Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27.956
1.
Food Res Int ; 188: 114451, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823860

Excessive intake of sugar has become a public concern. However, it is challenging for food industries to decrease sugar level without sacrificing safety and sensory profile. Odor-induced sweetness enhancement (OISE) is believed to be a novel and promising strategy for sugar reduction. In order to investigate the OISE effect of mango aroma and evaluate its degree of sugar reduction in low-sugar beverages, a mathematical model was constructed through sensory evaluation in this study. The results showed that the maximum liking of low-sugar model beverages was 4.28 % sucrose and 0.57 % mango flavor. The most synergistic of OISE was at the concentration level of 2.24 % sucrose + 0.25 % mango flavor, which was equivalent to 2.96 % pure sucrose solution. With 32.14 % sugar reduction, the mango aroma was suggested to generate the OISE effect. However, the same level of garlic aroma was not able to enhance sweetness perception, suggesting that the congruency of aroma and taste is a prerequisite for the OISE effect to occur. This study demonstrated that the cross-modal interaction of mango aroma on sweetness enhancement in low-sugar model beverages could provide practical guidance for developing sugar-reduced beverages without applying sweeteners.


Mangifera , Odorants , Taste , Humans , Odorants/analysis , Mangifera/chemistry , Female , Adult , Male , Young Adult , Sweetening Agents/analysis , Smell , Sucrose/analysis , Consumer Behavior , Beverages/analysis , Taste Perception , Flavoring Agents/analysis
2.
BMC Plant Biol ; 24(1): 491, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38825702

BACKGROUND: Vegetable soybean is an important vegetable crop in world. Seed size and soluble sugar content are considered crucial indicators of quality in vegetable soybean, and there is a lack of clarity on the molecular basis of grain quality in vegetable soybean. RESULTS: In this context, we performed a comprehensive comparative transcriptome analysis of seeds between a high-sucrose content and large-grain variety (Zhenong 6, ZN6) and a low-sucrose content and small-grain variety (Williams 82, W82) at three developmental stages, i.e. stage R5 (Beginning Seed), stage R6 (Full Seed), and stage R7 (Beginning Maturity). The transcriptome analysis showed that 17,107 and 13,571 differentially expressed genes (DEGs) were identified in ZN6 at R6 (vs. R5) and R7 (vs. R6), respectively, whereas 16,203 and 16,032 were detected in W82. Gene expression pattern and DEGs functional enrichment proposed genotype-specific biological processes during seed development. The genes participating in soluble sugar biosynthesis such as FKGP were overexpressed in ZN6, whereas those responsible for lipid and protein metabolism such as ALDH3 were more enhanced in W82, exhibiting different dry material accumulation between two genotypes. Furthermore, hormone-associated transcriptional factors involved in seed size regulation such as BEH4 were overrepresented in ZN6, exhibiting different seed size regulation processes between two genotypes. CONCLUSIONS: Herein, we not only discovered the differential expression of genes encoding metabolic enzymes involved in seed composition, but also identified a type of hormone-associated transcriptional factors overexpressed in ZN6, which may regulate seed size and soluble content. This study provides new insights into the underlying causes of differences in the soybean metabolites and appearance, and suggests that genetic data can be used to improve its appearance and textural quality.


Gene Expression Profiling , Glycine max , Seeds , Glycine max/genetics , Glycine max/metabolism , Glycine max/growth & development , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Edible Grain/genetics , Edible Grain/metabolism , Transcriptome , Genes, Plant , Gene Expression Regulation, Plant , Genotype , Sucrose/metabolism
3.
PeerJ ; 12: e17429, 2024.
Article En | MEDLINE | ID: mdl-38827285

Background: Carbonic anhydrase VI (CA VI) is crucial in regulating oral pH and predicting susceptibility to dental caries. The hypothesis posits that caries activity may alter the CA VI function, diminishing its capacity to regulate pH effectively and potentially exacerbating cariogenic challenges. This 1-year cohort study sought to investigate the enzymatic activity of salivary CA VI and buffering capacity following a 20% sucrose rinse in 4 to 6.5-year-old children. Method: This research involved 46 volunteers categorized into three groups based on their caries status after follow-up: caries-free (CFee), arrested caries (CArrested), and caries active (CActive). Children underwent visible biofilm examination and saliva collection for salivary flow rate, buffering capacity, and CA VI analyses before and after a 20% sucrose rinse. Results: A reduction in the buffering capacity was observed after sucrose rinse in all groups. The CA VI activity decreased significantly in CFee and CArrested groups after sucrose rinse, although it did not change in the CActive group. An improvement in the buffering capacity and salivary flow rate was found at follow-up when compared with the baseline. After 1-year follow-up, buffering capacity and salivary flow rate increased in all groups, whilst the CA VI activity reduced only in CFree and CArrested children. Conclusion: Sucrose rinse universally reduces the salivary buffering capacity, while caries activity may disrupt CA VI activity response during a cariogenic challenge. After a year, increased salivary flow enhances buffering capacity but not CA VI activity in caries-active children.


