Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 638
Filter
1.
Int J Mol Sci ; 25(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063113

ABSTRACT

Exposure to 2.45 GHz electromagnetic radiation (EMR) emitted from commonly used devices has been reported to induce oxidative stress in several experimental models. Our study aims to evaluate the efficacy of sulforaphane, a well-known natural product, in preventing radiation-induced toxic effects caused by a 24 h exposure of SH-SY5Y neuronal-like cells and peripheral blood mononuclear cells (PBMCs) to 2.45 GHz EMR. Cells were exposed to radiation for 24 h in the presence or absence of sulforaphane at different concentrations (5-10-25 µg/mL). Cell viability, mitochondrial activity alterations, the transcription and protein levels of redox markers, and apoptosis-related genes were investigated. Our data showed a reduction in cell viability of both neuronal-like cells and PBMCs caused by EMR exposure and a protective effect of 5 µg/mL sulforaphane. The lowest sulforaphane concentration decreased ROS production and increased the Mitochondrial Transmembrane Potential (Δψm) and the NAD+/NADH ratio, which were altered by radiation exposure. Sulforaphane at higher concentrations displayed harmful effects. The hormetic behavior of sulforaphane was also evident after evaluating the expression of genes coding for Nrf2, SOD2, and changes in apoptosis markers. Our study underlined the vulnerability of neuronal-like cells to mitochondrial dysfunction and oxidative stress and the possibility of mitigating these effects by supplementation with sulforaphane. To our knowledge, there are no previous studies about the effects of SFN on these cells when exposed to 2.45 GHz electromagnetic radiation.


Subject(s)
Electromagnetic Radiation , Isothiocyanates , Leukocytes, Mononuclear , Membrane Potential, Mitochondrial , Neurons , Oxidative Stress , Sulfoxides , Isothiocyanates/pharmacology , Humans , Sulfoxides/pharmacology , Leukocytes, Mononuclear/radiation effects , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Neurons/radiation effects , Neurons/drug effects , Neurons/metabolism , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Membrane Potential, Mitochondrial/drug effects , Membrane Potential, Mitochondrial/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Apoptosis/drug effects , Apoptosis/radiation effects , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mitochondria/drug effects , Mitochondria/radiation effects , Mitochondria/metabolism , Cell Line, Tumor
2.
J Med Chem ; 67(14): 12331-12348, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38988250

ABSTRACT

Monoacylglycerol lipase (MAGL) is the key enzyme for the hydrolysis of endocannabinoid 2-arachidonoylglycerol (2-AG). The central role of MAGL in the metabolism of 2-AG makes it an attractive therapeutic target for a variety of disorders, including inflammation-induced tissue injury, pain, multiple sclerosis, and cancer. Previously, we reported LEI-515, an aryl sulfoxide, as a peripherally restricted, covalent reversible MAGL inhibitor that reduced neuropathic pain and inflammation in preclinical models. Here, we describe the structure-activity relationship (SAR) of aryl sulfoxides as MAGL inhibitors that led to the identification of LEI-515. Optimization of the potency of high-throughput screening (HTS) hit 1 yielded compound ±43. However, ±43 was not metabolically stable due to its ester moiety. Replacing the ester group with α-CF2 ketone led to the identification of compound ±73 (LEI-515) as a metabolically stable MAGL inhibitor with subnanomolar potency. LEI-515 is a promising compound to harness the therapeutic potential of MAGL inhibition.


Subject(s)
Enzyme Inhibitors , Monoacylglycerol Lipases , Sulfoxides , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/metabolism , Structure-Activity Relationship , Humans , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Sulfoxides/chemistry , Sulfoxides/pharmacology , Sulfoxides/chemical synthesis , Animals , Microsomes, Liver/metabolism , High-Throughput Screening Assays
3.
Sci Rep ; 14(1): 16016, 2024 07 11.
Article in English | MEDLINE | ID: mdl-38992004

ABSTRACT

Triple-negative breast cancer (TNBC) represents aggressive phenotype with limited treatment options due to the lack of drug targets. Natural compounds are extensively studied regarding their potential to alter the efficacy of cancer treatment Among them sulforaphane - an isothiocyanate of natural origin, was shown to be a hormetic compound, that may exert divergent effects: cytoprotective or cytotoxic depending on its concentrations. Thus, the aim of this study was to determine the effect of its low, dietary concentrations on the proliferation and migration of the TNBC cells in the in vivo and in vitro 2D and 3D model. Results of the in vivo experiment showed up to 31% tumor growth inhibition after sulforaphane treatment associated with lowered proliferating potential of cancer cells, reduced areas of necrosis, and changed immune cell type infiltration, showing less malignant type of tumor in contrast to the non-treated group. Also, the study revealed that sulforaphane decreased the number of lung metastases. The in vitro study confirmed that SFN inhibited cell migration, but only in cells derived from 3D spheroids, not from 2D in vitro cultures. The results show a specific role of sulforaphane in the case of cells released from the TNBC primary tumor and its environment.


