Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.999
Filter
1.
Turk Neurosurg ; 34(4): 672-677, 2024.
Article in English | MEDLINE | ID: mdl-38874248

ABSTRACT

AIM: To investigate the impact of subthalamic deep brain stimulation (STN DBS) on apathy and the possible relationship between apathy, depression, and levodopa equivalent dosage (LED) in Parkinson's Disease (PD) patients. MATERIAL AND METHODS: A total of 26 patients have been evaluated via the Unified Parkinson Disease Rating Scale (UPDRS), Beck Depression Inventory (Beck D), and Beck Anxiety Inventory (Beck A), Montreal Cognitive Assessment (MoCA), Parkinson Disease Questionnaire (PDQ-39) just before and 6 months after DBS. RESULTS: Apathy scores (AES) showed a slight decrease from 54.00 ± 10.30 to 52.69 ± 8.88 without any statistical significance (p=0.502) after DBS therapy. No correlation was detected between the post-treatment changes in apathy and UPDRS scores, Beck D, Beck A. Although the direction of the correlation between changes in AES scores and LED values was negative, the results did not reach statistical significance. CONCLUSION: STN DBS therapy does not have a negative effect on apathy in PD Patients. Despite the satisfactory motor improvement, conservative dopaminergic dose reduction after surgery seems to be the main point to prevent apathy increase in PD patients after STN DBS.


Subject(s)
Apathy , Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Parkinson Disease/psychology , Apathy/physiology , Male , Female , Middle Aged , Aged , Depression/therapy , Depression/psychology , Treatment Outcome , Levodopa/therapeutic use , Levodopa/administration & dosage , Psychiatric Status Rating Scales
2.
Neuropharmacology ; 256: 110003, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38789078

ABSTRACT

Neuromodulation such as deep brain stimulation (DBS) is advancing as a clinical intervention in several neurological and neuropsychiatric disorders, including Parkinson's disease, dystonia, tremor, and obsessive-compulsive disorder (OCD) for which DBS is already applied to alleviate severely afflicted individuals of symptoms. Tourette syndrome and drug addiction are two additional disorders for which DBS is in trial or proposed as treatment. However, some major remaining obstacles prevent this intervention from reaching its full therapeutic potential. Side-effects have been reported, and not all DBS-treated individuals are relieved of their symptoms. One major target area for DBS electrodes is the subthalamic nucleus (STN) which plays important roles in motor, affective and associative functions, with impact on for example movement, motivation, impulsivity, compulsivity, as well as both reward and aversion. The multifunctionality of the STN is complex. Decoding the anatomical-functional organization of the STN could enhance strategic targeting in human patients. The STN is located in close proximity to zona incerta (ZI) and the para-subthalamic nucleus (pSTN). Together, the STN, pSTN and ZI form a highly heterogeneous and clinically important brain area. Rodent-based experimental studies, including opto- and chemogenetics as well as viral-genetic tract tracings, provide unique insight into complex neuronal circuitries and their impact on behavior with high spatial and temporal precision. This research field has advanced tremendously over the past few years. Here, we provide an inclusive review of current literature in the pre-clinical research fields centered around STN, pSTN and ZI in laboratory mice and rats; the three highly heterogeneous and enigmatic structures brought together in the context of relevance for treatment strategies. Specific emphasis is placed on methods of manipulation and behavioral impact.


Subject(s)
Deep Brain Stimulation , Mental Disorders , Subthalamic Nucleus , Zona Incerta , Subthalamic Nucleus/physiology , Animals , Deep Brain Stimulation/methods , Zona Incerta/physiology , Mental Disorders/therapy , Humans , Nervous System Diseases/therapy , Rodentia
3.
Cell Rep Med ; 5(6): 101566, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38759649

ABSTRACT

Levodopa-induced dyskinesia (LID) is an intractable motor complication arising in Parkinson's disease with the progression of disease and chronic treatment of levodopa. However, the specific cell assemblies mediating dyskinesia have not been fully elucidated. Here, we utilize the activity-dependent tool to identify three brain regions (globus pallidus external segment [GPe], parafascicular thalamic nucleus, and subthalamic nucleus) that specifically contain dyskinesia-activated ensembles. An intensity-dependent hyperactivity in the dyskinesia-activated subpopulation in GPe (GPeTRAPed in LID) is observed during dyskinesia. Optogenetic inhibition of GPeTRAPed in LID significantly ameliorates LID, whereas reactivation of GPeTRAPed in LID evokes dyskinetic behavior in the levodopa-off state. Simultaneous chemogenetic reactivation of GPeTRAPed in LID and another previously reported ensemble in striatum fully reproduces the dyskinesia induced by high-dose levodopa. Finally, we characterize GPeTRAPed in LID as a subset of prototypic neurons in GPe. These findings provide theoretical foundations for precision medication and modulation of LID in the future.