Carbonic Anhydrases , Dental Caries , Saliva , Sucrose , Humans , Saliva/enzymology , Saliva/chemistry , Sucrose/metabolism , Child , Carbonic Anhydrases/metabolism , Male , Female , Longitudinal Studies , Child, Preschool , Buffers , Hydrogen-Ion Concentration , Mouthwashes
4.
Sci Rep ; 14(1): 12722, 2024 06 03.
Article En | MEDLINE | ID: mdl-38830940

Pinellia ternata (Thunb.) Breit is a traditional Chinese medicine with important pharmacological effects. However, its cultivation is challenged by soil degradation following excessive use of chemical fertilizer. We conducted an experiment exploring the effects of replacing chemical fertilizers with organic fertilizers (OF) on the growth and yield of P. ternata, as well as on the soil physicochemical properties and microbial community composition using containerized plants. Six fertilization treatments were evaluated, including control (CK), chemical fertilizer (CF), different proportions of replacing chemical fertilizer with organic fertilizer (OM1-4). Containerized P. ternata plants in each OF treatment had greater growth and yield than the CK and CF treatments while maintaining alkaloid content. The OM3 treatment had the greatest yield among all treatments, with an increase of 42.35% and 44.93% compared to the CK and CF treatments, respectively. OF treatments improved soil quality and fertility by enhancing the activities of soil urease (S-UE) and sucrase (S-SC) enzymes while increasing soil organic matter and trace mineral elements. OF treatments increased bacterial abundance and changed soil community structure. In comparison to the CK microbial groups enriched in OM3 were OLB13, Vicinamibacteraceae, and Blrii41. There were also changes in the abundance of gene transcripts among treatments. The abundance of genes involved in the nitrogen cycle in the OM3 has increased, specifically promoting the transformation of N-NO3- into N-NH4+, a type of nitrogen more easily absorbed by P. ternata. Also, genes involved in "starch and sucrose metabolism" and "plant hormone signal transduction" pathways were positively correlated to P. ternata yield and were upregulated in the OM3 treatment. Overall, OF in P. ternata cultivation is a feasible practice in advancing sustainable agriculture and is potentially profitable in commercial production.


Fertilizers , Nitrogen Cycle , Pinellia , Soil , Starch , Sucrose , Soil/chemistry , Pinellia/metabolism , Sucrose/metabolism , Starch/metabolism , Soil Microbiology , Nitrogen/metabolism
5.
Biotechnol J ; 19(5): e2400178, 2024 May.
Article En | MEDLINE | ID: mdl-38719574

Sucrose isomerase (SIase) catalyzes the hydrolysis and isomerization of sucrose into isomaltulose, a functional sugar extensively used in the food industry. However, the lack of safe and efficient heterologous expression systems for SIase has constrained its production and application. In this study, an engineered Bacillus subtilis strain for antibiotic-free SIase production was developed via a food-grade expression system. First, the B. subtilis strain TEA was modified through the CRISPR/Cas9 system, resulting in a mutant strain TEA4, which exhibited enhanced capabilities for recombinant protein expression. For efficient and safe production of SIase, different constitutive and inducible promoters were evaluated. The maltose-inducible promoter Poglv was found to have an extracellular SIase activity of 21.7 U mL-1 in engineered strain TEA4. Subsequent optimization of the culture medium further increased SIase activity to 26.4 U mL-1 during shake flask cultivation. Eventually, using the crude enzyme solution of the engineered strain in biotransformation reactions resulted in a high yield of isomaltulose under high concentrations sucrose, achieving a maximum yield of 83.1%. These findings demonstrated an engineered B. subtilis strain for antibiotic-free SIase production, paving the way for its scale-up industrial production and application.


