Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.889
Filter
1.
Plant Cell Rep ; 43(7): 180, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914787

ABSTRACT

KEY MESSAGE: Hydrogen sulfide improved cold resistance of tomato fruits by regulating energy metabolism and delaying cell wall degradation, thereby alleviating the damage of cold storage on fruits. Postharvest cold storage in tomato fruits extended shelf life but caused the appearance of chilling injury (CI), appeared by softness and spots on the surface of the fruits. These changes were linked closely with energy and cell wall metabolisms. Hydrogen sulfide (H2S), as the gaseous fresh-keeping regulator, was used in the present study to investigate the effects of H2S on energy and cell wall metabolisms in tomato fruits during cold storage. Fruits after harvest were fumigated with different concentrations (0, 0.5, 1, 1.5 mM) of sodium hydrosulfide (NaHS) solution as H2S honor for 24 h and stored at 4 °C for 25 days. The results showed that 1 and 1.5 mM NaHS solution fumigation promoted the accumulation of endogenous H2S, followed by the increase in L-cysteine desulfurase (LCD) and D-cysteine desulfurase (DCD) activities in fruits during cold storage. It was also found that 1 and 1.5 mM NaHS treatments improved H+-ATPase, Ca2+-ATPase, cytochrome C oxidase (CCO), and succinic dehydrogenase (SDH) activities. Moreover, the contents of cellulose and hemicellulose were increased by 1 and 1.5 mM NaHS, following down-regulated activities of cellulase (CL), pectin lyase (PL), α-mannosidase (α-man) and ß-Galactosidase (ß-Gal) and down-regulated expression of PL1, PL8, MAN4 and MAN7 genes. Thus, H2S alleviates CI led by cold storage in tomato fruits via regulating energy and cell wall metabolisms.


Subject(s)
Cell Wall , Cold Temperature , Energy Metabolism , Fruit , Hydrogen Sulfide , Solanum lycopersicum , Cell Wall/metabolism , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Solanum lycopersicum/physiology , Fruit/metabolism , Fruit/genetics , Fruit/drug effects , Energy Metabolism/drug effects , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Food Storage/methods , Sulfides/pharmacology , Sulfides/metabolism
2.
J Pharmacol Sci ; 155(4): 121-130, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880546

ABSTRACT

The atrophic myocardium resulting from mechanical unloading and nutritional deprivation is considered crucial as maladaptive remodeling directly associated with heart failure, as well as interstitial fibrosis. Conversely, myocardial hypertrophy resulting from hemodynamic loading is perceived as compensatory stress adaptation. We previously reported the abundant presence of highly redox-active polysulfide molecules, termed supersulfide, with two or more sulfur atoms catenated in normal hearts, and the supersulfide catabolism in pathologic hearts after myocardial infarction correlated with worsened prognosis of heart failure. However, the impact of supersulfide on myocardial remodeling remains unclear. Here, we investigated the involvement of supersulfide metabolism in cardiomyocyte remodeling, using a model of adenosine 5'-triphosphate (ATP) receptor-stimulated atrophy and endothelin-1 receptor-stimulated hypertrophy in neonatal rat cardiomyocytes. Results revealed contrasting changes in intracellular supersulfide and its catabolite, hydrogen sulfide (H2S), between cardiomyocyte atrophy and hypertrophy. Stimulation of cardiomyocytes with ATP decreased supersulfide activity, while H2S accumulation itself did not affect cardiomyocyte atrophy. This supersulfide catabolism was also involved in myofibroblast formation of neonatal rat cardiac fibroblasts. Thus, unraveling supersulfide metabolism during myocardial remodeling may lead to the development of novel therapeutic strategies to improve heart failure.


Subject(s)
Hydrogen Sulfide , Myocytes, Cardiac , Sulfides , Ventricular Remodeling , Animals , Myocytes, Cardiac/metabolism , Sulfides/metabolism , Sulfides/pharmacology , Hydrogen Sulfide/metabolism , Cells, Cultured , Adenosine Triphosphate/metabolism , Rats , Atrophy , Cardiomegaly/metabolism , Cardiomegaly/pathology , Heart Failure/metabolism , Heart Failure/pathology , Animals, Newborn , Rats, Sprague-Dawley
3.
Nat Microbiol ; 9(6): 1526-1539, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839975

ABSTRACT

Most autotrophic organisms possess a single carbon fixation pathway. The chemoautotrophic symbionts of the hydrothermal vent tubeworm Riftia pachyptila, however, possess two functional pathways: the Calvin-Benson-Bassham (CBB) and the reductive tricarboxylic acid (rTCA) cycles. How these two pathways are coordinated is unknown. Here we measured net carbon fixation rates, transcriptional/metabolic responses and transcriptional co-expression patterns of Riftia pachyptila endosymbionts by incubating tubeworms collected from the East Pacific Rise at environmental pressures, temperature and geochemistry. Results showed that rTCA and CBB transcriptional patterns varied in response to different geochemical regimes and that each pathway is allied to specific metabolic processes; the rTCA is allied to hydrogenases and dissimilatory nitrate reduction, whereas the CBB is allied to sulfide oxidation and assimilatory nitrate reduction, suggesting distinctive yet complementary roles in metabolic function. Furthermore, our network analysis implicates the rTCA and a group 1e hydrogenase as key players in the physiological response to limitation of sulfide and oxygen. Net carbon fixation rates were also exemplary, and accordingly, we propose that co-activity of CBB and rTCA may be an adaptation for maintaining high carbon fixation rates, conferring a fitness advantage in dynamic vent environments.