Subject(s)
Cell Movement , Cell Proliferation , Isothiocyanates , Sulfoxides , Triple Negative Breast Neoplasms , Isothiocyanates/pharmacology , Isothiocyanates/administration & dosage , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Sulfoxides/pharmacology , Female , Humans , Cell Movement/drug effects , Cell Line, Tumor , Animals , Cell Proliferation/drug effects , Mice , Anticarcinogenic Agents/pharmacology , Anticarcinogenic Agents/administration & dosage , Anticarcinogenic Agents/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Xenograft Model Antitumor Assays
4.
Phytomedicine ; 130: 155731, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38824824

ABSTRACT

BACKGROUND: Sulforaphane (SFN) is a dietary isothiocyanate, derived from glucoraphanin, present in cruciferous vegetables belonging to the Brassica genus. It is a biologically active phytochemical that acts as a nuclear factor erythroid 2-related factor 2 (Nrf2) inducer. Thus, it has been reported to have multiple protective functions including anticancer responses and protection against a toxic agent's action. PURPOSE: The present work systematically reviewed and synthesised the protective properties of sulforaphane against a toxic agent. This review reveals the mechanism of the action of SFN in each organ or system. METHODS: The PRISMA guideline was followed in this sequence: researched literature, organised retrieved documents, abstracted relevant information, assessed study quality and bias, synthesised data, and prepared a comprehensive report. Searches were conducted on Science Direct and PubMed using the keywords "Sulforaphane" AND ("protective effects" OR "protection against"). RESULTS: Reports showed that liver and the nervous system are the target organs on which attention was focused, and this might be due to the key role of oxidative stress in liver and neurodegenerative diseases. However, protective activities have also been demonstrated in the lungs, heart, immune system, kidneys, and endocrine system. SFN exerts its protective effects by activating the Nrf2 pathway, which enhances antioxidant defenses and reduces oxidative stress. It also suppresses inflammation by decreasing interleukin production. Moreover, SFN inhibits apoptosis by preventing caspase 3 cleavage and increasing Bcl2 levels. Overall, SFN demonstrates multifaceted mechanisms to counteract the adverse effects of toxic agents. CONCLUSION: SFN has potential clinical applications as a chemoprotective agent. Nevertheless, more studies are necessary to set the safe doses of SFN in humans.


Subject(s)
Isothiocyanates , Sulfoxides , Isothiocyanates/pharmacology , Sulfoxides/pharmacology , Humans , Animals , Brassica/chemistry , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Protective Agents/pharmacology
5.
Int J Mol Sci ; 25(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38928111

ABSTRACT

Age-related macular degeneration (AMD) is strictly linked to chronic oxidative stress, inflammation, loss of epithelial barrier integrity, and often with abnormal new blood vessel development. In this study, the retinal epithelial cell line ARPE-19 was treated with pro-inflammatory transforming growth factor-beta (TGF-ß) to investigate the activity of vitamin D (VD) and sulforaphane (SF) in abating the consequences of oxidative stress and inflammation. The administration of VD and SF lowered reactive oxygen species (ROS) levels, and abated the related expression of the pro-inflammatory cytokines interleukin-6 and interleukin-8 induced by TGF-ß. We evaluated mitochondrial respiration as a source of ROS production, and we discovered that the increased transcription of respiratory elements triggered by TGF-ß was prevented by VD and SF. In this model of inflamed epithelium, the treatment with VD and SF also reduced the secretion of VEGF, a key angiogenic factor, and restored the markers of epithelial integrity. Remarkably, all the observed biological effects were potentiated by the co-stimulation with the two compounds and were not mediated by VD receptor expression but rather by the ERK 1/2 pathway. Altogether, the results of this study reveal the powerful synergistic anti-inflammatory activity of SF and VD and lay the foundation for future clinical assessment of their efficacy in AMD.


Subject(s)
Isothiocyanates , Macular Degeneration , Oxidative Stress , Reactive Oxygen Species , Sulfoxides , Vitamin D , Humans , Macular Degeneration/metabolism , Macular Degeneration/drug therapy , Macular Degeneration/pathology , Isothiocyanates/pharmacology , Oxidative Stress/drug effects , Sulfoxides/pharmacology , Vitamin D/pharmacology , Reactive Oxygen Species/metabolism , Cell Line , Vascular Endothelial Growth Factor A/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/pathology , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Transforming Growth Factor beta/metabolism , Biomarkers/metabolism , Interleukin-8/metabolism
6.
Mol Med ; 30(1): 94, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902597

ABSTRACT

Despite recent advances in tumor diagnosis and treatment technologies, the number of cancer cases and deaths worldwide continues to increase yearly, creating an urgent need to find new methods to prevent or treat cancer. Sulforaphane (SFN), as a member of the isothiocyanates (ITCs) family, which is the hydrolysis product of glucosinolates (GLs), has been shown to have significant preventive and therapeutic cancer effects in different human cancers. Early studies have shown that SFN scavenges oxygen radicals by increasing cellular defenses against oxidative damage, mainly through the induction of phase II detoxification enzymes by nuclear factor erythroid 2-related factor 2 (Nrf2). More and more studies have shown that the anticancer mechanism of SFN also includes induction of apoptotic pathway in tumor cells, inhibition of cell cycle progression, and suppression of tumor stem cells. Therefore, the application of SFN is expected to be a necessary new approach to treating cancer. In this paper, we review the multiple molecular mechanisms of SFN in cancer prevention and treatment in recent years, which can provide a new vision for cancer treatment.