Bacillus subtilis , Glucosyltransferases , Isomaltose , Recombinant Proteins , Sucrose , Bacillus subtilis/genetics , Bacillus subtilis/enzymology , Bacillus subtilis/metabolism , Isomaltose/metabolism , Isomaltose/analogs & derivatives , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Sucrose/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Metabolic Engineering/methods , Promoter Regions, Genetic/genetics , CRISPR-Cas Systems/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
6.
Front Endocrinol (Lausanne) ; 15: 1387964, 2024.
Article En | MEDLINE | ID: mdl-38742193

The high prevalence of obesity has become a pressing global public health problem and there exists a strong association between increased BMI and mortality at a BMI of 25 kg/m2 or higher. The prevalence of obesity is higher among middle-aged adults than among younger groups and the combination of aging and obesity exacerbate systemic inflammation. Increased inflammatory cytokines such as interleukin 6 and tumor necrosis factor alpha (TNFα) are hallmarks of obesity, and promote the secretion of hepatic C-reactive protein (CRP) which further induces systematic inflammation. The neuropeptide oxytocin has been shown to have anti-obesity and anti-inflammation effects, and also suppress sweet-tasting carbohydrate consumption in mammals. Previously, we have shown that the Japanese herbal medicine Kamikihito (KKT), which is used to treat neuropsychological stress disorders in Japan, functions as an oxytocin receptors agonist. In the present study, we further investigated the effect of KKT on body weight (BW), food intake, inflammation, and sweet preferences in middle-aged obese mice. KKT oral administration for 12 days decreased the expression of pro-inflammatory cytokines in the liver, and the plasma CRP and TNFα levels in obese mice. The effect of KKT administration was found to be different between male and female mice. In the absence of sucrose, KKT administration decreased food intake only in male mice. However, while having access to a 30% sucrose solution, both BW and food intake was decreased by KKT administration in male and female mice; but sucrose intake was decreased in female mice alone. In addition, KKT administration decreased sucrose intake in oxytocin deficient lean mice, but not in the WT lean mice. The present study demonstrates that KKT ameliorates chronic inflammation, which is strongly associated with aging and obesity, and decreases food intake in male mice as well as sucrose intake in female mice; in an oxytocin receptor dependent manner.


Diet, High-Fat , Drugs, Chinese Herbal , Inflammation , Mice, Inbred C57BL , Obesity , Animals , Obesity/metabolism , Obesity/drug therapy , Male , Mice , Diet, High-Fat/adverse effects , Inflammation/metabolism , Female , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Sucrose/administration & dosage , Food Preferences/drug effects , Body Weight/drug effects , Oxytocin/pharmacology , Medicine, Kampo , East Asian People
7.
Funct Plant Biol ; 512024 05.
Article En | MEDLINE | ID: mdl-38739736

The forage quality of alfalfa (Medicago sativa ) stems is greater than the leaves. Sucrose hydrolysis provides energy for stem development, with starch being enzymatically converted into sucrose to maintain energy homeostasis. To understand the physiological and molecular networks controlling stem development, morphological characteristics and transcriptome profiles in the stems of two alfalfa cultivars (Zhungeer and WL168) were investigated. Based on transcriptome data, we analysed starch and sugar contents, and enzyme activity related to starch-sugar interconversion. Zhungeer stems were shorter and sturdier than WL168, resulting in significantly higher mechanical strength. Transcriptome analysis showed that starch and sucrose metabolism were significant enriched in the differentially expressed genes of stems development in both cultivars. Genes encoding INV , bglX , HK , TPS and glgC downregulated with the development of stems, while the gene encoding was AMY upregulated. Weighted gene co-expression network analysis revealed that the gene encoding glgC was pivotal in determining the variations in starch and sucrose contents between the two cultivars. Soluble carbohydrate, sucrose, and starch content of WL168 were higher than Zhungeer. Enzyme activities related to sucrose synthesis and hydrolysis (INV, bglX, HK, TPS) showed a downward trend. The change trend of enzyme activity was consistent with gene expression. WL168 stems had higher carbohydrate content than Zhungeer, which accounted for more rapid growth and taller plants. WL168 formed hollow stems were formed during rapid growth, which may be related to the redistribution of carbohydrates in the pith tissue. These results indicated that starch and sucrose metabolism play important roles in the stem development in alfalfa.