Subject(s)
Carbon Cycle , Hydrothermal Vents , Polychaeta , Symbiosis , Hydrothermal Vents/microbiology , Animals , Polychaeta/metabolism , Oxidation-Reduction , Citric Acid Cycle , Sulfides/metabolism , Gene Expression Regulation, Bacterial , Hydrogenase/metabolism , Hydrogenase/genetics , Chemoautotrophic Growth , Gene Expression Profiling , Nitrates/metabolism , Photosynthesis , Bacteria/metabolism , Bacteria/genetics
4.
Water Res ; 259: 121795, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38889663

ABSTRACT

Biological desulfurization under haloalkaline conditions has been applied worldwide to remove hydrogen sulfide (H2S) from sour gas steams. The process relies on sulfide-oxidizing bacteria (SOB) to oxidize H2S to elemental sulfur (S8), which can then be recovered and reused. Recently, a dual-reactor biological desulfurization system was implemented where an anaerobic (sulfidic) bioreactor was incorporated as an addition to a micro-oxic bioreactor, allowing for higher S8 selectivity by limiting by-product formation. The highly sulfidic bioreactor environment enabled the SOB to remove (poly)sulfides (Sx2-) in the absence of oxygen, with Sx2- speculated as a main substrate in the removal pathway, thus making it vital to understand its role in the process. The SOB are influenced by the oxidation-reduction potential (ORP) set-point of the micro-oxic bioreactor as it is used to control the product of oxidation (S8 vs. SO42-), while the uptake of Sx2- by SOB has been qualitatively linked to pH. Therefore, to quantify these effects, this work determined the concentration and speciation of Sx2- in the biological desulfurization process under various pH values and ORP set-points. The total Sx2- concentrations in the sulfidic zone increased at elevated pH (8.9) compared to low pH (< 8.0), with on average 3.3 ± 1.0 mM-S more Sx2-. Chain lengths varied, with S72- only doubling in concentration while S52- increased 9 fold, which is in contrast with observations from abiotic systems. Changes to the ORP set-point of the micro-oxic reactor did not produce substantial changes in Sx2- concentration in the sulfidic zone. This illustrates that the reduction degree of the SOB in the micro-oxic bioreactor does not enhance their ability to interact with Sx2- in the sulfidic bioreactor. This increased understanding of how both pH and ORP affect changes in Sx2- concentration and chain length can lead to improved efficiency and design of the dual-reactor biological desulfurization process.


Subject(s)
Bioreactors , Oxidation-Reduction , Sulfides , Sulfur , Sulfides/chemistry , Sulfides/metabolism , Hydrogen-Ion Concentration , Hydrogen Sulfide/metabolism
5.
mSystems ; 9(6): e0113523, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38747602

ABSTRACT

Sulfur-oxidizing bacteria (SOB) have developed distinct ecological strategies to obtain reduced sulfur compounds for growth. These range from specialists that can only use a limited range of reduced sulfur compounds to generalists that can use many different forms as electron donors. Forming intimate symbioses with animal hosts is another highly successful ecological strategy for SOB, as animals, through their behavior and physiology, can enable access to sulfur compounds. Symbioses have evolved multiple times in a range of animal hosts and from several lineages of SOB. They have successfully colonized a wide range of habitats, from seagrass beds to hydrothermal vents, with varying availability of symbiont energy sources. Our extensive analyses of sulfur transformation pathways in 234 genomes of symbiotic and free-living SOB revealed widespread conservation in metabolic pathways for sulfur oxidation in symbionts from different host species and environments, raising the question of how they have adapted to such a wide range of distinct habitats. We discovered a gene family expansion of soxY in these genomes, with up to five distinct copies per genome. Symbionts harboring only the "canonical" soxY were typically ecological "specialists" that are associated with specific host subfamilies or environments (e.g., hydrothermal vents, mangroves). Conversely, symbionts with multiple divergent soxY genes formed versatile associations across diverse hosts in various marine environments. We hypothesize that expansion and diversification of the soxY gene family could be one genomic mechanism supporting the metabolic flexibility of symbiotic SOB enabling them and their hosts to thrive in a range of different and dynamic environments.IMPORTANCESulfur metabolism is thought to be one of the most ancient mechanisms for energy generation in microorganisms. A diverse range of microorganisms today rely on sulfur oxidation for their metabolism. They can be free-living, or they can live in symbiosis with animal hosts, where they power entire ecosystems in the absence of light, such as in the deep sea. In the millions of years since they evolved, sulfur-oxidizing bacteria have adopted several highly successful strategies; some are ecological "specialists," and some are "generalists," but which genetic features underpin these ecological strategies are not well understood. We discovered a gene family that has become expanded in those species that also seem to be "generalists," revealing that duplication, repurposing, and reshuffling existing genes can be a powerful mechanism driving ecological lifestyle shifts.


