DevelopmentalABSTRACT
The subcommissural organ (SCO) is a roof plate differentiation located in the caudal diencephalon under the posterior commissure (PC). A role for SCO and its secretory product, SCO-spondin, in the formation of the PC has been proposed. Here, we provide immunohistochemical evidence to suggest that SCO is anatomically divided in a bilateral region positive for SCO-spondin that surrounds a negative medial region. Remarkably, axons contacting the lateral region are highly fasciculated, in sharp contrast with the defasciculated axons of the medial region. In addition, lateral axon fascicles run toward the midline inside of tunnels limited by the basal prolongations of SCO cells and extracellular SCO-spondin. Our in vitro data in collagen gel matrices show that SCO-spondin induces axonal growth and fasciculation of pretectal explants. Together, our findings support the idea that SCO-spondin participates in the guidance and fasciculation of axons of the PC.
Subject(s)
Diencephalon/embryology , Subcommissural Organ/embryology , Animals , Chick Embryo , Electrophoresis, Polyacrylamide Gel , Immunohistochemistry , Integrin alpha6/metabolism , Intermediate Filament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Nestin , Vimentin/metabolismABSTRACT
The roof plate of the caudal diencephalon is formed by the posterior commissure (PC) and the underlying secretory ependyma, the subcommissural organ (SCO). The SCO is composed by radial glial cells bearing processes that cross the PC and attach to the meningeal basement membrane. Since early development, the SCO synthesizes SCO-spondin, a glycoprotein that shares similarities to axonal guidance proteins. In vitro, SCO-spondin promotes neuritic outgrowth through a mechanism mediated by integrin beta1. However, the secretion of SCO-spondin toward the extracellular matrix that surrounds the PC axons and the expression of integrins throughout PC development have not been addressed. Here we provide immunohistochemical evidence to suggest that during chick development SCO cells secrete SCO-spondin through their basal domain, where it is deposited into the extracellular matrix in close contact with axons of the PC that express integrin beta1. Our results suggest that SCO-spondin has a role in the development of the PC through its interaction with integrin beta1.
Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Diencephalon/embryology , Integrin beta1/metabolism , Subcommissural Organ/embryology , Subcommissural Organ/metabolism , Animals , Cell Adhesion Molecules, Neuronal/genetics , Cells, Cultured , Chick Embryo , Diencephalon/anatomy & histology , Diencephalon/metabolism , Gene Expression Regulation, Developmental , Integrin alpha6/genetics , Integrin alpha6/metabolism , Integrin beta1/genetics , Morphogenesis/physiology , Neural Cell Adhesion Molecules/genetics , Neural Cell Adhesion Molecules/metabolism , Subcommissural Organ/cytology , Vimentin/metabolismABSTRACT
The floor plate (FP) is a transient structure of the embryonic central nervous system (CNS) which plays a key role in development driving cell differentiation and patterning in the ventral neural tube. The fact that antisera raised against subcommissural organ (SCO) secretion immunostain FP cells and react with high-molecular-mass proteins in FP extracts, prompted us to investigate the expression of a SCO-related polypeptide in FP cells. RNA from bovine FP was analyzed by means of reverse transcriptase polymerase chain reaction (RT-PCR), using primers derived from the 3' end of SCO-spondin which revealed products of 233, 237, 519 and 783 bp. Sequence analysis of the 233 bp PCR fragment confirmed the identity between this FP product and SCO-spondin. FP-translation of the SCO-spondin encoded polypeptide(s) was demonstrated by Western blot analysis and immunocytochemistry, using antisera raised against (i) the glycoproteins secreted by the bovine SCO, and (ii) a peptide derived from the open reading frame of the major SCO secretory protein, SCO-spondin, respectively. Additional evidence pointing to active transcription and translation of a SCO-spondin related gene was obtained in long term FP organ cultures. On the basis of partial sequence homologies of SCO-spondin with protein domains implicated in cell-cell contacts, cell-matrix interactions and neurite outgrowth it is possible to suggest that the SCO-spondin secreted by the FP is involved in CNS development.
Subject(s)
Cell Adhesion Molecules, Neuronal/biosynthesis , Central Nervous System/embryology , Fetal Proteins/biosynthesis , Gene Expression Regulation, Developmental , RNA, Messenger/biosynthesis , Subcommissural Organ/metabolism , Animals , Base Sequence , Blotting, Southern , Blotting, Western , Cattle , Cell Adhesion Molecules, Neuronal/genetics , Female , Fetal Proteins/genetics , Immune Sera , Metencephalon/embryology , Metencephalon/metabolism , Molecular Sequence Data , Molecular Weight , Organ Culture Techniques , Organ Specificity , Protein Biosynthesis , Protein Structure, Tertiary , Repetitive Sequences, Amino Acid , Reverse Transcriptase Polymerase Chain Reaction , Subcommissural Organ/embryology , Subcommissural Organ/growth & developmentABSTRACT
The subcommissural organ (SCO) is a conserved brain gland present throughout the vertebrate phylum. During ontogeny, it is the first secretory structure of the brain to differentiate. In the human, the SCO can be morphologically distinguished in 7- to 8-week-old embryos. The SCO of 3- to 5-month-old fetuses is an active, secretory structure of the brain. However, already in 9-month-old fetuses, the regressive development of the SCO-parenchyma is evident. In 1-year-old infants, the height of the secretory ependymal cells is distinctly reduced and they are grouped in the form of islets that alternate with cuboid non-secretory ependyma. The regression of the SCO continues during childhood, so that at the ninth year of life the specific secretory parenchyma is confined to a few islets of secretory ependymal cells. The human fetal SCO shares the distinct ultrastructural features characterizing the SCO of all other species, namely, a well-developed rough endoplasmic reticulum, with many of its cisternae being dilated and filled with a filamentous material, several Golgi complexes, and secretory granules of variable size, shape, and electron density. The human fetal SCO does not immunoreact with any of the numerous polyclonal and monoclonal antibodies raised against RF-glycoproteins of animal origin. This and the absence of RF in the human led to the conclusion that the human SCO does not secrete RF-glycoproteins. Taking into account the ultrastructural, lectin-histochemical, and immunocytochemical findings, it can be concluded that the human SCO, and most likely the SCO of the anthropoid apes, secrete glyco- protein(s) with a protein backbone of unknown nature, and with a carbohydrate chain similar or identical to that of RF-glycoproteins secreted by the SCO of all other species. These, as yet unidentified, glycoprotein(s) do not aggregate but become soluble in the CSF. Evidence is presented that these CSF-soluble proteins secreted by the human SCO correspond to (1) a 45-kDa compound similar or identical to transthyretin and, (2) a protein of about 500 kDa.