Subject(s)
Dyskinesia, Drug-Induced , Globus Pallidus , Levodopa , Levodopa/adverse effects , Globus Pallidus/drug effects , Globus Pallidus/physiopathology , Dyskinesia, Drug-Induced/physiopathology , Dyskinesia, Drug-Induced/pathology , Animals , Neurons/drug effects , Male , Optogenetics , Mice , Parkinson Disease/drug therapy , Humans , Subthalamic Nucleus/drug effects , Subthalamic Nucleus/physiopathology
4.
Expert Rev Neurother ; 24(7): 643-659, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38814926

ABSTRACT

INTRODUCTION: Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease (PD) motor symptoms that improves function and quality of life in appropriately selected patients. Because mild to moderate cognitive declines can follow DBS and impact quality of life in a minority of patients, an important consideration involves the cognitive deficit and its prediction. AREAS COVERED: The author briefly summarizes cognitive outcomes from DBS and reviews in more detail the risks/predictors of post-DBS cognitive dysfunction by mainly focusing on work published between 2018 and 2024 and using comprehensive neuropsychological (NP) evaluations. Most publications concern bilateral subthalamic nucleus (STN) DBS. Comment is offered on challenges and potential avenues forward. EXPERT OPINION: STN DBS is relatively safe cognitively but declines occur especially in verbal fluency and executive function/working memory. Numerous predictors and risk factors for cognitive outcomes have been identified (age and pre-operative neuropsychological status appear the most robust) but precise risk estimates cannot yet be confidently offered. Future studies should employ study center consortia, follow uniform reporting criteria (to be developed), capitalize on advances in stimulation, biomarkers, and artificial intelligence, and address DBS in diverse groups. Advances offer an avenue to investigate the amelioration of cognitive deficits in PD using neuromodulation.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Humans , Parkinson Disease/therapy , Parkinson Disease/complications , Parkinson Disease/psychology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/therapy , Subthalamic Nucleus , Neuropsychological Tests , Quality of Life , Risk Factors
5.
JAMA Neurol ; 81(6): 638-644, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38739377

ABSTRACT

Importance: Unilateral magnetic resonance imaging (MRI)-guided focused ultrasound subthalamotomy (FUS-STN) improves cardinal motor features among patients with asymmetrical Parkinson disease (PD). The feasibility of bilateral FUS-STN is as yet unexplored. Objective: To assess the safety and effectiveness of staged bilateral FUS-STN to treat PD. Design, Setting, and Participants: This prospective, open-label, case series study was conducted between June 18, 2019, and November 7, 2023, at HM-CINAC, Puerta del Sur University Hospital, Madrid, Spain, and included 6 patients with PD who had been treated with unilateral FUS-STN contralateral to their most affected body side and whose parkinsonism on the untreated side had progressed and was not optimally controlled with medication. Intervention: Staged bilateral FUS-STN. Main Outcomes and Measures: Primary outcomes were assessed 6 months after the second treatment and included safety (incidence and severity of adverse events after second treatment) and effectiveness in terms of motor change (measured with the Movement Disorders Society Unified Parkinson's Disease Rating Scale part III [MDS-UPDRS III]) in the off-medication state (ie, after at least 12 hours of antiparkinsonian drug withdrawal) compared with baseline (ie, prior to the first side ablation). Secondary outcomes included motor change in patients in the on-medication state (ie, after usual antiparkinsonian medication intake), motor complications (measured with the MDS-UPDRS IV), daily living activities (measured with the MDS-UPDRS I-II), quality of life (measured with the 39-item Parkinson's Disease Questionnaire), change in dopaminergic treatment, patient's global impression of change (measured with the Global Impression of Change [PGI-C] scale), and long-term (24-month) follow-up. Results: Of 45 patients previously treated with unilateral FUS-STN, 7 were lost to follow-up, and 4 were excluded due to adverse events. Of the remaining 34 patients, 6 (median age at first FUS-STN, 52.6 years [IQR, 49.0-57.3 years]; 3 women [50%]) experienced progression of parkinsonism on the untreated body side and were included. At the time of the first FUS-STN, patients' median duration of disease was 5.7 years (IQR, 4.7-7.3 years). The median time between procedures was 3.2 years (IQR, 1.9-3.5 years). After the second FUS-STN, 4 patients presented with contralateral choreic dyskinesia, which resolved by 3 months. Four patients developed speech disturbances, which gradually improved but remained in a mild form for 2 patients at 6 months; 1 patient experienced mild imbalance and dysphagia during the first week after treatment, which subsided by 3 months. No behavioral or cognitive disturbances were found on neuropsychological testing. For patients in the off-medication state, MDS-UPDRS III scores improved by 52.6% between baseline and 6 months after the second FUS-STN (from 37.5 [IQR, 34.2-40.0] to 20.5 [IQR, 8.7-24.0]; median difference, 23.0 [95% CI, 7.0-33.7]; P = .03). The second treated side improved by 64.3% (MDS-UPDRS III score, 17.0 [IQR, 16.0-19.5] prior to the second treatment vs 5.5 [IQR, 3.0-10.2]; median difference, 9.5 [95% CI, 3.2-17.7]; P = .02). After the second procedure, all self-reported PGI-C scores were positive. Conclusions: Findings of this pilot study suggest that staged bilateral FUS-STN was safe and effective for the treatment of PD, although mild but persistent speech-related adverse events were observed among a small number of patients.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/surgery , Parkinson Disease/therapy , Female , Male , Middle Aged , Aged , Prospective Studies , Subthalamic Nucleus/surgery , Subthalamic Nucleus/diagnostic imaging , Magnetic Resonance Imaging , Treatment Outcome
6.
Neurobiol Dis ; 197: 106529, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740349