Subject(s)
Oxidation-Reduction , Sulfides , Symbiosis , Animals , Adaptation, Physiological/genetics , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genome, Bacterial , Hydrothermal Vents/microbiology , Multigene Family , Phylogeny , Sulfides/metabolism , Sulfur/metabolism , Symbiosis/genetics , Bivalvia
6.
Bioresour Technol ; 403: 130903, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801958

ABSTRACT

Sulfate-dependent ammonium oxidation (Sulfammox) is a critical process linking nitrogen and sulfur cycles. However, the metabolic pathway of microbes driven Sulfammox is still in suspense. The study demonstrated that ammonium was not consumed with sulfate as the sole electron acceptor during long-term enrichment, probably due to inhibition from sulfide accumulation, while ammonium was removed at âˆ¼ 10 mg N/L/d with sulfate and nitrate as electron acceptors. Ammonium and sulfate were converted into nitrogen gas, sulfide, and elemental sulfur. Sulfammox was mainly performed by Candidatus Brocadia sapporoensis and Candidatus Brocadia fulgida, both of which encoded ammonium oxidation pathway and dissimilatory sulfate reduction pathway. Not sulfide-driven autotrophic denitrifiers but Candidatus Kuenenia stuttgartiensis converted nitrate to nitrite with sulfide. The results of this study reveal the specialized metabolism of Sulfammox bacteria (Candidatus Brocadia sapporoensis and Candidatus Brocadia fulgida) and provide insight into microbial relationships during the nitrogen and sulfur cycles.


Subject(s)
Nitrogen , Oxidation-Reduction , Sulfates , Sulfur , Sulfur/metabolism , Sulfates/metabolism , Nitrogen/metabolism , Anaerobiosis , Ammonium Compounds/metabolism , Nitrates/metabolism , Sulfides/metabolism
7.
Phys Chem Chem Phys ; 26(23): 16521-16528, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38809594

ABSTRACT

Indole monooxygenases (IMOs) are enzymes from the family of Group E monooxygenases, requiring flavin adenine dinucleotide (FAD) for their activities. IMOs play important roles in both sulfoxidation and epoxidation reactions. The broad substrate range and high selectivity of IMOs make them promising biocatalytic tools for synthesizing chiral compounds. In the present study, quantum chemical calculations using the cluster approach were performed to investigate the reaction mechanism and the enantioselectivity of the IMO from Variovorax paradoxus EPS (VpIndA1). The sulfoxidation of methyl phenyl sulfide (MPS) and the epoxidation of indene were chosen as the representative reactions. The calculations confirmed that the FADOOH intermediate is the catalytic species in the VpIndA1 reactions. The oxidation of MPS adopts a one-step mechanism involving the direct oxygen-transfer from FADOOH to the substrate and the proton transfer from the -OH group back to FAD, while the oxidation of indene follows a stepwise mechanism involving a carbocation intermediate. It was computationally predicted that VpIndA1 prefers the formation of (S)-product for the MPS sulfoxidation and (1S,2R)-product for the indene epoxidation, consistent with the experimental observations. Importantly, the factors controlling the stereo-preference of the two reactions are identified. The findings in the present study provide valuable insights into the VpIndA1-catalyzed reactions, which are essential for the rational design of this enzyme and other IMOs for industrial applications. It is also worth emphasizing that the quantum chemical cluster approach is again demonstrated to be powerful in studying the enantioselectivity of enzymatic reactions.


Subject(s)
Mixed Function Oxygenases , Oxidation-Reduction , Stereoisomerism , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/chemistry , Quantum Theory , Sulfides/chemistry , Sulfides/metabolism , Indoles/chemistry , Indoles/metabolism , Models, Chemical , Epoxy Compounds/chemistry , Epoxy Compounds/metabolism , Flavin-Adenine Dinucleotide/chemistry , Flavin-Adenine Dinucleotide/metabolism , Models, Molecular
8.
Bioresour Technol ; 403: 130870, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777234