Medicago sativa , Plant Stems , Starch , Sucrose , Medicago sativa/genetics , Medicago sativa/metabolism , Medicago sativa/growth & development , Starch/metabolism , Plant Stems/metabolism , Plant Stems/growth & development , Plant Stems/genetics , Sucrose/metabolism , Gene Expression Regulation, Plant , Transcriptome , Carbohydrate Metabolism/genetics , Gene Expression Profiling
8.
Food Res Int ; 183: 114185, 2024 May.
Article En | MEDLINE | ID: mdl-38760122

Low- and no-calorie sweeteners reduce the amount of carbohydrates in foods and beverages. However, concerns about taste perception surrounding the role of non-nutritive sweeteners in the oral cavity remain unanswered. One of the parameters that influences taste perception is the diffusion coefficient of the sweetener molecules inside the mucin layer lining the mouth. This study investigated the impact of diffusion coefficients of common high-intensity sweeteners on taste perception focusing on the sweeteners' diffusion through mucin. Transwell Permeable Support well plates were used to measure diffusion coefficients of samples that were collected at specific intervals to estimate the coefficients based on concentration measurements. The diffusion coefficients of acesulfame-K, aspartame, rebaudioside M, sucralose, and sucrose with and without NaCl were compared. We found that different sweeteners show different diffusion behavior through mucin and that the presence of salt enhances the diffusion. These findings contribute insights into the diffusion of high-intensity sweeteners, offer a way to evaluate diffusion coefficients in real-time, and inform the development of products with improved taste profiles.


Mucins , Sucrose , Sweetening Agents , Diffusion , Mucins/metabolism , Sucrose/analogs & derivatives , Taste Perception , Humans , Thiazines
9.
Arch Microbiol ; 206(6): 270, 2024 May 20.
Article En | MEDLINE | ID: mdl-38767668

Candida tropicalis is a human pathogen and one of the most prevalent non-Candida albicans Candida (NCAC) species causing invasive infections. Azole antifungal resistance in C. tropicalis is also gradually increasing with the increasing incidence of infections. The pathogenic success of C. tropicalis depends on its effective response in the host microenvironment. To become a successful pathogen, cellular metabolism, and physiological status determine the ability of the pathogen to counter diverse stresses inside the host. However, to date, limited knowledge is available on the impact of carbon substrate metabolism on stress adaptation and azole resistance in C. tropicalis. In this study, we determined the impact of glucose, fructose, and sucrose as the sole carbon source on the fluconazole resistance and osmotic (NaCl), oxidative (H2O2) stress adaptation in C. tropicalis clinical isolates. We confirmed that the abundance of carbon substrates influences or increases drug resistance and osmotic and oxidative stress tolerance in C. tropicalis. Additionally, both azole-resistant and susceptible isolates showed similar stress adaptation phenotypes, confirming the equal efficiency of becoming successful pathogens irrespective of drug susceptibility profile. To the best of our knowledge, our study is the first on C. tropicalis to demonstrate the direct relation between carbon substrate metabolism and stress tolerance or drug resistance.


Antifungal Agents , Candida tropicalis , Carbon , Drug Resistance, Fungal , Fluconazole , Microbial Sensitivity Tests , Oxidative Stress , Candida tropicalis/drug effects , Candida tropicalis/physiology , Antifungal Agents/pharmacology , Humans , Fluconazole/pharmacology , Carbon/metabolism , Candidiasis/microbiology , Osmotic Pressure , Glucose/metabolism , Sucrose/metabolism , Sucrose/pharmacology , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Fructose/metabolism , Fructose/pharmacology , Stress, Physiological
10.
J Plant Physiol ; 297: 154259, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705079

Management of the plant microbiome may help support food needs for the human population. Bacteria influence plants through enhancing nutrient uptake, metabolism, photosynthesis, biomass production and/or reinforcing immunity. However, information into how these microbes behave under different growth conditions is missing. In this work, we tested how carbon supplements modulate the interaction of Pseudomonas chlororaphis with Arabidopsis thaliana. P. chlororaphis streaks strongly repressed primary root growth, lateral root formation and ultimately, biomass production. Noteworthy, increasing sucrose availability into the media from 0 to 2.4% restored plant growth and promoted lateral root formation in bacterized seedlings. This effect could not be observed by supplementing sucrose to leaves only, indicating that the interaction was strongly modulated by bacterial access to sugar. Total phenazine content decreased in the bacteria grown in high (2.4%) sucrose medium, and conversely, the expression of phzH and pslA genes were diminished by sugar supply. Pyocyanin antagonized the promoting effects of sucrose in lateral root formation and biomass production in inoculated seedlings, indicating that this virulence factor accounts for growth repression during the plant-bacterial interaction. Defence reporter transgenes PR-1::GUS and LOX2::GUS were induced in leaves, while the expression of the auxin-inducible, synthetic reporter gene DR5::GUS was enhanced in the roots of bacterized seedlings at low and high sucrose treatments, which suggests that growth/defence trade-offs in plants are critically modulated by P. chlororaphis. Collectively, our data suggest that bacterial carbon nutrition controls the outcome of the relation with plants.