ABSTRACT

Parkinson's disease (PD) is characterized by the disruption of repetitive, concurrent and sequential motor actions due to compromised timing-functions principally located in cortex-basal ganglia (BG) circuits. Increasing evidence suggests that motor impairments in untreated PD patients are linked to an excessive synchronization of cortex-BG activity at beta frequencies (13-30 Hz). Levodopa and subthalamic nucleus deep brain stimulation (STN-DBS) suppress pathological beta-band reverberation and improve the motor symptoms in PD. Yet a dynamic tuning of beta oscillations in BG-cortical loops is fundamental for movement-timing and synchronization, and the impact of PD therapies on sensorimotor functions relying on neural transmission in the beta frequency-range remains controversial. Here, we set out to determine the differential effects of network neuromodulation through dopaminergic medication (ON and OFF levodopa) and STN-DBS (ON-DBS, OFF-DBS) on tapping synchronization and accompanying cortical activities. To this end, we conducted a rhythmic finger-tapping study with high-density EEG-recordings in 12 PD patients before and after surgery for STN-DBS and in 12 healthy controls. STN-DBS significantly ameliorated tapping parameters as frequency, amplitude and synchrony to the given auditory rhythms. Aberrant neurophysiologic signatures of sensorimotor feedback in the beta-range were found in PD patients: their neural modulation was weaker, temporally sluggish and less distributed over the right cortex in comparison to controls. Levodopa and STN-DBS boosted the dynamics of beta-band modulation over the right hemisphere, hinting to an improved timing of movements relying on tactile feedback. The strength of the post-event beta rebound over the supplementary motor area correlated significantly with the tapping asynchrony in patients, thus indexing the sensorimotor match between the external auditory pacing signals and the performed taps. PD patients showed an excessive interhemispheric coherence in the beta-frequency range during the finger-tapping task, while under DBS-ON the cortico-cortical connectivity in the beta-band was normalized. Ultimately, therapeutic DBS significantly ameliorated the auditory-motor coupling of PD patients, enhancing the electrophysiological processing of sensorimotor feedback-information related to beta-band activity, and thus allowing a more precise cued-tapping performance.


Subject(s)
Beta Rhythm , Cortical Synchronization , Deep Brain Stimulation , Fingers , Levodopa , Motor Cortex , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Male , Female , Middle Aged , Deep Brain Stimulation/methods , Aged , Beta Rhythm/physiology , Motor Cortex/physiopathology , Motor Cortex/physiology , Cortical Synchronization/physiology , Levodopa/therapeutic use , Subthalamic Nucleus/physiopathology , Antiparkinson Agents/therapeutic use , Electroencephalography
7.
Proc Natl Acad Sci U S A ; 121(22): e2316149121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38768342