ABSTRACT

Research on the stability evaluation of biotrickling filters (BTFs) under harsh conditions and the bacterial adaptation process still needs to be improved. Herein, BTFs with polypropylene plastic (PP) and ceramic raschig rings (CRR) were investigated for a better understanding of the biodegradation of ammonia (NH3), hydrogen sulfide (H2S), and dimethyl sulfide (DMS). The results showed an excellent performance in removal efficiency (RE) for NH3 (91.6 %-99.9 %), H2S (RE: 55.3 %-99.5 %), and DMS (RE: 10.6 %-99.9 %). It was found that a more apparent positive correlation between N2O emission and pressure drop in CRR BTF (R2 = 0.92) than in PP BTF (R2 = 0.79) (P < 0.01). Low temperature promotes an increase in the abundance ofComamonasandBacillus. The polysaccharides in PP and CRR reactors decreased by 78.6 % and 68.1 % when temperature reduced from 25℃ to 8℃. This work provides a novel insight into understanding bacterial survival under harsh BTF environments.


Subject(s)
Ammonia , Biodegradation, Environmental , Filtration , Odorants , Ammonia/metabolism , Filtration/methods , Bioreactors , Hydrogen Sulfide/metabolism , Sulfides/chemistry , Sulfides/metabolism , Sulfur/metabolism , Ceramics , Temperature
9.
Bioresour Technol ; 403: 130874, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782191

ABSTRACT

Despite the great potential of sulfur-based autotrophic denitrification, an improvement in nitrate removal rate is still needed. This study used the desulfurized products of Mn ore to develop the MnS-S0-limestone autotrophic denitrification system (MSLAD). The feasibility of MSLAD for denitrification was explored and the possible mechanism was proposed. The nitrate (100 mg/L) was almost removed within 24 h in batch experiment in MSLAD. Also, an average TN removal of 98 % (472.0 mg/L/d) at hydraulic retention time of 1.5 h in column experiment (30 mg/L) was achieved. MnS and S0 could act as coupled electron donors and show synergistic effects for nitrate removal. γ-MnS with smaller particle size and lower crystallinity was more readily utilized by the bacterium and had higher nitrate removal efficiency than that of α-MnS. Thiobacillus and Sulfurimonas were the core functional bacterium in denitrification. Therefore, MnS-S0-limestone bio-denitrification provides an efficient alternative method for nitrate removal in wastewater.


Subject(s)
Autotrophic Processes , Calcium Carbonate , Denitrification , Nitrates , Sulfur , Nitrates/metabolism , Calcium Carbonate/chemistry , Sulfur/metabolism , Sulfides/chemistry , Sulfides/metabolism , Feasibility Studies , Thiobacillus/metabolism , Manganese Compounds/chemistry , Water Purification/methods , Manganese
10.
J Hazard Mater ; 474: 134760, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38820746

ABSTRACT

In this study, we investigated the adsorption of Cd(II) and the biosynthesis of CdS quantum dots (QDs) mediated by cells of sulfate-reducing bacteria before and after the removal of EPS to determine whether EPS or the cell wall plays a major role. Potentiometric titration revealed that the concentration of proton-active binding sites on cells with EPS (EPS-intact) was notably higher than that on cells without EPS (EPS-free) and that the sites were predominantly carboxyl, phosphoryl, hydroxyl, and amine groups. The protein content in EPS-intact cells was higher, and thus the Cd(II) adsorption capacity was stronger. The CdS QDs biosynthesized using EPS-intact possessed better properties, including uniform size distribution, good crystallinity, small particle size, high fluorescence, and strong antimicrobial activity, and the yields were significantly higher than those of EPS-free by a factor of about 1.5-3.7. Further studies revealed that alkaline amino acids in EPS play a major role and serve as templates in the biosynthesis of QDs, whereas they were rarely detected in the cell wall. This study emphasizes the important role of EPS in the bacterial binding of metals and efficient recycling of hazardous waste in water.


Subject(s)
Cadmium Compounds , Quantum Dots , Sulfides , Quantum Dots/chemistry , Cadmium Compounds/metabolism , Cadmium Compounds/chemistry , Sulfides/chemistry , Sulfides/metabolism , Adsorption , Extracellular Polymeric Substance Matrix/metabolism , Extracellular Polymeric Substance Matrix/chemistry , Cadmium/metabolism , Cadmium/chemistry
11.
Chemosphere ; 361: 142470, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810802

ABSTRACT

Effective nitrate removal is a key challenge when treating low carbon-to-nitrogen ratio wastewater. How to select an effective inorganic electron donor to improve the autotrophic denitrification of nitrate nitrogen has become an area of intense research. In this study, the nitrate removal mechanism of three iron-based materials in the presence and absence of microorganisms was investigated with Fe2+/Fe0 as an electron donor and nitrate as an electron acceptor, and the relationship between the iron materials and denitrifying microorganisms was explored. The results indicated that the nitrogen removal efficiency of each iron-based material coupled sludge systems was higher than that of iron-based material. Furthermore, compared with the sponge iron coupled sludge system (60.6%-70.4%) and magnetite coupled sludge (56.1%-65.3%), the pyrite coupled sludge system had the highest removal efficiency of TN, and the removal efficiency increased from 62.5% to 82.1% with time. The test results of scanning electron microscope, X-ray photoelectron spectroscopy and X-ray diffraction indicated that iron-based materials promoted the attachment of microorganisms and the chemical reduction of nitrate in three iron-based material coupled sludge systems. Furthermore, the pyrite coupled sludge system had the highest nitrite reductase activity and can induce microorganisms to secrete more extracellular polymer substances. Combined with high-throughput sequencing and PICRUSt2 functional predictive analysis software, the total relative abundance of the dominant bacterial in pyrite coupled sludge system was the highest (72.06%) compared with the other iron-based material systems, and the abundance of Blastocatellaceae was relatively high. Overall, these results suggest that the pyrite coupled sludge system was more conducive to long-term stable nitrate removal.


Subject(s)
Autotrophic Processes , Carbon , Denitrification , Iron , Nitrates , Nitrogen , Waste Disposal, Fluid , Wastewater , Wastewater/chemistry , Nitrates/metabolism , Iron/chemistry , Iron/metabolism , Nitrogen/metabolism , Carbon/metabolism , Carbon/chemistry , Waste Disposal, Fluid/methods , Sewage/microbiology , Sewage/chemistry , Water Pollutants, Chemical/metabolism , Oxidation-Reduction , Sulfides/chemistry , Sulfides/metabolism
12.
Chemosphere ; 361: 142453, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38821127

ABSTRACT

Gut bacteria of earthworm Amynthas hupeiensis exhibit significant potential for the in-situ remediation of cadmium (Cd)-contaminated soil. However, the mechanisms by which these gut bacteria immobilize and tolerate Cd remain elusive. The composition of the gut bacterial community was characterized by high-throughput sequencing. Cd-tolerant bacteria were isolated from the gut, and their roles in Cd immobilization, as well as their tolerance mechanisms, were explored through chemical characterization and transcriptome analysis. The predominant taxa in the gut bacterial community included unclassified Enterobacteriaceae, Citrobacter, and Bacillus, which were distinctly different from those in the surrounding soil. Notably, the most Cd-tolerant gut bacterium, Citrobacter freundii DS strain, immobilized 63.61% of Cd2+ within 96 h through extracellular biosorption and intracellular bioaccumulation of biosynthetic CdS nanoparticles, and modulation of solution pH and NH4+ concentration. Moreover, the characteristic signals of CdS were also observed in the gut content of A. hupeiensis when the sterilized Cd-contaminated soil was inoculated with C. freundii. The primary pathways involved in the response of C. freundii to Cd stress included the regulation of ABC transporters, bacterial chemotaxis, cell motility, oxidative phosphorylation, and two-component system. In conclusion, C. freundii facilitates Cd immobilization both in vitro and in vivo, thereby enhancing the host earthworm's adaptation to Cd-contaminated soil.


Subject(s)
Cadmium , Gastrointestinal Microbiome , Oligochaeta , Soil Pollutants , Oligochaeta/metabolism , Oligochaeta/microbiology , Animals , Cadmium/metabolism , Soil Pollutants/metabolism , Cadmium Compounds/metabolism , Nanoparticles/chemistry , Bacteria/metabolism , Soil Microbiology , Sulfides/metabolism , Citrobacter freundii/metabolism
13.
J Contam Hydrol ; 264: 104341, 2024 May.
Article in English | MEDLINE | ID: mdl-38701693

ABSTRACT

Canada's deep geological repository (DGR) design includes an engineered barrier system where highly compacted bentonite (HCB) surrounds the copper-coated used fuel containers (UFCs). Microbial-influenced corrosion is a potential threat to long-term integrity of UFC as bisulfide (HS-) may be produced by microbial activities under anaerobic conditions and transported via diffusion through the HCB to reach the UFC surface, resulting in corrosion of copper. Therefore, understanding HS- transport mechanisms through HCB is critical for accurate prediction of copper corrosion allowance. This study investigated HS- transport behaviour through MX-80 bentonite at dry densities 1070-1615 kg m-3 by performing through-diffusion experiments. Following HS- diffusion, bromide (Br-) diffusion and Raman spectroscopy analyses were performed to explore possible physical or mineralogical alterations of bentonite caused by interacting with HS-. In addition, accessible porosity ε was estimated using extended Archie's law. Effective diffusion coefficient of HS- was found 2.5 × 10-12 m2 s-1 and 5.0× 10-12 m2 s-1 for dry densities 1330 and 1070 kg m-3, respectively. No HS- breakthrough was observed for highly compacted bentonite (1535-1615 kg m-3) over the experimental timeframe (170 days). Raman spectroscopy results revealed that HS- reacted with iron in bentonite and precipitated as mackinawite and, therefore, it was immobilized. Finally, results of this study imply that HS- transport towards UFC will be highly controlled by the available iron content and dry density of the buffer material.