Subject(s)
Anticarcinogenic Agents , Isothiocyanates , Neoplasms , Sulfoxides , Isothiocyanates/pharmacology , Isothiocyanates/therapeutic use , Sulfoxides/pharmacology , Sulfoxides/therapeutic use , Humans , Neoplasms/prevention & control , Neoplasms/drug therapy , Neoplasms/metabolism , Anticarcinogenic Agents/pharmacology , Anticarcinogenic Agents/therapeutic use , Animals , Apoptosis/drug effects , NF-E2-Related Factor 2/metabolism
7.
Biochem Biophys Res Commun ; 726: 150244, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-38905785

ABSTRACT

Sulforaphane (SFaN) is a food-derived compound with several bioactive properties, including atherosclerosis, diabetes, and obesity treatment. However, the mechanisms by which SFaN exerts its various effects are still unclear. To elucidate the mechanisms of the various effects of SFaN, we explored novel SFaN-binding proteins using SFaN beads and identified acyl protein thioesterase 2 (APT2). We also found that SFaN binds to the APT2 via C56 residue and attenuates the palmitoylation of APT2, thereby reducing plasma membrane localization of APT2. This study reveals a novel bioactivity of SFaN as a regulator of APT2 protein palmitoylation.


Subject(s)
Isothiocyanates , Lipoylation , Sulfoxides , Thiolester Hydrolases , Isothiocyanates/metabolism , Isothiocyanates/pharmacology , Isothiocyanates/chemistry , Sulfoxides/pharmacology , Sulfoxides/metabolism , Sulfoxides/chemistry , Humans , Thiolester Hydrolases/metabolism , Thiolester Hydrolases/chemistry , Lipoylation/drug effects , Protein Binding , HEK293 Cells , Cell Membrane/metabolism
8.
Cells ; 13(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38891092

ABSTRACT

Binge drinking in obese patients positively correlates with accelerated liver damage and liver-related death. However, the underlying mechanism and the effect of alcohol use on the progression of metabolic-dysfunction-associated steatotic liver disease (MASLD) remain unexplored. Here, we show that short-term feeding of a metabolic-dysfunction-associated steatohepatitis (MASH) diet plus daily acute alcohol binges for three days induce liver injury and activation of the NLRP3 inflammasome. We identify that a MASH diet plus acute alcohol binges promote liver inflammation via increased infiltration of monocyte-derived macrophages, neutrophil recruitment, and NET release in the liver. Our results suggest that both monocyte-derived macrophages and neutrophils are activated via NLRP3, while the administration of MCC950, an NLRP3 inhibitor, dampens these effects.In this study, we reveal important intercellular communication between hepatocytes and neutrophils. We discover that the MASH diet plus alcohol induces IL-1ß via NLRP3 activation and that IL-1ß acts on hepatocytes and promotes the production of CXCL1 and LCN2. In turn, the increase in these neutrophils recruits chemokines and causes further infiltration and activation of neutrophils in the liver. In vivo administration of the NLRP3 inhibitor, MCC950, improves the early phase of MetALD by preventing liver damage, steatosis, inflammation, and immune cells recruitment.


Subject(s)
Interleukin-1beta , Liver , NLR Family, Pyrin Domain-Containing 3 Protein , Neutrophil Infiltration , Neutrophils , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Liver/pathology , Liver/metabolism , Liver/drug effects , Interleukin-1beta/metabolism , Neutrophil Infiltration/drug effects , Male , Neutrophils/metabolism , Neutrophils/drug effects , Mice, Inbred C57BL , Mice , Inflammasomes/metabolism , Binge Drinking/pathology , Binge Drinking/complications , Hepatocytes/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Cell Communication/drug effects , Sulfones/pharmacology , Sulfonamides/pharmacology , Macrophages/metabolism , Macrophages/drug effects , Furans/pharmacology , Humans , Indenes/pharmacology , Diet , Signal Transduction/drug effects , Extracellular Traps/metabolism , Extracellular Traps/drug effects , Fatty Liver/pathology , Fatty Liver/metabolism , Sulfoxides/pharmacology
9.
Biosci Rep ; 44(7)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38868980