ABSTRACT

Speech impediments are a prominent yet understudied symptom of Parkinson's disease (PD). While the subthalamic nucleus (STN) is an established clinical target for treating motor symptoms, these interventions can lead to further worsening of speech. The interplay between dopaminergic medication, STN circuitry, and their downstream effects on speech in PD is not yet fully understood. Here, we investigate the effect of dopaminergic medication on STN circuitry and probe its association with speech and cognitive functions in PD patients. We found that changes in intrinsic functional connectivity of the STN were associated with alterations in speech functions in PD. Interestingly, this relationship was characterized by altered functional connectivity of the dorsolateral and ventromedial subdivisions of the STN with the language network. Crucially, medication-induced changes in functional connectivity between the STN's dorsolateral subdivision and key regions in the language network, including the left inferior frontal cortex and the left superior temporal gyrus, correlated with alterations on a standardized neuropsychological test requiring oral responses. This relation was not observed in the written version of the same test. Furthermore, changes in functional connectivity between STN and language regions predicted the medication's downstream effects on speech-related cognitive performance. These findings reveal a previously unidentified brain mechanism through which dopaminergic medication influences speech function in PD. Our study sheds light into the subcortical-cortical circuit mechanisms underlying impaired speech control in PD. The insights gained here could inform treatment strategies aimed at mitigating speech deficits in PD and enhancing the quality of life for affected individuals.


Subject(s)
Language , Parkinson Disease , Speech , Subthalamic Nucleus , Humans , Parkinson Disease/physiopathology , Parkinson Disease/drug therapy , Subthalamic Nucleus/physiopathology , Subthalamic Nucleus/drug effects , Male , Speech/physiology , Speech/drug effects , Female , Middle Aged , Aged , Magnetic Resonance Imaging , Dopamine/metabolism , Nerve Net/drug effects , Nerve Net/physiopathology , Cognition/drug effects , Dopamine Agents/pharmacology , Dopamine Agents/therapeutic use
8.
Mov Disord Clin Pract ; 11(6): 698-703, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698586

ABSTRACT

BACKGROUND: Blood pressure control in Parkinson's disease (PD) under subthalamic deep brain stimulation (STN-DBS) is influenced by several intertwined aspects, including autonomic failure and levodopa treatment. OBJECTIVE: To evaluate the effect of chronic STN-DBS, levodopa, and their combination on cardiovascular autonomic functions in PD. METHODS: We performed cardiovascular reflex tests (CRTs) before and 6-months after STN-DBS surgery in 20 PD patients (pre-DBS vs. post-DBS). CRTs were executed without and with medication (med-OFF vs. med-ON). RESULTS: CRT results and occurrence of neurogenic orthostatic hypotension (OH) did not differ between pre- and post-DBS studies in med-OFF condition. After levodopa intake, the BP decrease during HUTT was significantly greater compared to med-OFF, both at pre-DBS and post-DBS evaluation. Levodopa-induced OH was documented in 25% and 5% of patients in pre-DBS/med-ON and post-DBS/med-ON study. CONCLUSION: Chronic stimulation did not influence cardiovascular responses, while levodopa exerts a relevant hypotensive effect. The proportion of patients presenting levodopa-induced OH decreases after STN-DBS surgery.


Subject(s)
Antiparkinson Agents , Autonomic Nervous System , Deep Brain Stimulation , Levodopa , Parkinson Disease , Humans , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Deep Brain Stimulation/methods , Male , Female , Middle Aged , Aged , Levodopa/therapeutic use , Levodopa/adverse effects , Levodopa/administration & dosage , Autonomic Nervous System/physiopathology , Autonomic Nervous System/drug effects , Antiparkinson Agents/therapeutic use , Antiparkinson Agents/adverse effects , Blood Pressure/physiology , Blood Pressure/drug effects , Subthalamic Nucleus/physiopathology , Hypotension, Orthostatic/therapy , Hypotension, Orthostatic/etiology , Hypotension, Orthostatic/physiopathology
9.
Neuroimage Clin ; 42: 103617, 2024.
Article in English | MEDLINE | ID: mdl-38749145