Subject(s)
Bentonite , Sulfides , Bentonite/chemistry , Diffusion , Sulfides/chemistry , Sulfides/metabolism , Spectrum Analysis, Raman , Copper/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
14.
Microb Cell Fact ; 23(1): 140, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760827

ABSTRACT

BACKGROUND: Quantum Dots (QDs) are fluorescent nanoparticles with exceptional optical and optoelectronic properties, finding widespread utility in diverse industrial applications. Presently, chemically synthesized QDs are employed in solar cells, bioimaging, and various technological domains. However, many applications demand QDs with prolonged lifespans under conditions of high-energy radiation. Over the past decade, microbial biosynthesis of nanomaterials has emerged as a sustainable and cost-effective process. In this context, the utilization of extremophile microorganisms for synthesizing QDs with unique properties has recently been reported. RESULTS: In this study, UV-resistant bacteria were isolated from one of the most extreme environments in Antarctica, Union Glacier at the Ellsworth Mountains. Bacterial isolates, identified through 16 S sequencing, belong to the genera Rhodococcus, Pseudarthrobacter, and Arthrobacter. Notably, Rhodococcus sp. (EXRC-4 A-4), Pseudarthrobacter sp. (RC-2-3), and Arthrobacter sp. (EH-1B-1) tolerate UV-C radiation doses ≥ 120 J/m². Isolated UV-resistant bacteria biosynthesized CdS QDs with fluorescence intensities 4 to 8 times higher than those biosynthesized by E. coli, a mesophilic organism tolerating low doses of UV radiation. Transmission electron microscopy (TEM) analysis determined QD sizes ranging from 6 to 23 nm, and Fourier-transform infrared (FTIR) analysis demonstrated the presence of biomolecules. QDs produced by UV-resistant Antarctic bacteria exhibit high photostability after exposure to UV-B radiation, particularly in comparison to those biosynthesized by E. coli. Interestingly, red fluorescence-emitting QDs biosynthesized by Rhodococcus sp. (EXRC-4 A-4) and Arthrobacter sp. (EH-1B-1) increased their fluorescence emission after irradiation. Analysis of methylene blue degradation after exposure to irradiated QDs biosynthesized by UV-resistant bacteria, indicates that the QDs transfer their electrons to O2 for the formation of reactive oxygen species (ROS) at different levels. CONCLUSIONS: UV-resistant Antarctic bacteria represent a novel alternative for the sustainable generation of nanostructures with increased radiation tolerance-two characteristics favoring their potential application in technologies requiring continuous exposure to high-energy radiation.


Subject(s)
Cadmium Compounds , Quantum Dots , Rhodococcus , Ultraviolet Rays , Quantum Dots/chemistry , Antarctic Regions , Cadmium Compounds/metabolism , Cadmium Compounds/chemistry , Rhodococcus/metabolism , Rhodococcus/genetics , Arthrobacter/metabolism , Arthrobacter/genetics , Sulfides/metabolism , Sulfides/chemistry
15.
Water Environ Res ; 96(5): e11040, 2024 May.
Article in English | MEDLINE | ID: mdl-38752384

ABSTRACT

In this study, a pyrite-based autotrophic denitrification (PAD) system, a polycaprolactone (PCL)-supported heterotrophic denitrification (PHD) system, and a pyrite+PCL-based split-mixotrophic denitrification (PPMD) system were constructed. The pyrite particle size was controlled in 1-3, 3-5, or 5-8 mm in both the PAD and PPMD systems to investigate the effect of pyrite particle size on the denitrification performance of autotrophic or split-mixotrophic bioreactors. It was found that the PAD system achieved the best denitrification efficiency with an average removal rate of 98.98% in the treatment of 1- to 3-mm particle size, whereas it was only 19.24% in the treatment of 5- to 8-mm particle size. At different phases of the whole experiment, the nitrate removal rates of both the PHD and PPMD systems remained stable at a high level (>94%). Compared with the PAD or PHD system, the PPMD system reduced the concentrations of sulfate and chemical oxygen demand in the final effluent efficiently. The interconnection network diagram explained the intrinsic metabolic pathways of nitrogen, sulfur, and carbon in the three denitrification systems at different phases. In addition, the microbial community analysis showed that the PPMD system was beneficial for the enrichment of Firmicutes. Finally, the impact mechanism of pyrite particle size on the performance of the PPMD system was proposed. PRACTITIONER POINTS: The reduction of pyrite particle size was beneficial for improving the efficiency of the PAD process. The change in particle size had an effect on NO2 --N accumulation in the PAD system. The accumulation of NH4 +-N in the PPMD system increased with the decrease in particle size. The reduction of pyrite particle size increased the production of SO4 2- in the PAD and PPMD systems. The correlations among the effluent indicators of the PAD and PPMD systems could be well explained.


Subject(s)
Bioreactors , Denitrification , Iron , Particle Size , Polyesters , Sulfides , Sulfides/chemistry , Sulfides/metabolism , Polyesters/chemistry , Polyesters/metabolism , Iron/chemistry , Iron/metabolism , Autotrophic Processes , Nitrates/metabolism , Nitrates/chemistry
16.
Environ Microbiol Rep ; 16(3): e13263, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705733

ABSTRACT

Deep-sea methane seeps are amongst the most biologically productive environments on Earth and are often characterised by stable, low oxygen concentrations and microbial communities that couple the anaerobic oxidation of methane to sulfate reduction or iron reduction in the underlying sediment. At these sites, ferrous iron (Fe2+) can be produced by organoclastic iron reduction, methanotrophic-coupled iron reduction, or through the abiotic reduction by sulfide produced by the abundant sulfate-reducing bacteria at these sites. The prevalence of Fe2+in the anoxic sediments, as well as the availability of oxygen in the overlying water, suggests that seeps could also harbour communities of iron-oxidising microbes. However, it is unclear to what extent Fe2+ remains bioavailable and in solution given that the abiotic reaction between sulfide and ferrous iron is often assumed to scavenge all ferrous iron as insoluble iron sulfides and pyrite. Accordingly, we searched the sea floor at methane seeps along the Cascadia Margin for microaerobic, neutrophilic iron-oxidising bacteria, operating under the reasoning that if iron-oxidising bacteria could be isolated from these environments, it could indicate that porewater Fe2+ can persist is long enough for biology to outcompete pyritisation. We found that the presence of sulfate in our enrichment media muted any obvious microbially-driven iron oxidation with most iron being precipitated as iron sulfides. Transfer of enrichment cultures to sulfate-depleted media led to dynamic iron redox cycling relative to abiotic controls and sulfate-containing cultures, and demonstrated the capacity for biogenic iron (oxyhydr)oxides from a methane seep-derived community. 16S rRNA analyses revealed that removing sulfate drastically reduced the diversity of enrichment cultures and caused a general shift from a Gammaproteobacteria-domainated ecosystem to one dominated by Rhodobacteraceae (Alphaproteobacteria). Our data suggest that, in most cases, sulfur cycling may restrict the biological "ferrous wheel" in contemporary environments through a combination of the sulfur-adapted sediment-dwelling ecosystems and the abiotic reactions they influence.


Subject(s)
Bacteria , Geologic Sediments , Iron , Methane , Oxidation-Reduction , Sulfur , Methane/metabolism , Iron/metabolism , Sulfur/metabolism , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Seawater/microbiology , Seawater/chemistry , Sulfides/metabolism , Sulfates/metabolism , RNA, Ribosomal, 16S/genetics , Phylogeny
17.
Sci Total Environ ; 933: 173057, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38729372

ABSTRACT

Dimethylsulfoniopropionate (DMSP), a key organic sulfur compound in marine and subseafloor sediments, is degraded by phytoplankton and bacteria, resulting in the release of the climate-active volatile gas dimethylsulfide (DMS). However, it remains unclear if dominant eukaryotic fungi in subseafloor sediments possess specific abilities and metabolic mechanisms for DMSP degradation and DMS formation. Our study provides the first evidence that fungi from coal-bearing sediments ∼2 km below the seafloor, such as Aspergillus spp., Chaetomium globosum, Cladosporium sphaerospermum, and Penicillium funiculosum, can degrade DMSP and produce DMS. In Aspergillus sydowii 29R-4-F02, which exhibited the highest DMSP-dependent DMS production rate (16.95 pmol/µg protein/min), two DMSP lyase genes, dddP and dddW, were identified. Remarkably, the dddW gene, previously observed only in bacteria, was found to be crucial for fungal DMSP cleavage. These findings not only extend the list of fungi capable of degrading DMSP, but also enhance our understanding of DMSP lyase diversity and the role of fungi in DMSP decomposition in subseafloor sedimentary ecosystems.


Subject(s)
Fungi , Sulfonium Compounds , Sulfonium Compounds/metabolism , Fungi/metabolism , Geologic Sediments/microbiology , Sulfides/metabolism , Biodegradation, Environmental , Carbon-Sulfur Lyases/metabolism
18.
Mar Genomics ; 75: 101108, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735675