Arabidopsis , Indoleacetic Acids , Phenazines , Plant Roots , Pseudomonas chlororaphis , Sucrose , Sucrose/metabolism , Arabidopsis/microbiology , Arabidopsis/metabolism , Arabidopsis/genetics , Plant Roots/microbiology , Plant Roots/metabolism , Pseudomonas chlororaphis/metabolism , Phenazines/metabolism , Indoleacetic Acids/metabolism
11.
Plant Sci ; 344: 112108, 2024 Jul.
Article En | MEDLINE | ID: mdl-38705480

Ureides, the degraded products of purine catabolism in Arabidopsis, have been shown to act as antioxidant and nitrogen sources. Herein we elucidate purine degraded metabolites as a carbon source using the Arabidopsis Atxdh1, Ataln, and Ataah knockout (KO) mutants vis-à-vis wild-type (WT) plants. Plants were grown under short-day conditions on agar plates containing half-strength MS medium with or without 1% sucrose. Notably, the absence of sucrose led to diminished biomass accumulation in both shoot and root tissues of the Atxdh1, Ataln, and Ataah mutants, while no such effect was observed in WT plants. Moreover, the application of sucrose resulted in a reduction of purine degradation metabolite levels, specifically xanthine and allantoin, predominantly within the roots of WT plants. Remarkably, an increase in proteins associated with the purine degradation pathway was observed in WT plants in the presence of sucrose. Lower glyoxylate levels in the roots but not in the shoot of the Atxdh1 mutant in comparison to WT, were observed under sucrose limitation, and improved by sucrose application in root, indicating that purine degradation provided glyoxylate in the root. Furthermore, the deficit of purine-degraded metabolites in the roots of mutants subjected to carbon starvation was partially mitigated through allantoin application. Collectively, these findings signify that under conditions of sucrose limitation and short-day growth, purines are primarily remobilized within the root system to augment the availability of ureides, serving as an additional carbon (as well as nitrogen) source to support plant growth.


Arabidopsis , Carbon , Plant Roots , Sucrose , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Carbon/metabolism , Sucrose/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Allantoin/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Purines/metabolism , Urea/metabolism , Plant Shoots/metabolism , Plant Shoots/growth & development , Glyoxylates/metabolism
12.
Plant Physiol Biochem ; 211: 108695, 2024 Jun.
Article En | MEDLINE | ID: mdl-38744088

The presence of sugar in plant tissue can lead to an increase in the osmotic pressure within cells, a decrease in the freezing point of plants, and protection against ice crystal damage to the tissue. Trehalose is closely related to sucrose, which comprises the largest proportion of sugar and has become a hot topic of research in recent years. Our previous studies have confirmed that a key trehalose synthesis gene, TaTPS11, from the cold-resistant winter wheat DM1, could enhance the cold resistance of plants by increasing sugar content. However, the underlying mechanism behind this phenomenon remains unclear. In this study, we cloned TaTPS11-6D, edited TaTPS11-6D using CRISPR/Cas9 technology and transformed 'Fielder' to obtain T2 generation plants. We screened out OE3-3 and OE8-7 lines with significantly higher cold resistance than that of 'Fielder' and Cri 4-3 edited lines with significantly lower cold resistance than that of 'Fielder'. Low temperature storage limiting factors were measured for OE3-3, OE8-7 and Cri 4-3 treated at different temperatures.The results showed that TaTPS11-6D significantly increased the content of sugar in plants and the transfer of sugar from source to storage organs under cold conditions. The TaTPS11-6D significantly increased the levels of salicylic, jasmonic, and abscisic acids while also significantly decreasing the level of gibberellic acid. Our research improves the model of low temperature storage capacity limiting factor.


Cold Temperature , Plant Proteins , Triticum , Triticum/genetics , Triticum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Gene Expression Regulation, Plant , Trehalose/metabolism , Abscisic Acid/metabolism , Oxylipins/metabolism , Cyclopentanes/metabolism , Gibberellins/metabolism , Sucrose/metabolism
13.
Sci Rep ; 14(1): 11845, 2024 05 23.
Article En | MEDLINE | ID: mdl-38782941

Tardigrades are renowned for their ability to survive a wide array of environmental stressors. In particular, tardigrades can curl in on themselves while losing a significant proportion of their internal water content to form a structure referred to as a tun. In surviving varying conditions, tardigrades undergo distinct morphological transformations that could indicate different mechanisms of stress sensing and tolerance specific to the stress condition. Methods to effectively distinguish between morphological transformations, including between tuns induced by different stress conditions, are lacking. Herein, an approach for discriminating between tardigrade morphological states is developed and utilized to compare sucrose- and CaCl2-induced tuns, using the model species Hypsibius exemplaris. A novel approach of shadow imaging with confocal laser scanning microscopy enabled production of three-dimensional renderings of Hys. exemplaris in various physiological states resulting in volume measurements. Combining these measurements with qualitative morphological analysis using scanning electron microscopy revealed that sucrose- and CaCl2-induced tuns have distinct morphologies, including differences in the amount of water expelled during tun formation. Further, varying the concentration of the applied stressor did not affect the amount of water lost, pointing towards water expulsion by Hys. exemplaris being a controlled process that is adapted to the specific stressors.


Calcium Chloride , Sucrose , Animals , Calcium Chloride/pharmacology , Microscopy, Confocal/methods , Stress, Physiological , Invertebrates , Microscopy, Electron, Scanning
14.
Acta Pharm ; 74(2): 289-300, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38815206

At present, society has embraced the fact apropos population aging and climate changes, that demand, amongst others, innovative pharmaceutical technologies, emphasising the development of patient-specific delivery systems and thus the provision of efficient and sustainable drugs. Protein drugs for subcutaneous administration, by allowing less frequent application, represent one of the most important parts of the pharmaceutical field, but their development is inevitably faced with obstacles in providing protein stability and suitable formulation viscosity. To gain further knowledge and fill the gaps in the already constructed data platform for the development of monoclonal antibody formulations, we designed a study that examines small model proteins, i.e., bovine serum albumin. The main aim of the presented work is to evaluate the effect of protein concentrations on critical quality attributes of both, pre-lyophilised liquid formulations, and lyophilised products. Through the study, the hypothesis that increasing protein concentration leads to higher viscosity and higher reconstitution time without affecting the stability of the protein was confirmed. The most important finding is that sucrose plays a key role in the lyophilisation of investigated protein, nevertheless, it can be predicted that, to ensure the beneficial effect of mannitol, its amount has to prevail over the amount of sucrose.


Drug Compounding , Freeze Drying , Serum Albumin, Bovine , Serum Albumin, Bovine/chemistry , Viscosity , Drug Compounding/methods , Humans , Sucrose/chemistry , Drug Stability , Chemistry, Pharmaceutical/methods , Excipients/chemistry , Mannitol/chemistry , Protein Stability
15.
Cryo Letters ; 45(4): 221-230, 2024.
Article En | MEDLINE | ID: mdl-38809786

BACKGROUND: Today, synthetic chemicals are used in vitrification solutions for cryopreservation studies to mimic natural cryoprotectants that supply tolerance to organisms in nature against freezing stress. In the case of plants, PVS2, containing glycerol, dimethyl sulfoxide (Me2SO), ethylene glycol and sucrose, is considered as the golden standard for successful cryopreservation. However, Me2SO can generally cause toxicity to certain plant cells, adversely affecting viability after freezing and/or thawing. Hence, the replacement (or substantial reduction) of Me2SO by cheap, non-toxic and natural cryoprotectants became a matter of high priority to vitrification solutions or reducing their content gained escalating importance for the cryopreservation of plants. Fructans, sucrose derivatives mainly consisting of fructose residues, are candidate cryoprotectants. OBJECTIVE: Inspired by their protective role in nature, we here explored, for the first time, the potential of an array of 8 structurally different fructans as cryoprotectants in plant cryopreservation. MATERIALS AND METHODS: Arabidopsis thaliana L. seedlings were used as a model system with a one-step vitrification method. PVS2 solutions with different Me2SO and fructan contents were evaluated. RESULTS: It was found that branched low DP graminan, extracted from milky stage wheat kernels, led to the highest recovery (85%) among tested fructans with 12.5% Me2SO after cryopreservation, which was remarkably close to the viability (90%) observed with the original PVS2 containing 15% Me2SO. Moreover, its protective efficacy could be further optimized by addition of vitamin C acting as an antioxidant. CONCLUSION: Such novel formulations offer great perspectives for cryopreservation of various crop species. Doi.org/10.54680/fr24410110512.