ABSTRACT

BACKGROUND AND OBJECTIVES: The intricate relationship between deep brain stimulation (DBS) in Parkinson's disease (PD) and cognitive impairment has lately garnered substantial attention. The presented study evaluated pre-DBS structural and microstructural cerebral patterns as possible predictors of future cognitive decline in PD DBS patients. METHODS: Pre-DBS MRI data in 72 PD patients were combined with neuropsychological examinations and follow-up for an average of 2.3 years after DBS implantation procedure using a screening cognitive test validated for diagnosis of mild cognitive impairment in PD in a Czech population - Dementia Rating Scale 2. RESULTS: PD patients who would exhibit post-DBS cognitive decline were found to have, already at the pre-DBS stage, significantly lower cortical thickness and lower microstructural complexity than cognitively stable PD patients. Differences in the regions directly related to cognition as bilateral parietal, insular and cingulate cortices, but also occipital and sensorimotor cortex were detected. Furthermore, hippocampi, putamina, cerebellum and upper brainstem were implicated as well, all despite the absence of pre-DBS differences in cognitive performance and in the position of DBS leads or stimulation parameters between the two groups. CONCLUSIONS: Our findings indicate that the cognitive decline in the presented PD cohort was not attributable primarily to DBS of the subthalamic nucleus but was associated with a clinically silent structural and microstructural predisposition to future cognitive deterioration present already before the DBS system implantation.


Subject(s)
Cognitive Dysfunction , Deep Brain Stimulation , Magnetic Resonance Imaging , Parkinson Disease , Subthalamic Nucleus , Humans , Deep Brain Stimulation/adverse effects , Parkinson Disease/therapy , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Male , Female , Subthalamic Nucleus/diagnostic imaging , Middle Aged , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/pathology , Aged , Magnetic Resonance Imaging/methods , Neuropsychological Tests
10.
Physiol Rep ; 12(9): e16001, 2024 May.
Article in English | MEDLINE | ID: mdl-38697943

ABSTRACT

Local field potential (LFP) oscillations in the beta band (13-30 Hz) in the subthalamic nucleus (STN) of Parkinson's disease patients have been implicated in disease severity and treatment response. The relationship between single-neuron activity in the STN and regional beta power changes remains unclear. We used spike-triggered average (STA) to assess beta synchronization in STN. Beta power and STA magnitude at the beta frequency range were compared in three conditions: STN versus other subcortical structures, dorsal versus ventral STN, and high versus low beta power STN recordings. Magnitude of STA-LFP was greater within the STN compared to extra-STN structures along the trajectory path, despite no difference in percentage of the total power. Within the STN, there was a higher percent beta power in dorsal compared to ventral STN but no difference in STA-LFP magnitude. Further refining the comparison to high versus low beta peak power recordings inside the STN to evaluate if single-unit activity synchronized more strongly with beta band activity in areas of high beta power resulted in a significantly higher STA magnitude for areas of high beta power. Overall, these results suggest that STN single units strongly synchronize to beta activity, particularly units in areas of high beta power.


Subject(s)
Beta Rhythm , Parkinson Disease , Subthalamic Nucleus , Subthalamic Nucleus/physiopathology , Parkinson Disease/physiopathology , Humans , Male , Beta Rhythm/physiology , Middle Aged , Female , Aged , Action Potentials/physiology , Neurons/physiology , Deep Brain Stimulation/methods
11.
Nat Commun ; 15(1): 4602, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816390

ABSTRACT

Circadian rhythms have been shown in the subthalamic nucleus (STN) in Parkinson's disease (PD), but only a few studies have focused on the globus pallidus internus (GPi). This retrospective study investigates GPi circadian rhythms in a large cohort of subjects with PD (130 recordings from 93 subjects) with GPi activity chronically recorded in their home environment. We found a significant change in GPi activity between daytime and nighttime in most subjects (82.4%), with a reduction in GPi activity at nighttime in 56.2% of recordings and an increase in activity in 26.2%. GPi activity in higher frequency bands ( > 20 Hz) was more likely to decrease at night and in patients taking extended-release levodopa medication. Our results suggest that circadian fluctuations in the GPi vary across individuals and that increased power at night might be due to the reemergence of pathological neural activity. These findings should be considered to ensure successful implementation of adaptive neurostimulation paradigms in the real-world.


Subject(s)
Circadian Rhythm , Deep Brain Stimulation , Globus Pallidus , Levodopa , Parkinson Disease , Humans , Globus Pallidus/physiopathology , Parkinson Disease/physiopathology , Circadian Rhythm/physiology , Male , Female , Middle Aged , Retrospective Studies , Aged , Levodopa/therapeutic use , Subthalamic Nucleus/physiopathology
12.
J Neurosci Methods ; 407: 110156, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703796