ABSTRACT

Dimethylsulfoniopropionate (DMSP) is one of the most abundant sulfur-containing organic compounds on the earth, which is an important carbon and sulfur source and plays an important role in the global sulfur cycle. Marine microorganisms are an important group involved in DMSP metabolism. The strain Cobetia sp. D5 was isolated from seawater samples in the Yellow Sea area of Qingdao during an algal bloom. There is still limited knowledge on the capacity of DMSP utilization of Cobetia bacteria. The study reports the whole genome sequence of Cobetia sp. D5 to understand its DMSP metabolism pathway. The genome of Cobetia sp. D5 consists of a circular chromosome with a length of 4,233,985 bp and the GC content is 62.56%. Genomic analysis showed that Cobetia sp. D5 contains a set of genes to transport and metabolize DMSP, which can cleave DMSP to produce dimethyl sulphide (DMS) and 3-Hydroxypropionyl-Coenzyme A (3-HP-CoA). DMS diffuses into the environment to enter the global sulfur cycle, whereas 3-HP-CoA is catabolized to acetyl CoA to enter central carbon metabolism. Thus, this study provides genetic insights into the DMSP metabolic processes of Cobetia sp. D5 during a marine algal bloom, and contributes to the understanding of the important role played by marine bacteria in the global sulfur cycle.


Subject(s)
Genome, Bacterial , Sulfonium Compounds , Sulfur , Sulfonium Compounds/metabolism , Sulfur/metabolism , Seawater/microbiology , Sulfides/metabolism , China
19.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731933

ABSTRACT

Despite the promising applications of the use of quantum dots (QDs) in the biomedical field, the long-lasting effects of QDs on the cell remain poorly understood. To comprehend the mechanisms underlying the toxic effects of QDs in yeast, we characterized defects associated with receptor-mediated endocytosis (RME) as well as pinocytosis using Saccharomyces cerevisiae as a model in the presence of cadmium selenide/zinc sulfide (CdSe/ZnS) QDs. Our findings revealed that QDs led to an inefficient RME at the early, intermediate, and late stages of endocytic patch maturation at the endocytic site, with the prolonged lifespan of GFP fused yeast fimbrin (Sac6-GFP), a late marker of endocytosis. The transit of FM1-43, a lipophilic dye from the plasma membrane to the vacuole, was severely retarded in the presence of QDs. Finally, QDs caused an accumulation of monomeric red fluorescent protein fused carbamoyl phosphate synthetase 1 (mRFP-Cps1), a vacuolar lumen marker in the vacuole. In summary, the present study provides novel insights into the possible impact of CdSe/ZnS QDs on the endocytic machinery, enabling a deeper comprehension of QD toxicity.


Subject(s)
Cadmium Compounds , Endocytosis , Quantum Dots , Saccharomyces cerevisiae , Selenium Compounds , Sulfides , Zinc Compounds , Quantum Dots/toxicity , Quantum Dots/chemistry , Endocytosis/drug effects , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Cadmium Compounds/toxicity , Selenium Compounds/toxicity , Sulfides/toxicity , Sulfides/metabolism , Zinc Compounds/toxicity , Vacuoles/metabolism , Vacuoles/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Cell Membrane/metabolism , Cell Membrane/drug effects
20.
Biochemistry ; 63(12): 1569-1577, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38813769

ABSTRACT

The Escherichia coli cysteine desulfurase SufS (EcSufS) is a dimeric, PLP-dependent enzyme responsible for sulfur mobilization in the SUF Fe-S cluster bioassembly pathway. The enzyme uses cysteine as a sulfur source and generates alanine and a covalent persulfide located on an active site of cysteine. Optimal in vitro activity of EcSufS requires the presence of the transpersulfurase protein, EcSufE, and a strong reductant. Here, presteady-state and single-turnover kinetics are used to investigate the mechanism of EcSufS activation by EcSufE. In the absence of EcSufE, EcSufS exhibits a presteady-state burst of product production with an amplitude of ∼0.4 active site equivalents, consistent with a half-sites reactivity. KinTek Explorer was used to isolate the first turnover of alanine formation and fit the data with a simplified kinetic mechanism with steps for alanine formation (k3) and a net rate constant for the downstream steps (k5). Using this treatment, microscopic rate constants of 2.3 ± 0.5 s-1 and 0.10 ± 0.01 s-1 were determined for k3 and k5, respectively. The inclusion of EcSufE in the reaction results in a similar rate constant for k3 but induces a 10-fold enhancement of k5 to 1.1 ± 0.2 s-1, such that both steps are partially rate-determining. The most likely downstream step where EcSufE could exert influence on EcSufS activity is the removal of the persulfide intermediate. Importantly, this step appears to serve as a limiting feature in the half-sites activity such that activating persulfide transfer allows for rapid shifting between active sites. Single-turnover assays show that the presence of EcSufE slightly slowed the rates of alanine-forming steps, suggesting it does not activate steps in the desulfurase half reaction.


Subject(s)
Carbon-Sulfur Lyases , Escherichia coli Proteins , Escherichia coli , Sulfides , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Sulfides/metabolism , Sulfides/chemistry , Escherichia coli/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Kinetics , Carbon-Sulfur Lyases/metabolism , Carbon-Sulfur Lyases/chemistry , Alanine/metabolism , Alanine/chemistry , Catalytic Domain , Cysteine/metabolism , Cysteine/chemistry , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...