ABSTRACT

Sulforaphane (SFN) has shown diverse effects on human health and diseases. SFN was administered daily to C57BL/6J mice at doses of 1 mg/kg (SFN1) and 3 mg/kg (SFN3) for 8 weeks. Both doses of SFN accelerated body weight increment. The cross-sectional area and diameter of Longissimus dorsi (LD) muscle fibers were enlarged in SFN3 group. Triglyceride (TG) and total cholesterol (TC) levels in LD muscle were decreased in SFN groups. RNA sequencing results revealed that 2455 and 2318 differentially expressed genes (DEGs) were found in SFN1 and SFN3 groups, respectively. Based on GO enrichment analysis, 754 and 911 enriched GO terms in the SFN1 and SFN3 groups, respectively. KEGG enrichment analysis shown that one KEGG pathway was enriched in the SFN1 group, while six KEGG pathways were enriched in the SFN3 group. The expressions of nine selected DEGs validated with qRT-PCR were in line with the RNA sequencing data. Furthermore, SFN treatment influenced lipid and protein metabolism related pathways including AMPK signaling, fatty acid metabolism signaling, cholesterol metabolism signalling, PPAR signaling, peroxisome signaling, TGFß signaling, and mTOR signaling. In summary, SFN elevated muscle fibers size and reduced TG and TC content of in LD muscle by modulating protein and lipid metabolism-related signaling pathways.


Subject(s)
Isothiocyanates , Lipid Metabolism , Mice, Inbred C57BL , Muscle, Skeletal , Signal Transduction , Sulfoxides , Animals , Isothiocyanates/pharmacology , Sulfoxides/pharmacology , Signal Transduction/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Male , Lipid Metabolism/drug effects , Mice , Cholesterol/metabolism , Triglycerides/metabolism , Muscle Development/drug effects , Oxidation-Reduction/drug effects , Gene Expression Regulation/drug effects
10.
J Psychiatr Res ; 176: 129-139, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857554

ABSTRACT

Nutrition has been increasingly recognized for its use in mental health. Depression is commonly observed in patients with chronic liver disease (CLD). Building on our recent findings of depression-like behaviors in mice with hepatic ischemia/reperfusion (HI/R) injury, mediated by the gut-liver-brain axis, this study explored the potential influence of dietary sulforaphane glucosinolate (SGS) on these behaviors. Behavioral assessments for depression-like behaviors were conducted 7 days post either sham or HI/R injury surgery. Dietary intake of SGS significantly prevented splenomegaly, systemic inflammation, depression-like behaviors, and downregulation of synaptic proteins in the prefrontal cortex (PFC) of HI/R-injured mice. Through 16S rRNA analysis and untargeted metabolomic analyses, distinct bacterial profiles and metabolites were identified between control + HI/R group and SGS + HI/R group. Correlations were observed between the relative abundance of gut microbiota and both behavioral outcomes and blood metabolites. These findings suggest that SGS intake could mitigate depression-like phenotypes in mice with HI/R injury, potentially through the gut-liver-brain axis. Additionally, SGS, found in crucial vegetables like broccoli, could offer prophylactic nutritional benefits for depression in patients with CLD.


Subject(s)
Depression , Gastrointestinal Microbiome , Glucosinolates , Isothiocyanates , Mice, Inbred C57BL , Reperfusion Injury , Sulfoxides , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Sulfoxides/pharmacology , Sulfoxides/administration & dosage , Glucosinolates/pharmacology , Glucosinolates/administration & dosage , Isothiocyanates/pharmacology , Isothiocyanates/administration & dosage , Depression/drug therapy , Depression/etiology , Mice , Male , Liver/drug effects , Liver/metabolism , Disease Models, Animal , Brain-Gut Axis/drug effects , Brain-Gut Axis/physiology , Behavior, Animal/drug effects , Liver Diseases/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism
11.
Endocrinology ; 165(7)2024 May 27.
Article in English | MEDLINE | ID: mdl-38862137

ABSTRACT

The inhibition of hepatic macrophage and Kupfer cell recruitment and activation is a potential strategy for treating insulin resistance and nonalcoholic steatohepatitis (NASH). Cenicriviroc (CVC), a dual C-C chemokine receptor 2 (CCR2) and CCR5 antagonist, has shown antifibrotic activity in murine models of NASH and has been evaluated in clinical trials on patients with NASH. This study investigated the effects of CVC on macrophage infiltration and polarization in a lipotoxic model of NASH. C57BL/6 mice were fed a high-cholesterol, high-fat (CL) diet or a CL diet containing 0.015% CVC (CL + CVC) for 12 weeks. Macrophage recruitment and activation were assayed by immunohistochemistry and flow cytometry. CVC supplementation attenuated excessive hepatic lipid accumulation and peroxidation and alleviated glucose intolerance and hyperinsulinemia in the mice that were fed the CL diet. Flow cytometry analysis revealed that compared with the CL group, mice fed the CL + CVC diet had fewer M1-like macrophages, more M2-like macrophages, and fewer T cell counts, indicating that CVC caused an M2-dominant shift of macrophages in the liver. Similarly, CVC decreased lipopolysaccharide-stimulated M1-like macrophage activation, whereas it increased interleukin-4-induced M2-type macrophage polarization in vitro. In addition, CVC attenuated hepatic fibrosis by repressing hepatic stellate cell activation. Lastly, CVC reversed insulin resistance as well as steatosis, inflammation, and fibrosis of the liver in mice with pre-existing NASH. In conclusion, CVC prevented and reversed hepatic steatosis, insulin resistance, inflammation, and fibrogenesis in the liver of NASH mice via M2 macrophage polarization.