Arabidopsis , Cryopreservation , Cryoprotective Agents , Dimethyl Sulfoxide , Fructans , Vitrification , Cryoprotective Agents/pharmacology , Cryoprotective Agents/chemistry , Cryopreservation/methods , Fructans/pharmacology , Fructans/chemistry , Arabidopsis/drug effects , Vitrification/drug effects , Dimethyl Sulfoxide/pharmacology , Glycerol/pharmacology , Glycerol/chemistry , Seedlings/drug effects , Freezing , Sucrose/pharmacology , Sucrose/chemistry , Ethylene Glycol/pharmacology , Ethylene Glycol/chemistry , Antioxidants/pharmacology
16.
Vopr Pitan ; 93(2): 52-62, 2024.
Article Ru | MEDLINE | ID: mdl-38809799

The study of the genetic determinants of the disaccharidase activity opens up new prospects for improving diagnostics and choosing medical tactics in gastroenterology. The aim of the study was to systematize the data on the role of the sucrase-isomaltase gene (SI) in regulating sucrose metabolism and the contribution of SI mutations to the prevalence of sucrose malabsorption disorders (sucrase-isomaltase deficiency, SID) and certain forms of enterological pathology in different population groups. Material and methods. A review of the peer-reviewed scientific literature, mainly in the PubMed database (https://pubmed.ncbi.nlm.nih.gov) and eLibrary (https://elibrary.ru), was conducted using key words: carbohydrate malabsorption, sucrase, sucrase-isomaltase deficiency, sucrase-isomaltase SI gene. The search depth was not specified, but particular attention was paid to recent publications. The gnomAD database (https://www.ncbi.nlm. nih.gov/snp/rs781470490) was also used. Results. According to the review results, 37 out of 150 known SI gene mutations have been confirmed to contribute to reduced sucrase activity or restricted sucrase production. The prevalence of point mutations in the SI gene is estimated at 0.0006%, but carrier rates of the SI delAG deletion (rs781470490), manifested as homozygosity in SID, are very high (5-21%) in indigenous populations of Arctic regions in East Asia and America. Medicalgenetic research methods improve the accuracy of differential diagnosis of primary and secondary SID and other forms of disaccharide and polysaccharide malabsorption. The formation of databases on the prevalence of genetic determinants of sucrase-isomaltase insufficiency is a promising way to refine the epidemiology of SID. There is an increased (0.2-2.3%) risk of clinical manifestations of SID in homozygous carriers of the SI delAG mutation in the Chukotka, Kamchatka, and Northern Priochotye populations. Verification of reports on a less pronounced tendency to lipid metabolism disorders in SI delAG carriers compared with the control group is recommended. Conclusion. Manifestations of mutant SI variants in the phenotype are associated with the presence of accompanying carbohydrate malabsorption variants and specific gut microbiota. The SI 15Phe variant (rs9290264) may contribute to the development of irritable bowel syndrome.


Carbohydrate Metabolism, Inborn Errors , Sucrase-Isomaltase Complex , Humans , Carbohydrate Metabolism, Inborn Errors/genetics , Sucrase-Isomaltase Complex/genetics , Sucrase-Isomaltase Complex/deficiency , Mutation , Sucrose/metabolism , Malabsorption Syndromes/genetics
17.
Int J Mol Sci ; 25(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732226

We previously reported that mice with low neuronal pH drink more alcohol, demonstrating the importance of pH for alcohol reward and motivation. In this study, we tested whether systemic pH affects alcohol consumption and if so, whether it occurs by changing the alcohol reward. C57BL/6J mice were given NaHCO3 to raise their blood pH, and the animals' alcohol consumption was measured in the drinking-in-the-dark and two-bottle free choice paradigms. Alcohol consumption was also assessed after suppressing the bitterness of NaHCO3 with sucrose. Alcohol reward was evaluated using a conditioned place preference. In addition, taste sensitivity was assessed by determining quinine and sucrose preference. The results revealed that a pH increase by NaHCO3 caused mice to decrease their alcohol consumption. The decrease in high alcohol contents (20%) was significant and observed at different ages, as well as in both males and females. Alcohol consumption was also decreased after suppressing NaHCO3 bitterness. Oral gavage of NaHCO3 did not alter quinine and sucrose preference. In the conditioned place preference, NaHCO3-treated mice spent less time in the alcohol-injected chamber. Conclusively, the results show that raising systemic pH with NaHCO3 decreases alcohol consumption, as it decreases the alcohol reward value.


