Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.834
Filter
1.
J Agric Food Chem ; 72(25): 14241-14254, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38864682

ABSTRACT

Nattokinase is a nutrient in healthy food natto that has the function of preventing and treating blood thrombus. However, its low thermostability and fibrinolytic activity limit its application in food and pharmaceuticals. In this study, we used bioinformatics analysis to identify two loops (loop10 and loop12) in the flexible region of nattokinase rAprY. Using this basis, we screened the G131S-S161T variant, which showed a 2.38-fold increase in half-life at 55 °C, and the M3 variant, which showed a 2.01-fold increase in activity, by using a thermostability prediction algorithm. Bioinformatics analysis revealed that the enhanced thermostability of the G131S-S161T variant was due to the increased rigidity and structural shrinkage of the overall structure. Additionally, the increased rigidity of the local region surrounding the active center and its mutated sites helps maintain its normal conformation in high-temperature environments. The increased catalytic activity of the M3 variant may be due to its more efficient substrate binding mechanism. We investigated strategies to improve the thermostability and fibrinolytic activity of nattokinase, and the resulting variants show promise for industrial production and application.


Subject(s)
Enzyme Stability , Hot Temperature , Subtilisins , Subtilisins/chemistry , Subtilisins/genetics , Subtilisins/metabolism , Kinetics , Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Bacillus subtilis/chemistry , Computational Biology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain
2.
Food Res Int ; 188: 114499, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823844

ABSTRACT

The aim of this study was to evaluate the effect of the enzymatic hydrolysis, performed using Alcalase and Protamex enzymes, on the technological functionalities and the antioxidant capacity of whey protein hydrolysates (WPHs) to identify the conditions allowing to obtain target functionality/ies. Samples were characterized for hydrolysis degree (DH), molecular weight distribution, structural properties, and food-related functionalities. Free sulfhydryl groups and surface hydrophobicity significantly decreased with the increase in DH, regardless of the used enzyme. The foaming and antioxidant properties of Alcalase WPHs were higher as compared to those of WPI, reaching the maximum value at DH = 18-20 %, while higher DH resulted in impaired functionality. Gelling properties were guaranteed when WPI was hydrolysed by Protamex at DH < 15 % while foaming and antioxidant abilities were fostered at 15 < DH < 21 %. These results were well correlated with MW distribution and were rationalized into a road map which represents a useful tool in the selection of proper hydrolysis conditions (time, DH, enzyme type) to obtain WPHs with tailored functionalities. Research outcomes highlighted the possibility to drive protein hydrolysis to optimize the desired functionality/ies.


Subject(s)
Antioxidants , Hydrophobic and Hydrophilic Interactions , Protein Hydrolysates , Whey Proteins , Antioxidants/chemistry , Whey Proteins/chemistry , Hydrolysis , Protein Hydrolysates/chemistry , Subtilisins/metabolism , Subtilisins/chemistry , Molecular Weight , Subtilisin/metabolism , Subtilisin/chemistry
3.
Microb Biotechnol ; 17(6): e14473, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877615

ABSTRACT

Poly-L-lactic acid (PLLA) is currently the most abundant bioplastic; however, limited environmental biodegradability and few recycling options diminish its value as a biodegradable commodity. Enzymatic recycling is one strategy for ensuring circularity of PLLA, but this approach requires a thorough understanding of enzymatic mechanisms and protein engineering strategies to enhance activity. In this study, we engineer PLLA depolymerizing subtilisin enzymes originating from Bacillus species to elucidate the molecular mechanisms dictating their PLLA depolymerization activity and to improve their function. The surface-associated amino acids of two closely related subtilisin homologues originating from Bacillus subtilis (BsAprE) and Bacillus pumilus (BpAprE) were compared, as they were previously engineered to have nearly identical active sites, but still varied greatly in PLLA depolymerizing activity. Further analysis identified several surface-associated amino acids in BpAprE that lead to enhanced PLLA depolymerization activity when engineered into BsAprE. In silico protein modelling demonstrated increased enzyme surface hydrophobicity in engineered BsAprE variants and revealed a structural motif favoured for PLLA depolymerization. Experimental evidence suggests that increases in activity are associated with enhanced polymer binding as opposed to substrate specificity. These data highlight enzyme adsorption as a key factor in PLLA depolymerization by subtilisins.