Subject(s)
Liver , Macrophages , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Animals , Macrophages/drug effects , Macrophages/metabolism , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Male , Liver/drug effects , Liver/pathology , Liver/metabolism , Diet, High-Fat/adverse effects , Receptors, CCR2/metabolism , Sulfoxides/pharmacology , Macrophage Activation/drug effects , CCR5 Receptor Antagonists/pharmacology , CCR5 Receptor Antagonists/therapeutic use , Insulin Resistance , Imidazoles
12.
Biomed Pharmacother ; 177: 117056, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945082

ABSTRACT

Inflammation and immune responses are intricately intertwined processes crucial for maintaining homeostasis and combating against pathogens. These processes involve complex signaling pathways, notably the Nuclear Factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and Mitogen-Activated Protein Kinase (MAPK) pathways, which play crucial roles. Sulforaphane (SFN), a nutraceutic, has emerged as a potential regulator of NF-κB and MAPK signaling pathways, exhibiting anti-inflammatory properties. However, limited knowledge exists regarding SFN's effects on immune cell modulation. This study aimed to assess the immunomodulatory capacity of SFN pretreatment in human dendritic cells (DCs), followed by exposure to a chronic inflammatory environment induced by lipopolysaccharide. SFN pretreatment was found to inhibit the NF-κB and MAPK signaling pathways, resulting in phenotypic changes in DCs characterized by a slight reduction in the expression of surface markers, as well as a decrease of TNF-α/IL-10 ratio. Additionally, SFN pretreatment enhanced the proliferation of Treg-cells and promoted the production of IL-10 by B-cells before exposure to the chronic inflammatory environment. Furthermore, these changes in DCs were found to be influenced by the inhibition of NF-κB and MAPK pathways (specifically p38 MAPK and JNK), suggesting that these pathways may play a role in the regulation of the differentiation of adaptive immune responses (proliferation of T- and IL-10-producing regulatory-cells), prior to SFN pretreatment. Our findings suggest that SFN pretreatment may induce a regulatory response by inhibiting NF-κB and MAPK signaling pathways in an inflammatory environment. SFN could be considered a promising strategy for utilizing functional foods to protect against inflammation and develop immunoregulatory interventions.


Subject(s)
Dendritic Cells , Isothiocyanates , NF-kappa B , Sulfoxides , Isothiocyanates/pharmacology , Humans , Sulfoxides/pharmacology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , NF-kappa B/metabolism , MAP Kinase Signaling System/drug effects , Lipopolysaccharides/pharmacology , Signal Transduction/drug effects , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Cell Proliferation/drug effects , Inflammation/immunology , Inflammation/metabolism , Inflammation/drug therapy
13.
Biomed Pharmacother ; 175: 116706, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713944

ABSTRACT

Excessive oxidative stress and NLRP3 inflammasome activation are considered the main drivers of inflammatory bowel disease (IBD), and inhibition of inflammasomes ameliorates clinical symptoms and morphological manifestations of IBD. Herein, we examined the roles of NLRP3 activation in IBD and modulation of NLRP3 by sulforaphane (SFN), a compound with multiple pharmacological activities that is extracted from cruciferous plants. To simulate human IBD, we established a mouse colitis model by administering dextran sodium sulfate in the drinking water. SFN (25, 50 mg·kg-1·d-1, ig) or the positive control sulfasalazine (500 mg/kg, ig) was administered to colitis-affected mice for 7 days. Model mice displayed pathological alterations in colon tissue as well as classic symptoms of colitis beyond substantial tissue inflammation. Expression of NLRP3, ASC, and caspase-1 was significantly elevated in the colonic epithelium. The expression of NLRP3 inflammasomes led to activation of downstream proteins and increases in the cytokines IL-18 and IL-1ß. SFN administration either fully or partially reversed these changes, thus restoring IL-18 and IL-1ß, substantially inhibiting NLRP3 activation, and decreasing inflammation. SFN alleviated the inflammation induced by LPS and NLRP3 agonists in RAW264.7 cells by decreasing the levels of reactive oxygen species. In summary, our results revealed the pathological roles of oxidative stress and NLRP3 in colitis, and indicated that SFN might serve as a natural NLRP3 inhibitor, thereby providing a new strategy for alternative colitis treatment.