ABSTRACT

BACKGROUND: DBS entails the insertion of an electrode into the patient brain, enabling Subthalamic nucleus (STN) stimulation. Accurate delineation of STN borders is a critical but time-consuming task, traditionally reliant on the neurosurgeon experience in deciphering the intricacies of microelectrode recording (MER). While clinical outcomes of MER have been satisfactory, they involve certain risks to patient safety. Recently, there has been a growing interest in exploring the potential of local field potentials (LFP) due to their correlation with the STN motor territory. METHOD: A novel STN detection system, integrating LFP and wavelet packet transform (WPT) with stacking ensemble learning, is developed. Initial steps involve the inclusion of soft thresholding to increase robustness to LFP variability. Subsequently, non-linear WPT features are extracted. Finally, a unique ensemble model, comprising a dual-layer structure, is developed for STN localization. We harnessed the capabilities of support vector machine, Decision tree and k-Nearest Neighbor in conjunction with long short-term memory (LSTM) network. LSTM is pivotal for assigning adequate weights to every base model. RESULTS: Results reveal that the proposed model achieved a remarkable accuracy and F1-score of 89.49% and 91.63%. COMPARISON WITH EXISTING METHODS: Ensemble model demonstrated superior performance when compared to standalone base models and existing meta techniques. CONCLUSION: This framework is envisioned to enhance the efficiency of DBS surgery and reduce the reliance on clinician experience for precise STN detection. This achievement is strategically significant to serve as an invaluable tool for refining the electrode trajectory, potentially replacing the current methodology based on MER.


Subject(s)
Deep Brain Stimulation , Subthalamic Nucleus , Wavelet Analysis , Subthalamic Nucleus/physiology , Humans , Deep Brain Stimulation/methods , Deep Brain Stimulation/instrumentation , Support Vector Machine , Machine Learning , Signal Processing, Computer-Assisted , Microelectrodes
14.
World Neurosurg ; 187: e148-e155, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636635

ABSTRACT

OBJECTIVE: To investigate the involvement of the visual cortex in improving freezing of gait (FoG) after subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) patients using whole-brain seed-based functional connectivity. METHODS: A total of 66 PD patients with FoG who underwent bilateral STN-DBS were included in our study. Patients were divided into a FoG responder group and an FoG nonresponder group according to whether FoG improved 1 year after DBS. We compared the differences in clinical characteristics, brain structural imaging, and seed-based functional connectivity between the 2 groups. The locations of active contacts were further analyzed. RESULTS: All PD patients benefited from STN-DBS. No significant differences in the baseline characteristics or brain structures were found between the 2 groups. Seed-based functional connectivity analysis revealed that better connectivity in bilateral primary visual areas was associated with better clinical improvement in FoG (P < 0.05 familywise error corrected). Further analysis revealed that this disparity was associated with the location of the active contacts within the rostral region of the sensorimotor subregion in the FoG responder group, in contrast to the findings in the FoG nonresponder group. CONCLUSIONS: This study suggested that DBS in the rostral region of the STN sensorimotor subregion may alleviate FoG by strengthening functional connectivity in primary visual areas, which has significant implications for guiding surgical strategies for FoG in the future.


Subject(s)
Deep Brain Stimulation , Gait Disorders, Neurologic , Parkinson Disease , Subthalamic Nucleus , Visual Pathways , Humans , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Parkinson Disease/complications , Parkinson Disease/physiopathology , Female , Male , Middle Aged , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/therapy , Gait Disorders, Neurologic/physiopathology , Aged , Subthalamic Nucleus/surgery , Visual Pathways/diagnostic imaging , Treatment Outcome , Visual Cortex/diagnostic imaging , Visual Cortex/physiopathology , Magnetic Resonance Imaging
15.
Prog Neurobiol ; 236: 102613, 2024 May.
Article in English | MEDLINE | ID: mdl-38631480

ABSTRACT

While medial frontal cortex (MFC) and subthalamic nucleus (STN) have been implicated in conflict monitoring and action inhibition, respectively, an integrated understanding of the spatiotemporal and spectral interaction of these nodes and how they interact with motor cortex (M1) to definitively modify motor behavior during conflict is lacking. We recorded neural signals intracranially across presupplementary motor area (preSMA), M1, STN, and globus pallidus internus (GPi), during a flanker task in 20 patients undergoing deep brain stimulation implantation surgery for Parkinson disease or dystonia. Conflict is associated with sequential and causal increases in local theta power from preSMA to STN to M1 with movement delays directly correlated with increased STN theta power, indicating preSMA is the MFC locus that monitors conflict and signals STN to implement a 'break.' Transmission of theta from STN-to-M1 subsequently results in a transient increase in M1-to-GPi beta flow immediately prior to movement, modulating the motor network to actuate the conflict-related action inhibition (i.e., delayed response). Action regulation during conflict relies on two distinct circuits, the conflict-related theta and movement-related beta networks, that are separated spatially, spectrally, and temporally, but which interact dynamically to mediate motor performance, highlighting complex parallel yet interacting networks regulating movement.


Subject(s)
Conflict, Psychological , Deep Brain Stimulation , Motor Cortex , Parkinson Disease , Prefrontal Cortex , Subthalamic Nucleus , Theta Rhythm , Humans , Theta Rhythm/physiology , Subthalamic Nucleus/physiology , Male , Female , Middle Aged , Adult , Prefrontal Cortex/physiology , Motor Cortex/physiology , Parkinson Disease/physiopathology , Aged , Neural Pathways/physiology , Dystonia/physiopathology
16.
Neurobiol Dis ; 197: 106519, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38685358

ABSTRACT

Neural oscillations are critical to understanding the synchronisation of neural activities and their relevance to neurological disorders. For instance, the amplitude of beta oscillations in the subthalamic nucleus has gained extensive attention, as it has been found to correlate with medication status and the therapeutic effects of continuous deep brain stimulation in people with Parkinson's disease. However, the frequency stability of subthalamic nucleus beta oscillations, which has been suggested to be associated with dopaminergic information in brain states, has not been well explored. Moreover, the administration of medicine can have inverse effects on changes in frequency and amplitude. In this study, we proposed a method based on the stationary wavelet transform to quantify the amplitude and frequency stability of subthalamic nucleus beta oscillations and evaluated the method using simulation and real data for Parkinson's disease patients. The results suggest that the amplitude and frequency stability quantification has enhanced sensitivity in distinguishing pathological conditions in Parkinson's disease patients. Our quantification shows the benefit of combining frequency stability information with amplitude and provides a new potential feedback signal for adaptive deep brain stimulation.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Parkinson Disease/drug therapy , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Humans , Deep Brain Stimulation/methods , Male , Female , Middle Aged , Aged , Beta Rhythm/physiology , Beta Rhythm/drug effects , Antiparkinson Agents/therapeutic use , Wavelet Analysis
17.
Neuroimage Clin ; 42: 103607, 2024.
Article in English | MEDLINE | ID: mdl-38643635

ABSTRACT

BACKGROUND: Nigrostriatal microstructural integrity has been suggested as a biomarker for levodopa response in Parkinson's disease (PD), which is a strong predictor for motor response to deep brain stimulation (DBS) of the subthalamic nucleus (STN). This study aimed to explore the impact of microstructural integrity of the substantia nigra (SN), STN, and putamen on motor response to STN-DBS using diffusion microstructure imaging. METHODS: Data was collected from 23 PD patients (mean age 63 ± 7, 6 females) who underwent STN-DBS, had preoperative 3 T diffusion magnetic resonance imaging including multishell diffusion-weighted MRI with b-values of 1000 and 2000 s/mm2 and records of motor improvement available. RESULTS: The association between a poorer DBS-response and increased free interstitial fluid showed notable effect sizes (rho > |0.4|) in SN and STN, but not in putamen. However, this did not reach significance after Bonferroni correction and controlling for sex and age. CONCLUSION: Microstructural integrity of SN and STN are potential biomarkers for the prediction of therapy efficacy following STN-DBS, but further studies are required to confirm these associations.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Substantia Nigra , Subthalamic Nucleus , Humans , Deep Brain Stimulation/methods , Subthalamic Nucleus/diagnostic imaging , Subthalamic Nucleus/pathology , Female , Male , Parkinson Disease/therapy , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Middle Aged , Substantia Nigra/diagnostic imaging , Substantia Nigra/pathology , Aged , Diffusion Magnetic Resonance Imaging/methods , Treatment Outcome
18.
Neurotherapeutics ; 21(3): e00348, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38579455

ABSTRACT

Deep Brain Stimulation (DBS) has become a pivotal therapeutic approach for Parkinson's Disease (PD) and various neuropsychiatric conditions, impacting over 200,000 patients. Despite its widespread application, the intricate mechanisms behind DBS remain a subject of ongoing investigation. This article provides an overview of the current knowledge surrounding the local, circuit, and neurobiochemical effects of DBS, focusing on the subthalamic nucleus (STN) as a key target in PD management. The local effects of DBS, once thought to mimic a reversible lesion, now reveal a more nuanced interplay with myelinated axons, neurotransmitter release, and the surrounding microenvironment. Circuit effects illuminate the modulation of oscillatory activities within the basal ganglia and emphasize communication between the STN and the primary motor cortex. Neurobiochemical effects, encompassing changes in dopamine levels and epigenetic modifications, add further complexity to the DBS landscape. Finally, within the context of understanding the mechanisms of DBS in PD, the article highlights the controversial question of whether DBS exerts disease-modifying effects in PD. While preclinical evidence suggests neuroprotective potential, clinical trials such as EARLYSTIM face challenges in assessing long-term disease modification due to enrollment timing and methodology limitations. The discussion underscores the need for robust biomarkers and large-scale prospective trials to conclusively determine DBS's potential as a disease-modifying therapy in PD.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Subthalamic Nucleus/physiology , Animals , Neurosciences/methods
19.
J Clin Neurosci ; 124: 81-86, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38669906

ABSTRACT

BACKGROUND: Delayed-onset seizures after deep brain stimulation (DBS) surgery were seldom reported. This study summarized the clinical characteristics of delayed-onset seizures after subthalamic nucleus (STN) DBS surgery for Parkinson's disease (PD) and analyzed risk factors. METHODS: A single-center retrospective study containing consecutive STN-DBS PD patients from 2006 to 2021 was performed. Seizures occurred during the DBS surgery or within one month after DBS surgery were identified based on routine clinical records. Patients with postoperative magnetic resonance imaging (MRI) were included to further analyze the risk factors for postoperative seizures with univariate and multivariate statistical methods. RESULTS: 341 consecutive PD patients treated with bilateral STN-DBS surgery wereidentified, and five patients experienced seizures after DBS surgery with an incidence of 1.47 %. All seizures of the five cases were characterized as delayed onset with average 12 days post-operatively. All seizures presented as generalized tonic-clonic seizures and didn't recur after the first onset. In those seizures cases, peri-electrode edema was found in both hemispheres without hemorrhage and infarction. The average diameter of peri-electrode edema of patients with seizures was larger than those without seizures (3.15 ± 1.00 cm vs 1.57 ± 1.02 cm, p = 0.005). Multivariate risk factor analysis indicated that seizures were only associated with the diameter of peri-electrode edema (OR 4.144, 95 % CI 1.269-13.530, p = 0.019). CONCLUSIONS: Delayed-onset seizures after STN-DBS surgery in PD patients were uncommon with an incidence of 1.47 % in this study. The seizures were transient and self-limiting, with no developing into chronic epilepsy. Peri-electrode edema was a risk factor for delayed-onset seizures after DBS surgery. Patients with an average peri-electrode edema diameter > 2.70 cm had a higher risk to develop seizures.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Postoperative Complications , Seizures , Subthalamic Nucleus , Humans , Deep Brain Stimulation/adverse effects , Parkinson Disease/therapy , Parkinson Disease/surgery , Male , Female , Middle Aged , Subthalamic Nucleus/surgery , Retrospective Studies , Seizures/etiology , Seizures/epidemiology , Aged , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Risk Factors , Magnetic Resonance Imaging
20.
J Integr Neurosci ; 23(4): 84, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38682230

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established treatment for the motor symptoms of Parkinson's disease (PD). While PD is primarily characterized by motor symptoms such as tremor, rigidity, and bradykinesia, it also involves a range of non-motor symptoms, and anxiety is one of the most common. The relationship between PD and anxiety is complex and can be a result of both pathological neural changes and the psychological and emotional impacts of living with a chronic progressive condition. Managing anxiety in PD is critical for improving the patients' quality of life. However, patients undergoing STN DBS can occasionally experience increased anxiety. METHODS: This study investigates changes in risk-avoidant behavior following STN DBS in a pre-motor animal model of PD under chronic and acute unilateral high frequency stimulation. RESULTS: No significant changes in risk-avoidant behaviors were observed in rats who underwent STN DBS compared with sham stimulation controls. Chronic stimulation prevented sensitization in the elevated zero maze. CONCLUSIONS: These results suggest that unilateral stimulation of the STN may have minimal effects on risk-avoidant behaviors in PD. However, additional research is required to fully understand the mechanisms responsible for changes in anxiety during STN DBS for PD.


Subject(s)
Deep Brain Stimulation , Disease Models, Animal , Oxidopamine , Subthalamic Nucleus , Animals , Oxidopamine/pharmacology , Male , Behavior, Animal/physiology , Parkinsonian Disorders/therapy , Parkinsonian Disorders/physiopathology , Anxiety/etiology , Anxiety/physiopathology , Rats , Rats, Sprague-Dawley , Avoidance Learning/physiology , Parkinson Disease/therapy , Parkinson Disease/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...