Subject(s)
Polyesters , Polyesters/metabolism , Polyesters/chemistry , Adsorption , Polymerization , Bacillus/enzymology , Bacillus/genetics , Subtilisins/chemistry , Subtilisins/genetics , Subtilisins/metabolism , Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Bacillus subtilis/chemistry , Models, Molecular , Protein Engineering , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism
4.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928451

ABSTRACT

Phytaspases differ from other members of the plant subtilisin-like protease family by having rare aspartate cleavage specificity and unusual localization dynamics. Phytaspases are secreted from healthy plant cells but are re-internalized upon perception of death-inducing stresses. Although proteolytic activity is required for the secretion of plant subtilases, its requirement for the retrograde transportation of phytaspases is currently unknown. To address this issue, we employed an approach to complement in trans the externalization of a prodomain-less form of Nicotiana tabacum phytaspase (NtPhyt) with the free prodomain in Nicotiana benthamiana leaf cells. Using this approach, the generation of the proteolytically active NtPhyt and its transport to the extracellular space at a level comparable to that of the native NtPhyt (synthesized as a canonical prodomain-containing precursor protein) were achieved. The application of this methodology to NtPhyt with a mutated catalytic Ser537 residue resulted in the secretion of the inactive, although processed (prodomain-free), protein as well. Notably, the externalized NtPhyt Ser537Ala mutant was still capable of retrograde transportation into plant cells upon the induction of oxidative stress. Our data thus indicate that the proteolytic activity of NtPhyt is dispensable for stress-induced retrograde transport of the enzyme.


Subject(s)
Nicotiana , Plant Proteins , Proteolysis , Nicotiana/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Oxidative Stress , Stress, Physiological , Subtilisins/metabolism , Subtilisins/genetics , Plant Leaves/metabolism , Protein Transport
5.
Int J Biol Macromol ; 271(Pt 1): 132398, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754670

ABSTRACT

Nattokinase (NK) is found in fermented foods and has high fibrinolytic activity, which makes it promising for biological applications. In this study, a mutant strain (Bacillus subtilis ZT-S1, 5529.56 ± 183.59 U/mL) with high NK-producing activity was obtained using 12C6+ heavy ion beam mutagenesis for the first time. The surface morphology of B. subtilis is also altered by changes in functional groups caused by heavy ion beams. Furthermore, B. subtilis ZT-S1 required more carbon and nitrogen sources and reached stabilization phase later. Comparative genome analysis revealed that most of the mutant implicated genes (oppA, appA, kinA, spoIIP) were related to spore formation. And the affected rpoA is related to the synthesis of the NK-coding gene aprE. In addition, the B. subtilis ZT-S1 obtained by mutagenesis had good genetic stability. This study further explores the factors affecting NK activity and provides a promising microbial resource for NK production in commercial applications.


Subject(s)
Bacillus subtilis , Mutation , Subtilisins , Bacillus subtilis/genetics , Subtilisins/genetics , Subtilisins/metabolism , Carbon/metabolism , Phenotype , Mutagenesis/radiation effects , Heavy Ions , Genomics/methods , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genome, Bacterial
6.
Arch Biochem Biophys ; 757: 110026, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718957

ABSTRACT

Heterologous expression of nattokinase, a potent fibrinolytic enzyme, has been successfully carried out in various microorganisms. However, the successful expression of this enzyme as a soluble protein was not achieved in E. coli. This study delves into the expression of nattokinase in E. coli as a soluble protein followed by its biochemical characterization and functional analysis for fibrinolytic activity. E. coli BL21C41 and pET32a vector host strain with pGro7 protein chaperone induced with IPTG at 16 °C 180 rpm for 16 h enabled the production of recombinant nattokinase in soluble fraction. Enzymatic assays demonstrated its protease activity, while characterization revealed optimal catalytic conditions at 37 °C and pH 8.0, with remarkable stability over a broad pH range (6.0-10.0) and up to 50 °C. The kinetic constants were determined as follows: Km = 25.83 ± 3.43 µM, Vmax = 62.91 ± 1.68 µM/s, kcat = 38.45 ± 1.06 s-1, and kcat/Km = 1.49 × 106 M-1 s-1. In addition, the fibrinolytic activity of NK, quantified by the fibrin plate hydrolysis assay was 1038 ± 156 U/ml, with a corresponding specific activity of 1730 ± 260 U/mg and the assessment of clot lysis time on an artificial clot (1 mg) was found to be 51.5 ± 2.5 min unveiling nattokinase's fibrinolytic potential. Through molecular docking, a substantial binding energy of -6.46 kcal/mol was observed between nattokinase and fibrin, indicative of a high binding affinity. Key fibrin binding residues, including Ser300, Leu302, and Asp303, were identified and confirmed. These mutants affected specifically the fibrin binding and not the proteolytic activity of NK. This comprehensive study provides crucial conditions for the expression of protein in soluble form in E. coli and biochemical properties paving the way for future research and potential applications in medicine and biotechnology.