Subject(s)
Colitis, Ulcerative , Disease Models, Animal , Inflammasomes , Isothiocyanates , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Sulfoxides , Animals , Isothiocyanates/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sulfoxides/pharmacology , Oxidative Stress/drug effects , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Colitis, Ulcerative/chemically induced , Inflammasomes/metabolism , Inflammasomes/drug effects , Mice , Male , Dextran Sulfate , Colon/drug effects , Colon/pathology , Colon/metabolism , RAW 264.7 Cells
14.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38755006

ABSTRACT

Diabetes complications such as nephropathy, retinopathy, or cardiovascular disease arise from vascular dysfunction. In this context, it has been observed that past hyperglycemic events can induce long-lasting alterations, a phenomenon termed "metabolic memory." In this study, we evaluated the genome-wide gene expression and chromatin accessibility alterations caused by transient high-glucose exposure in human endothelial cells (ECs) in vitro. We found that cells exposed to high glucose exhibited substantial gene expression changes in pathways known to be impaired in diabetes, many of which persist after glucose normalization. Chromatin accessibility analysis also revealed that transient hyperglycemia induces persistent alterations, mainly in non-promoter regions identified as enhancers with neighboring genes showing lasting alterations. Notably, activation of the NRF2 pathway through NRF2 overexpression or supplementation with the plant-derived compound sulforaphane, effectively reverses the glucose-induced transcriptional and chromatin accessibility memories in ECs. These findings underscore the enduring impact of transient hyperglycemia on ECs' transcriptomic and chromatin accessibility profiles, emphasizing the potential utility of pharmacological NRF2 pathway activation in mitigating and reversing the high-glucose-induced transcriptional and epigenetic alterations.


Subject(s)
Epigenesis, Genetic , Glucose , NF-E2-Related Factor 2 , Signal Transduction , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Glucose/metabolism , Epigenesis, Genetic/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics , Hyperglycemia/metabolism , Hyperglycemia/genetics , Chromatin/metabolism , Chromatin/genetics , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Transcription, Genetic/drug effects , Gene Expression Regulation/drug effects , Isothiocyanates/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Sulfoxides/pharmacology
15.
Sci Rep ; 14(1): 12091, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802425

ABSTRACT

Estrogen receptor-negative [ER(-)] mammary cancer is the most aggressive type of breast cancer (BC) with higher rate of metastasis and recurrence. In recent years, dietary prevention of BC with epigenetically active phytochemicals has received increased attention due to its feasibility, effectiveness, and ease of implementation. In this regard, combinatorial phytochemical intervention enables more efficacious BC inhibition by simultaneously targeting multiple tumorigenic pathways. We, therefore, focused on investigation of the effect of sulforaphane (SFN)-rich broccoli sprouts (BSp) and withaferin A (WA)-rich Ashwagandha (Ash) combination on BC prevention in estrogen receptor-negative [ER(-)] mammary cancer using transgenic mice. Our results indicated that combinatorial BSp + Ash treatment significantly reduced tumor incidence and tumor growth (~ 75%) as well as delayed (~ 21%) tumor latency when compared to the control treatment and combinatorial BSp + Ash treatment was statistically more effective in suppressing BC compared to single BSp or Ash intervention. At the molecular level, the BSp and Ash combination upregulated tumor suppressors (p53, p57) along with apoptosis associated proteins (BAX, PUMA) and BAX:BCL-2 ratio. Furthermore, our result indicated an expressional decline of epigenetic machinery HDAC1 and DNMT3A in mammary tumor tissue because of combinatorial treatment. Interestingly, we have reported multiple synergistic interactions between BSp and Ash that have impacted both tumor phenotype and molecular expression due to combinatorial BSp and Ash treatment. Our RNA-seq analysis results also demonstrated a transcriptome-wide expressional reshuffling of genes associated with multiple cell-signaling pathways, transcription factor activity and epigenetic regulations due to combined BSp and Ash administration. In addition, we discovered an alteration of gut microbial composition change because of combinatorial treatment. Overall, combinatorial BSp and Ash supplementation can prevent ER(-) BC through enhanced tumor suppression, apoptosis induction and transcriptome-wide reshuffling of gene expression possibly influencing multiple cell signaling pathways, epigenetic regulation and reshaping gut microbiota.