Alcohol Drinking , Mice, Inbred C57BL , Reward , Sodium Bicarbonate , Animals , Mice , Male , Female , Sodium Bicarbonate/pharmacology , Hydrogen-Ion Concentration , Ethanol , Sucrose/pharmacology , Quinine/pharmacology , Taste/drug effects
18.
World J Microbiol Biotechnol ; 40(7): 214, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789837

Levan, a ß-(2,6)-linked fructose polymer, exhibits diverse properties that impart versatility, rendering it a highly sought-after biopolymer with various industrial applications. Levan can be produced by various microorganisms using sucrose, food industry byproducts and agricultural wastes. Microbial levan represents the most potent cost-effective process for commercial-scale levan production. This study reviews the optimization of levan production by understanding its biosynthesis, physicochemical properties and the fermentation process. In addition, genetic and protein engineering for its increased production and emerging methods for its detection are introduced and discussed. All of these comprehensive studies could serve as powerful tools to optimize levan production and broaden its applications across various industries.


Fermentation , Fructans , Fructans/biosynthesis , Fructans/metabolism , Bacteria/metabolism , Bacteria/genetics , Protein Engineering/methods , Sucrose/metabolism , Hexosyltransferases/metabolism , Hexosyltransferases/genetics , Industrial Microbiology/methods
19.
BMC Plant Biol ; 24(1): 451, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789940

Root-knot nematodes (RKNs) infect host plants and obtain nutrients such as sugars for their own development. Therefore, inhibiting the nutrient supply to RKNs may be an effective method for alleviating root-knot nematode disease. At present, the pathway by which sucrose is unloaded from the phloem cells to giant cells (GCs) in root galls and which genes related to sugar metabolism and transport play key roles in this process are unclear. In this study, we found that sugars could be unloaded into GCs only from neighboring phloem cells through the apoplastic pathway. With the development of galls, the contents of sucrose, fructose and glucose in the galls and adjacent tissue increased gradually. SUT1, SUT2, SWEET7a, STP10, SUS3 and SPS1 may provide sugar sources for GCs, while STP1, STP2 and STP12 may transport more sugar to phloem parenchyma cells. At the early stage of Meloidogyne incognita infestation, the sucrose content in tomato roots and leaves increased, while the glucose and fructose contents decreased. SWEET7a, SPS1, INV-INH1, INV-INH2, SUS1 and SUS3 likely play key roles in root sugar delivery. These results elucidated the pathway of sugar unloading in tomato galls and provided an important theoretical reference for eliminating the sugar source of RKNs and preventing root-knot nematode disease.


Plant Roots , Plant Tumors , Solanum lycopersicum , Tylenchoidea , Tylenchoidea/physiology , Animals , Solanum lycopersicum/parasitology , Solanum lycopersicum/metabolism , Plant Roots/parasitology , Plant Roots/metabolism , Plant Tumors/parasitology , Plant Diseases/parasitology , Sucrose/metabolism , Sugars/metabolism , Carbohydrate Metabolism
20.
J Phys Chem B ; 128(20): 4922-4930, 2024 May 23.
Article En | MEDLINE | ID: mdl-38733344

The disaccharide trehalose is generally acknowledged as a superior stabilizer of proteins and other biomolecules in aqueous environments. Despite many theories aiming to explain this, the stabilization mechanism is still far from being fully understood. This study compares the stabilizing properties of trehalose with those of the structurally similar disaccharide sucrose. The stability has been evaluated for the two proteins, lysozyme and myoglobin, at both low and high temperatures by determining the glass transition temperature, Tg, and the denaturation temperature, Tden. The results show that the sucrose-containing samples exhibit higher Tden than the corresponding trehalose-containing samples, particularly at low water contents. The better stabilizing effect of sucrose at high temperatures may be explained by the fact that sucrose, to a greater extent, binds directly to the protein surface compared to trehalose. Both sugars show Tden elevation with an increasing sugar-to-protein ratio, which allows for a more complete sugar shell around the protein molecules. Finally, no synergistic effects were found by combining trehalose and sucrose. Conclusively, the exact mechanism of protein stabilization may vary with the temperature, as influenced by temperature-dependent interactions between the protein, sugar, and water. This variability can make trehalose to a superior stabilizer under some conditions and sucrose under others.


Calorimetry, Differential Scanning , Muramidase , Myoglobin , Sucrose , Trehalose , Trehalose/chemistry , Sucrose/chemistry , Muramidase/chemistry , Muramidase/metabolism , Myoglobin/chemistry , Protein Stability , Animals , Temperature
...