Subject(s)
Escherichia coli , Fibrin , Recombinant Proteins , Subtilisins , Escherichia coli/genetics , Escherichia coli/metabolism , Fibrin/metabolism , Fibrin/chemistry , Subtilisins/metabolism , Subtilisins/genetics , Subtilisins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Kinetics , Fibrinolysis , Hydrogen-Ion Concentration , Protein Binding , Gene Expression
7.
J Agric Food Chem ; 72(22): 12738-12751, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38788151

ABSTRACT

Phytosterol (PS) is a steroid, and its bioavailability can be enhanced by interacting with protein in the C-24 hydroxyl group. The interaction between sterols and amino acid residues in proteins can be enhanced by enzymatic hydrolysis. Phytosterol and whey insulation hydrolysates (WPH1-4) fabricated by the Alcalase enzyme at different enzymatic hydrolysis times were selected as delivery systems to simulate sterol C-24 hydroxyl group interaction with protein. Increasing hydrolysis time can promote the production of ß-Lg, which raises the ratio of ß-turn in the secondary structure and promotes the formation of interaction between WPH and PS. The correlation coefficient between hydrogen bonds and encapsulation efficiency (EE) and bioaccessibility is 0.91 and 0.88 (P < 0.05), respectively, indicating that hydrogen bonds of two components significantly influenced the combination by concealing the hydrophobic amino acids and some residues, which improved PS EE and bioavailability by 3.03 and 2.84 times after PS was combined with the WPI hydrolysate. These findings are expected to enhance the absorption of PS and other macromolecules by protein enzymatic hydrolysis to broaden their applications for food.


Subject(s)
Digestion , Phytosterols , Protein Hydrolysates , Whey Proteins , Phytosterols/chemistry , Phytosterols/metabolism , Whey Proteins/chemistry , Whey Proteins/metabolism , Protein Hydrolysates/chemistry , Protein Hydrolysates/metabolism , Hydrolysis , Biological Availability , Hydrogen Bonding , Subtilisins/chemistry , Subtilisins/metabolism , Humans , Animals
8.
Food Chem ; 452: 139550, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38735108

ABSTRACT

A green strategy employing water as solvent has been adopted to obtain protein hydrolysates from fish meal (FM), its water-soluble fraction (WSP), and its non-water-soluble fraction (NSP). The techno-functional properties of the hydrolysates have been investigated and compared to hydrolysates obtained with Alcalase®. In general, SWH hydrolysates presented higher content of free amino acids and higher degree of hydrolysis, which reflected on the molecular size distribution. However, Alcalase® hydrolysates presented better solubility (from 74 ± 4% for NSP at pH = 2 up to 99 ± 1% for WSP at pH = 4-7). According to fluorescence experiments, FM and NSP hydrolysates showed the highest surface hydrophobicity, which has been related to better emulsifying properties and higher emulsion stability. The emulsions stabilized with 2%wt. of SWH-treated NSP showed the smallest particle sizes, with D[4,3] = 155 nm at day 0, and good stability, with D[4,3] = 220 nm at day 7, proving that water fractionation followed by SWH treatment is a good method to improve the techno-functional properties of the hydrolysates.


Subject(s)
Fish Products , Hydrophobic and Hydrophilic Interactions , Particle Size , Protein Hydrolysates , Hydrolysis , Protein Hydrolysates/chemistry , Animals , Fish Products/analysis , Fishes , Solubility , Emulsions/chemistry , Green Chemistry Technology , Chemical Fractionation , Amino Acids/chemistry , Subtilisins/chemistry , Subtilisins/metabolism
9.
Nat Commun ; 15(1): 3762, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704378

ABSTRACT

Plants initiate specific defense responses by recognizing conserved epitope peptides within the flagellin proteins derived from bacteria. Proteolytic cleavage of epitope peptides from flagellin by plant apoplastic proteases is thought to be crucial for the perception of the epitope by the plant receptor. However, the identity of the plant proteases involved in this process remains unknown. Here, we establish an efficient identification system for the target proteases in Arabidopsis apoplastic fluid; the method employs native two-dimensional electrophoresis followed by an in-gel proteolytic assay using a fluorescence-quenching peptide substrate. We designed a substrate to specifically detect proteolytic activity at the C-terminus of the flg22 epitope in flagellin and identified two plant subtilases, SBT5.2 and SBT1.7, as specific proteases responsible for the C-terminal cleavage of flg22. In the apoplastic fluid of Arabidopsis mutant plants deficient in these two proteases, we observe a decrease in the C-terminal cleavage of the flg22 domain from flagellin, leading to a decrease in the efficiency of flg22 epitope liberation. Consequently, defensive reactive oxygen species (ROS) production is delayed in sbt5.2 sbt1.7 double-mutant leaf disks compared to wild type following flagellin exposure.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Epitopes , Flagellin , Reactive Oxygen Species , Subtilisins , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/immunology , Epitopes/immunology , Epitopes/metabolism , Flagellin/metabolism , Flagellin/immunology , Mutation , Proteolysis , Reactive Oxygen Species/metabolism , Subtilisins/metabolism , Subtilisins/genetics
10.
Int J Biol Macromol ; 268(Pt 2): 131779, 2024 May.
Article in English | MEDLINE | ID: mdl-38679250

ABSTRACT

Natto contains a potent fibrinolytic enzyme called nattokinase (NK), which has thrombolytic, antihypertensive, antiatherosclerotic and lipid-lowering effects. Although NK has been recognized for its beneficial effect on humans with atherosclerotic cardiovascular disease (ASCVD), the underlying mechanisms involved in vascular inflammation-atherosclerosis development remain largely unknown. The current study aimed to explore the effects of NK on gene regulation, autophagy, necroptosis and inflammasome in vascular inflammation. The transcriptional profiles of NK in endothelial cells (ECs) by RNA sequencing (RNA-seq) revealed that NK affected THBS1, SRF and SREBF1 mRNA expression. In Q-PCR analysis, SRF and THBS1 were upregulated but SREBF1 was unaffected in ECs treated with NK. NK treatment induced autophagy and inhibited NLRP3 inflammasome and necroptosis in ECs. Furthermore, the inhibition of SRF or THBS1 by siRNA suppressed autophagy and enhanced the NLRP3 inflammasome and necroptosis. In a mouse model, NK reduced vascular inflammation by activating autophagy and inhibiting NLRP3 inflammasome and necroptosis. Our findings provide the first evidence that NK upregulates SRF and THBS1 genes, subsequently increasing autophagy and decreasing necroptosis and NLRP3 inflammasome formation to reduce vascular inflammation. Therefore, NK could serve as nutraceuticals or adjuvant therapies to reduce vascular inflammation and possible atherosclerosis progression.


Subject(s)
Inflammation , Subtilisins , Thrombospondin 1 , Animals , Male , Mice , Autophagy/drug effects , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Gene Expression Regulation/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Inflammasomes/metabolism , Inflammation/pathology , Inflammation/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Subtilisins/metabolism , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Mice, Inbred C57BL
11.
J Agric Food Chem ; 72(18): 10627-10639, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38664940

ABSTRACT

Effective reduction of the allergenicity of instant soy milk powder (ISMP) is practically valuable for expanding its applications. This study optimized the enzymolysis technology of ISMP using single-factor experiments and response surface methodology, combined serological analysis, cellular immunological models, bioinformatics tools, and multiple spectroscopy techniques to investigate the effects of alcalase hydrolysis on allergenicity, spatial conformation, and linear epitopes of ISMP. Under the optimal process, special IgE and IgG1 binding abilities and allergenic activity to induce cell degranulation of alcalase-hydrolyzed ISMP were reduced by (64.72 ± 1.76)%, (56.79 ± 3.72)%, and (73.3 ± 1.19)%, respectively (P < 0.05). Moreover, the spatial conformation of instant soy milk powder hydrolysates (ISMPH) changed, including decreased surface hydrophobicity, a weaker peak of amide II band, lower contents of α-helix and ß-sheet, and an enhanced content of random coil. Furthermore, the linear epitopes of major soy allergens, 9 from glycinin and 13 from ß-conglycinin, could be directionally disrupted by alcalase hydrolysis. Overall, the structure-activity mechanism of alcalase hydrolysis to reduce ISMP allergenicity in vitro was preliminarily clarified. It provided a new research direction for the breakthrough in the desensitization of ISMP and a theoretical basis for revealing the potential mechanism of alcalase enzymolysis to reduce the allergenicity of ISMP.


Subject(s)
Allergens , Soy Milk , Subtilisins , Humans , Allergens/chemistry , Allergens/immunology , Allergens/metabolism , Food Hypersensitivity/prevention & control , Food Hypersensitivity/immunology , Globulins/chemistry , Globulins/immunology , Hydrolysis , Immunoglobulin E/immunology , Immunoglobulin G/immunology , Powders/chemistry , Soy Milk/chemistry , Soybean Proteins/chemistry , Soybean Proteins/immunology , Soybean Proteins/metabolism , Structure-Activity Relationship , Subtilisins/metabolism
12.
Mar Biotechnol (NY) ; 26(2): 404-420, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558367

ABSTRACT

Optimization of antioxidants and angiotensin-converting enzyme (ACE) inhibitory potential gelatin hydrolysate production from Labeo rohita (rohu) swim bladder (SBGH) by alcalase using central composite design (CCD) of response surface methodology (RSM) was investigated. The maximum degree of hydrolysis (DH), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), total antioxidants (TAO), and ACE inhibitory activity were achieved at 0.1:1.0 (w/w) enzyme to substrate ratio, 61 °C hydrolysis temperature, and 94-min hydrolysis time. The resulting SBGH obtained at 19.92% DH exhibited the DPPH (24.28 µM TE/mg protein), ABTS (34.47 µM TE/mg protein), TAO (12.01 µg AAE/mg protein), and ACE inhibitory (4.91 µg/mg protein) activity. Furthermore, SBGH at 100 µg/ml displayed osteogenic property without any toxic effects on MC3T3-E1 cells. Besides, the protein content of rohu swim bladder gelatin (SBG) and SBGH was 93.68% and 94.98%, respectively. Both SBG and SBGH were rich in glycine, proline, glutamic acid, alanine, arginine, and hydroxyproline amino acids. Therefore, SBGH could be an effective nutraceutical in functional food development.


Subject(s)
Air Sacs , Fishes , Animals , Air Sacs/chemistry , Air Sacs/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Biphenyl Compounds/chemistry , Cyprinidae/metabolism , Fish Proteins/metabolism , Gelatin/chemistry , Hydrolysis , Osteogenesis/drug effects , Picrates , Protein Hydrolysates/chemistry , Protein Hydrolysates/pharmacology , Subtilisins/metabolism , Fishes/metabolism
13.
Eur J Pharm Biopharm ; 199: 114281, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599299

ABSTRACT

Nattokinase (NK) is a thrombolytic enzyme extracted from natto, which can be used to prevent and treat blood clots. However, it is sensitive to the environment, especially the acidic environment of human stomach acid, and its effect of oral ingestion is minimal. This study aims to increase NK's oral and storage stability by embedding NK in microcapsules prepared with chitosan (CS) and γ-polyglutamic acid (γ-PGA). The paper prepared a double-layer NK oral delivery system by layer self-assembly and characterized its stability and in vitro simulated digestion. According to the research results, the bilayer putamen structure has a protective effect on NK, which not only maintains high activity in various environments (such as acid-base, high temperature) and long-term storage (60 days), but also effectively protects the loaded NK from being destroyed in gastric fluid and achieves its slow release. This work has proved the feasibility of the design of bilayer putamen structure in oral administration and has good fibrolytic activity. Therefore, the novel CS/γ-PGA microcapsules are expected to be used in nutraceutical delivery systems.


Subject(s)
Chitosan , Drug Stability , Fibrinolytic Agents , Polyglutamic Acid , Subtilisins , Chitosan/chemistry , Polyglutamic Acid/chemistry , Polyglutamic Acid/analogs & derivatives , Subtilisins/metabolism , Subtilisins/chemistry , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/administration & dosage , Fibrinolytic Agents/pharmacology , Administration, Oral , Humans , Digestion/drug effects , Capsules , Drug Delivery Systems/methods , Drug Compounding/methods , Drug Liberation , Drug Carriers/chemistry
14.
Food Chem ; 447: 138947, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38492294

ABSTRACT

Walnut dreg (WD) active peptides are an important source of dietary antioxidants; however, the products of conventional hydrolysis have limited industrial output owing to poor flavour and low bioactivity. To this end, in this study, we aimed to employ bvLAP, an aminopeptidase previously identified in our research, as well as commercially available Alcalase for bi-enzyme digestion. The flavour, antioxidant activity, and structures of products resulting from various digestion methods were compared. The results showed that the bi-enzyme digestion products had enhanced antioxidant activity, increased ß-sheet content, and reduced bitterness intensity from 9.65 to 6.93. Moreover, bi-enzyme hydrolysates showed a more diverse amino acid composition containing 1640 peptides with distinct sequences. These results demonstrate that bi-enzyme hydrolysis could be a potential process for converting WD into functional food ingredients. Additionally, our results provide new concepts that can be applied in waste processing and high-value utilisation of WD.


Subject(s)
Antioxidants , Juglans , Hydrolysis , Antioxidants/chemistry , Juglans/metabolism , Protein Hydrolysates/chemistry , Peptides/chemistry , Subtilisins/metabolism
15.
Biochem Cell Biol ; 102(3): 275-284, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38484367

ABSTRACT

Neutrophil myeloperoxidase/H2O2/chloride system is a key mechanism to control pathogen infection. This enzyme, myeloperoxidase, plays a pivotal role in the arsenal of azurophilic granules that are released through degranulation upon neutrophil activation, which trigger local hypochlorous acid production. Myeloperoxidase gene encodes a protein precursor named promyeloperoxidase that arbors a propeptide that gets cleaved later during secretory routing in post-endoplasmic reticulum compartments. Although evidence suggested that this processing event was performed by one or different enzymes from the proprotein convertases family, the identity of this enzyme was never investigated. In this work, the naturally producing myeloperoxidase promyelocytic cell line HL-60 was used to investigate promyeloperoxidase cleavage during granulocytic differentiation in response to proprotein convertase inhibitors decanoyl-RVKR-chloromethylketone and hexa-d-arginine. Stable PC knockdown of endogenously expressed proprotein convertases, furin and PC7, was achieved using lentiviral delivery of shRNAs. None of the knockdown cell line could reproduce the effect of the pan-proprotein convertases inhibitor decanoyl-RVKR-chloromethylketone that accumulated intracellular promyeloperoxidase stores in HL-60 cells, therefore illustrating that both furin and PC7 redundantly process this proprotein.


Subject(s)
Furin , Peroxidase , Humans , HL-60 Cells , Furin/metabolism , Furin/genetics , Peroxidase/metabolism , Granulocytes/metabolism , Granulocytes/cytology , Cell Differentiation , Subtilisins/metabolism , Enzyme Precursors/metabolism , Enzyme Precursors/genetics , Amino Acid Chloromethyl Ketones/pharmacology
16.
Plant Physiol ; 195(2): 1681-1693, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38478507

ABSTRACT

Fusarium head blight (FHB), caused by Fusarium graminearum, causes huge annual economic losses in cereal production. To successfully colonize host plants, pathogens secrete hundreds of effectors that interfere with plant immunity and facilitate infection. However, the roles of most secreted effectors of F. graminearum in pathogenesis remain unclear. We analyzed the secreted proteins of F. graminearum and identified 255 candidate effector proteins by liquid chromatography-mass spectrometry (LC-MS). Five subtilisin-like family proteases (FgSLPs) were identified that can induce cell death in Nicotiana benthamiana leaves. Further experiments showed that these FgSLPs induced cell death in cotton (Gossypium barbadense) and Arabidopsis (Arabidopsis thaliana). A signal peptide and light were not essential for the cell death-inducing activity of FgSLPs. The I9 inhibitor domain and the entire C-terminus of FgSLPs were indispensable for their self-processing and cell death-inducing activity. FgSLP-induced cell death occurred independent of the plant signal transduction components BRI-ASSOCIATED KINASE 1 (BAK1), SUPPRESSOR OF BIR1 1 (SOBIR1), ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), and PHYTOALEXIN DEFICIENT 4 (PAD4). Reduced virulence was observed when FgSLP1 and FgSLP2 were simultaneously knocked out. This study reveals a class of secreted toxic proteins essential for F. graminearum virulence.


Subject(s)
Arabidopsis , Cell Death , Fusarium , Nicotiana , Plant Diseases , Fusarium/pathogenicity , Virulence , Arabidopsis/microbiology , Arabidopsis/genetics , Plant Diseases/microbiology , Nicotiana/microbiology , Nicotiana/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Subtilisins/metabolism , Subtilisins/genetics , Gossypium/microbiology , Plant Leaves/microbiology , Plant Cells/microbiology
17.
Food Funct ; 15(7): 3722-3730, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38489157

ABSTRACT

Bioactive peptides have been considered potential components for the future functional foods and nutraceuticals generation. The enzymatic method of hydrolysis has several advantages compared to those of chemical hydrolysis and fermentation. Despite this fact, the high cost of natural and commercial proteases limits the commercialization of hydrolysates in the food and pharmacological industries. For this reason, more efficient and economically interesting techniques, such as the immobilisation of the enzyme, are gaining attention. In the present study, a new protein hydrolysate from Lupinus angustifolius was generated by enzymatic hydrolysis through the immobilisation of the enzyme alcalase® (imLPH). After the chemical and nutritional characterization of the imLPH, an in vivo study was carried out in order to evaluate the effect of 12 weeks treatment with imLPH on the plasmatic lipid profile and antioxidant status in western-diet-fed apolipoprotein E knockout mice. The immobilisation of alcalase® generated an imLPH with a degree of hydrolysis of 29.71 ± 2.11%. The imLPH was mainly composed of protein (82.50 ± 0.88%) with a high content of glycine/glutamine, arginine, and aspartic acid/asparagine. The imLPH-treatment reduced the amount of abdominal white adipose tissue, total plasma cholesterol, LDL-C, and triglycerides, as well as the cardiovascular risk indexes (CRI) -I, CRI-II, and atherogenic index of plasma. The imLPH-treated mice also showed an increase in the plasma antioxidant capacity. For the first time, this study demonstrates the beneficial in vivo effect of a lupin protein hydrolysate obtained with the alcalase® immobilised and points out this approach as a possible cost-effective solution at the expensive generation of the hydrolysate through the traditional batch conditions with soluble enzymes.


Subject(s)
Lupinus , Protein Hydrolysates , Animals , Mice , Protein Hydrolysates/pharmacology , Protein Hydrolysates/chemistry , Antioxidants/chemistry , Lupinus/metabolism , Subtilisins/metabolism , Endopeptidases/metabolism , Hydrolysis
18.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473782

ABSTRACT

Microsporum canis is a widely distributed dermatophyte, which is among the main etiological agents of dermatophytosis in humans and domestic animals. This fungus invades, colonizes and nourishes itself on the keratinized tissues of the host through various virulence factors. This review will bring together the known information about the mechanisms, enzymes and their associated genes relevant to the pathogenesis processes of the fungus and will provide an overview of those virulence factors that should be better studied to establish effective methods of prevention and control of the disease. Public databases using the MeSH terms "Microsporum canis", "virulence factors" and each individual virulence factor were reviewed to enlist a series of articles, from where only original works in English and Spanish that included relevant information on the subject were selected. Out of the 147 articles obtained in the review, 46 were selected that reported virulence factors for M. canis in a period between 1988 and 2023. The rest of the articles were discarded because they did not contain information on the topic (67), some were written in different languages (3), and others were repeated in two or more databases (24) or were not original articles (7). The main virulence factors in M. canis are keratinases, fungilisins and subtilisins. However, less commonly reported are biofilms or dipeptidylpeptidases, among others, which have been little researched because they vary in expression or activity between strains and are not considered essential for the infection and survival of the fungus. Although it is known that they are truly involved in resistance, infection and metabolism, we recognize that their study could strengthen the knowledge of the pathogenesis of M. canis with the aim of achieving effective treatments, as well as the prevention and control of infection.


Subject(s)
Microsporum , Virulence Factors , Humans , Animals , Virulence Factors/metabolism , Microsporum/genetics , Microsporum/metabolism , Animals, Domestic , Subtilisins/metabolism
19.
Molecules ; 29(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38338437

ABSTRACT

This study aimed to isolate the proteolytic fraction from the silkworm thorn fruit (Cudrania tricuspidata) through ethanol precipitation at different ratios, and to determine its proteolytic activity and optimal activity conditions. Furthermore, the hydrolysis characteristics and antioxidant activity of soy protein isolate (SPI) and whey protein concentrate (WPC) hydrolyzates obtained through the enzymatic hydrolysis of freeze-dried silkworm thorn fruit powder (SF) were evaluated. For isolation and partial purification of proteolytic fraction, the water-solubilized fraction of the silkworm thorn fruit was purified through ethanol precipitation at four different ratios of 1:1, 1:2, 1:4, and 1:6 (v/v). The protein recovery rate, caseinolytic activity, protein pattern, and optimal activity (pH, temperature, and inhibitors) of fractional ethanol precipitate obtained from the silkworm thorn fruit (ESF) were evaluated. The proteolytic fraction obtained from silkworm thorn fruit exhibited a major protein band around 65-70 kDa and showed the highest proteolytic activity at a 1:4 ratio of ethanol precipitation (p < 0.05). The optimal activity of the measured enzyme fraction was determined to be at pH 9.0 and 50 °C, and the proteolytic activity of ESF was almost inhibited by phenyl methyl sulphonyl fluoride (PMSF, 2 mM), a serine protease inhibitor. Compared to Alcalase and papain, extensively used as commercial enzymes, the silkworm thorn fruit powder was less effective in hydrolyzing SPI and WPC. Nevertheless, SPI and WPC hydrolyzates mediated with silkworm thorn fruit powder showed even better antioxidant activities than those mediated with Alcalase and papain. Thus, our results show the potential application of silkworm thorn fruit as a novel source of plant protease for producing human-grade protein hydrolyzates.


Subject(s)
Bombyx , Maclura , Animals , Humans , Hydrolysis , Bombyx/metabolism , Papain/metabolism , Fruit/metabolism , Powders , Peptide Hydrolases/metabolism , Whey Proteins , Soybean Proteins , Subtilisins/metabolism , Ethanol
20.
Int J Biol Macromol ; 262(Pt 1): 130069, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340918

ABSTRACT

Squid pen (SP) is a valuable source of protein and ß-chitin. However, current research has primarily focused on extracting ß-chitin from SP. This study innovatively extracted both SP protein hydrolysates (SPPHs) and SP ß-chitin (SPC) simultaneously using protease hydrolysis. The effects of different proteases on their structural characteristics and bioactivity were evaluated. The results showed that SP alcalase ß-chitin (SPAC) had the highest degree of deproteinization (DP, 98.19 %) and SP alcalase hydrolysates (SPAH) had a degree of hydrolysis (DH) of 24.47 %. The analysis of amino acid composition suggested that aromatic amino acids accounted for 17.44 % in SPAH. Structural characterization revealed that SP flavourzyme hydrolysates (SPFH) had the sparsest structure. SPC exhibited an excellent crystallinity index (CI, over 60 %) and degree of acetylation (DA, over 70 %). During simulated gastrointestinal digestion (SGD), the hydroxyl radical scavenging activity, ABTS radical scavenging activity, Fe2+ chelating activity, and reducing power of the SPPHs remained stable or increased significantly. Additionally, SPFC exhibited substantial inhibitory effects on Staphylococcus aureus and Escherichia coli (S. aureus and E. coli), with inhibition circle diameters measuring 2.4 cm and 2.1 cm. These findings supported the potential use of SPPHs as natural antioxidant alternatives and suggested that SPC could serve as a potential antibacterial supplement.


Subject(s)
Peptide Hydrolases , Protein Hydrolysates , Animals , Peptide Hydrolases/metabolism , Hydrolysis , Protein Hydrolysates/chemistry , Decapodiformes/chemistry , Chitin , Escherichia coli/metabolism , Staphylococcus aureus/metabolism , Antioxidants/chemistry , Subtilisins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...