Subject(s)
Breast Neoplasms , Epigenesis, Genetic , Gastrointestinal Microbiome , Isothiocyanates , Sulfoxides , Withanolides , Isothiocyanates/pharmacology , Animals , Withanolides/pharmacology , Sulfoxides/pharmacology , Female , Mice , Epigenesis, Genetic/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/prevention & control , Gastrointestinal Microbiome/drug effects , Mice, Transgenic , Plant Extracts/pharmacology , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Humans , Brassica/chemistry , Histone Deacetylase 1/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Anticarcinogenic Agents/pharmacology
16.
Mol Carcinog ; 63(8): 1611-1620, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38780147

ABSTRACT

Sulforaphane (SFN) exerts anticancer effect on various cancers including gastric cancer. However, the regulatory effect of SFN on programmed death-ligand 1 (PD-L1) and checkpoint blockade therapy in gastric cancer have not been elucidated. Here we demonstrated that SFN suppressed gastric cancer cell growth both in vitro and in vivo study. SFN upregulated PD-L1 expression through activating ΔNP63α in gastric cancer cells. Further, we found that SFN impaired the anticancer effect of anti-PD-L1 monoclonal antibody (α-PD-L1 mab) on gastric cancer cells. These results uncover a novel PD-L1 regulatory mechanism and the double-edged role of SFN in gastric cancer intervention.


Subject(s)
B7-H1 Antigen , Immune Checkpoint Inhibitors , Isothiocyanates , Stomach Neoplasms , Sulfoxides , Transcription Factors , Isothiocyanates/pharmacology , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , B7-H1 Antigen/metabolism , Sulfoxides/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Animals , Mice , Cell Line, Tumor , Transcription Factors/metabolism , Transcription Factors/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Xenograft Model Antitumor Assays , Mice, Nude
17.
Eur J Immunol ; 54(7): e2350847, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38643381

ABSTRACT

Cenicriviroc, a dual CCR2/CCR5 antagonist, initially developed as an anti-HIV drug, has shown promising results in nonalcoholic steatohepatitis phase 2 clinical trials. It inhibits the infiltration and activation of CCR2+/CCR5+ monocytes and macrophages to the site of liver injury, preventing liver fibrosis. However, the role of Cenicriviroc in the modulation of helper T cell differentiation and functions remains to be explored. In inflamed colons of Crohn's disease patients, CCR2+ and CCR5+ CD4+ T cells are enriched. Considering the role of CCR2+ and CCR5+ T cells in IBD pathogenesis, we investigated the potential role of Cenicriviroc in colitis. Our in vitro studies revealed that Cenicriviroc inhibits Th1-, Th2-, and Th17-cell differentiation while promoting the generation of type 1 regulatory T cells (Tr1), known for preventing inflammation through induction of IL-10. This study is the first to report that Cenicriviroc promotes Tr1 cell generation by up-regulating the signature of Tr1 cell transcription factors such as c-Maf, Prdm1, Irf-1, Batf, and EGR-2. Cenicriviroc displayed a protective effect in experimental colitis models by preventing body weight loss and intestinal inflammation and preserving epithelial barrier integrity. We show that Cenicriviroc induced IL-10 and inhibited the generation of pro-inflammatory cytokines IFN-γ, IL-17, IL-6, and IL-1ß during colitis. Based on our data, we propose Cenicriviroc as a potential therapeutic in controlling tissue inflammation by inhibiting the generation and functions of effector T cells and promoting the induction of anti-inflammatory Tr1 cells.


Subject(s)
CCR5 Receptor Antagonists , Cell Differentiation , Colitis , Receptors, CCR2 , Receptors, CCR5 , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Animals , Mice , Receptors, CCR2/metabolism , Receptors, CCR2/antagonists & inhibitors , Colitis/immunology , Colitis/drug therapy , Colitis/chemically induced , Cell Differentiation/drug effects , Cell Differentiation/immunology , CCR5 Receptor Antagonists/pharmacology , CCR5 Receptor Antagonists/therapeutic use , Receptors, CCR5/metabolism , Humans , Th17 Cells/immunology , Th17 Cells/drug effects , Sulfoxides/pharmacology , Mice, Inbred C57BL , Th1 Cells/immunology , Th1 Cells/drug effects , Interleukin-10/metabolism , Th2 Cells/immunology , Imidazoles
18.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673850

ABSTRACT

Changes during the production cycle of dairy cattle can leave these animals susceptible to oxidative stress and reduced antioxidant health. In particular, the periparturient period, when dairy cows must rapidly adapt to the sudden metabolic demands of lactation, is a period when the production of damaging free radicals can overwhelm the natural antioxidant systems, potentially leading to tissue damage and reduced milk production. Central to the protection against free radical damage and antioxidant defense is the transcription factor NRF2, which activates an array of genes associated with antioxidant functions and cell survival. The objective of this study was to evaluate the effect that two natural NRF2 modulators, the NRF2 agonist sulforaphane (SFN) and the antagonist brusatol (BRU), have on the transcriptome of immortalized bovine mammary alveolar cells (MACT) using both the RT-qPCR of putative NRF2 target genes, as well as RNA sequencing approaches. The treatment of cells with SFN resulted in the activation of many putative NRF2 target genes and the upregulation of genes associated with pathways involved in cell survival, metabolism, and antioxidant function while suppressing the expression of genes related to cellular senescence and DNA repair. In contrast, the treatment of cells with BRU resulted in the upregulation of genes associated with inflammation, cellular stress, and apoptosis while suppressing the transcription of genes involved in various metabolic processes. The analysis also revealed several novel putative NRF2 target genes in bovine. In conclusion, these data indicate that the treatment of cells with SFN and BRU may be effective at modulating the NRF2 transcriptional network, but additional effects associated with cellular stress and metabolism may complicate the effectiveness of these compounds to improve antioxidant health in dairy cattle via nutrigenomic approaches.


Subject(s)
Isothiocyanates , NF-E2-Related Factor 2 , Quassins , Sulfoxides , Transcriptome , Animals , Cattle , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Isothiocyanates/pharmacology , Quassins/pharmacology , Sulfoxides/pharmacology , Transcriptome/drug effects , Female , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Mammary Glands, Animal/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , Computer Simulation , Oxidative Stress/drug effects , Gene Expression Regulation/drug effects
19.
Mol Nutr Food Res ; 68(9): e2300856, 2024 May.
Article in English | MEDLINE | ID: mdl-38676466

ABSTRACT

SCOPE: Obesity and its metabolic comorbidities pose a major global challenge for public health. Glucoraphanin (GRN) is a natural bioactive compound enriched in broccoli that is known to have potential health benefits against various human chronic diseases. METHODS AND RESULTS: This study investigats the effects of broccoli GRN supplementation on body weight, metabolic parameters, gut microbiome and metabolome associated with obesity. The study is conducted on an obese-related C57BL/6J mouse model through the treatment of normal control diet, high-fat diet (HFD)and GRN-supplemented HFD (HFD-GRN) to determine the metabolic protection of GRN. The results shows that GRN treatment alleviates obesity-related traits leading to improved glucose metabolism in HFD-fed animals. Mechanically, the study noticed that GRN significantly shifts the gut microbial diversity and composition to an eubiosis status. GRN supplement also significantly alters plasma metabolite profiles. Further integrated analysis reveal a complex interaction between the gut microbes and host metabolism that may contribute to GRN-induced beneficial effects against HFD. CONCLUSION: These results indicate that beneficial effects of broccoli GRN on reversing HFD-induced adverse metabolic parameters may be attributed to its impacts on reprogramming microbial community and metabolites. Identification of the mechanistic functions of GRN further warrants it as a dietary candidate for obesity prevention.


Subject(s)
Brassica , Diet, High-Fat , Dietary Supplements , Gastrointestinal Microbiome , Glucosinolates , Imidoesters , Metabolome , Mice, Inbred C57BL , Obesity , Oximes , Sulfoxides , Gastrointestinal Microbiome/drug effects , Animals , Obesity/microbiology , Obesity/drug therapy , Diet, High-Fat/adverse effects , Brassica/chemistry , Glucosinolates/pharmacology , Male , Metabolome/drug effects , Sulfoxides/pharmacology , Imidoesters/pharmacology , Oximes/pharmacology , Mice
20.
Food Funct ; 15(9): 4773-4784, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38469873

ABSTRACT

Raphanus sativus L. cv. Sango, commonly known as red radish, is widely consumed around the world as a vegetable, but its benefit in pain relief is not sufficiently investigated. This study aimed to evaluate the antinociceptive effects of R. sativus and a possible mechanism of action. An aqueous extract of R. sativus sprouts (AERSS) was investigated by parenteral (10, 30, and 100 mg kg-1, i.p.) and enteral (500 mg kg-1, p.o.) administration in the neurogenic and inflammatory phases of the formalin test, where gastric damage was also evaluated as a possible adverse effect. Ketorolac (5 mg kg-1, i.p.) was used as the reference drug. Endogenous opioid and 5-HT1A serotonin receptors, as well as the cAMP/NO-cGMP pathways, were explored in the study of a possible mechanism of action by using their corresponding antagonists: naloxone, 1 mg kg-1, i.p., WAY100635, 1 mg kg-1, i.p., and enzymatic activators or inhibitors, respectively. Sulforaphane (SFN), a known bioactive metabolite, was analyzed using electroencephalography (EEG) to evidence its central involvement. A significant and dose-dependent antinociceptive activity was observed with the AERSS resembling the antinociceptive effect of the reference drug, with an equivalent significant response with a dose of 500 mg kg-1, p.o. without causing gastric damage. The participation of the endogenous opioid and 5-HT1A serotonin receptors at central and peripheral levels was also observed, with a differential participation of cAMP/NO-cGMP. SFN as one metabolite produced significant changes in the EEG analysis, reinforcing its effects on the CNS. Our preclinical evidence supports the benefits of consuming Raphanus sativus cv. Sango sprouts for pain relief.


Subject(s)
Analgesics , Isothiocyanates , Plant Extracts , Raphanus , Signal Transduction , Animals , Humans , Male , Mice , Analgesics/pharmacology , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Isothiocyanates/pharmacology , Pain/drug therapy , Plant Extracts/pharmacology , Raphanus/chemistry , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Opioid/metabolism , Signal Transduction/drug effects , Sulfoxides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL