Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.874
Filter
1.
Wound Manag Prev ; 70(2)2024 Jun.
Article in English | MEDLINE | ID: mdl-38959343

ABSTRACT

BACKGROUND: CSG dressing is water-soluble and helps to hydrate the wound, control exudate, and provide gentle debridement by virtue of a high concentration of surfactant micelles. The primary objective of this retrospective case series is to report on the feasibility of CSG use in pediatric wounds and its mechanism of action. The secondary aim was to measure pain during application and removal of CSG. METHODS: Eight pediatric patients ranging in age from newborn to a few months old with wounds requiring medical intervention were treated with CSG. The CSG dressing was applied twice daily at initiation of treatment in some patients, but mostly once daily. NIPS was utilized for pain measurements. RESULTS: Near-complete healing of wounds was observed by the end of treatment duration, which was only a few days. The calm temperament of these patients during dressing changes and objective NIPS suggested minimal to no pain. None of the patients experienced any adverse events related to the use of this dressing. CONCLUSION: The CSG dressing could be the dressing of choice in this population to enhance debridement and maintain moist healing and support granulation, either proactively or if other treatments fail.


Subject(s)
Bandages , Surface-Active Agents , Wound Healing , Humans , Wound Healing/drug effects , Infant , Retrospective Studies , Male , Female , Bandages/standards , Bandages/statistics & numerical data , Surface-Active Agents/therapeutic use , Surface-Active Agents/pharmacology , Infant, Newborn , Gels/therapeutic use , Wounds and Injuries/therapy , Wounds and Injuries/drug therapy
2.
Sci Rep ; 14(1): 13201, 2024 06 08.
Article in English | MEDLINE | ID: mdl-38851845

ABSTRACT

Sugar esters display surface-active properties, wetting, emulsifying, and other physicochemical phenomena following their amphipathic nature and recognize distinct biological activity. The development of nutritional pharmaceuticals and other applications remains of great interest. Herein, three novel homologous series of several N-mono-fatty acyl amino acid glucosyl esters were synthesized, and their physicochemical properties and biological activities were evaluated. The design and preparation of these esters were chemically performed via the reaction of glucose with different fatty acyl amino acids as renewable starting materials, with the suggestion that they would acquire functional characteristics superior and competitive to certain conventional surfactants. The synthesized products are characterized using FTIR, 1H-NMR, and 13C-NMR spectroscopy. Further, their physicochemical properties, such as HLB, CMC, Γmax, γCMC, and Amin, were determined. Additionally, their antimicrobial and anticancer efficiency were assessed. The results indicate that the esters' molecular structure, including the acyl chain length and the type of amino acid, significantly influences their properties. The measured HLB ranged from 8.84 to 12.27, suggesting their use as oil/water emulsifiers, wetting, and cleansing agents. All esters demonstrate promising surface-active characteristics, with moderate to high foam production with good stability. Notably, compounds 6-O-(N-dodecanoyl, tetradecanoyl cysteine)-glucopyranose (34, 35), respectively and 6-O-(N-12-hydroxy-9-octadecenoyl cysteine)-glucopyranose (38) display superior foamability. Wetting efficiency increased with decreasing the chain length of the acyl group. The storage results reveal that increasing the fatty acyl hydrophobe length enhances the derived emulsion's stability for up to 63 days. Particularly, including cysteine in these glucosyl esters improves wetting, foaming, and emulsifying potentialities. Furthermore, the esters exhibit antibacterial activity against several tested Gram-positive and Gram-negative bacteria and fungi. On the other hand, they show significant antiproliferative effects on some liver tumor cell lines. For instance, compounds 6-O-(N-12-hydroxy-9-octadecenoylglycine)-glucopyranose (28), 6-O-(N-dodecanoyl, hexadecanoyl, 9-octadecenoyl and 12-hydroxy-9-octadecenoylvaline)- glucopyranose (29, 31, 32 and 33), respectively in addition to the dodecanoyl, hexadecanoyl, 9-octadecenoyl and 12-hydroxy-9-octadecenoyl cysteine glucopyranose (34, 36, 37 and 38), respectively significantly inhibit the examined cancer cells.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Surface-Active Agents , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Surface-Active Agents/chemistry , Surface-Active Agents/chemical synthesis , Surface-Active Agents/pharmacology , Humans , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Structure-Activity Relationship , Microbial Sensitivity Tests , Esters/chemistry , Esters/pharmacology , Esters/chemical synthesis , Cell Line, Tumor , Amino Acids/chemistry
3.
World J Microbiol Biotechnol ; 40(8): 253, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38914906

ABSTRACT

Liamocins, a group of high-density glycolipids, are only produced by certain strains of the yeast-like fungi in the genus Aureobasidium. Until now, few studies have focused on the surfactant properties of liamocins produced from the highly diverse tropical strains of Aureobasidium. Therefore, the aims of this research were to screen the liamocin production from tropical strains of Aureobasidium spp. and to characterize their surfactant properties. A total of 41 strains of Thai Aureobasidium spp. were screened for their ability to produce liamocins, and the products were detected using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and thin-layer chromatography. Of those strains, 30 strains of Aureobasidium spp. tested were found to produce liamocins with yields ranging from 0.53 to 10.60 g/l. The nature of all crude liamocins was heterogeneous, with different compositions and ratios depending on the yeast strain. These liamocins exhibited relatively high emulsifying activity against vegetable oils tested, with an emulsification index of around 40-50%; the emulsion stability of some liamocins was up to 30 days. The obtained critical micelle concentration values were varied, with those ​​of liamocins produced from A. pullulans, A. melanogenum and A. thailandense falling in ranges from 7.70 to 119.78, 10.73 to > 1,000, and 68.56 to > 1,000 mg/l, respectively. The emulsification activity of liamocins was higher than that of the analytical grade rhamnolipids. These compounds showed strong surface tension reduction in a sodium chloride concentration range of 2-12% (w/v), pH values between 3 and 7, and temperatures between 4 and 121 °C. This is the first report of liamocins produced by A. thailandense.


Subject(s)
Aureobasidium , Glycolipids , Glycolipids/metabolism , Glycolipids/biosynthesis , Glycolipids/chemistry , Aureobasidium/metabolism , Surface-Active Agents/metabolism , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry , Thailand , Chromatography, Thin Layer , Plant Oils/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Emulsifying Agents/metabolism , Emulsifying Agents/chemistry , Emulsions
4.
J Oleo Sci ; 73(7): 953-961, 2024.
Article in English | MEDLINE | ID: mdl-38945924

ABSTRACT

Handwashing represents an important personal hygiene measure for preventing infection. Herein, we report the persistence of antibacterial and antiviral effects after handwashing with fatty acid salt-based hand soap. To this end, we developed a new in vitro test method to measure persistence, utilizing coacervation formed by anionic surfactants and cationic polymers to retain highly effective soap components against each bacterium and virus on the skin. Coacervation with fatty acid salts and poly diallyldimethylammonium chloride (PDADMAC) as a cationic polymer allowed the persistence of antibacterial and antiviral effects against E. coli, S. aureus, and influenza virus even 4 h after handwashing. Furthermore, we confirmed an increase in the number of residual components effective against each bacterium and virus on the skin. In summary, the current findings describe an effective approach for enhancing the protective effects of handwashing.


Subject(s)
Anti-Bacterial Agents , Antiviral Agents , Escherichia coli , Hand Disinfection , Polyethylenes , Quaternary Ammonium Compounds , Skin , Soaps , Staphylococcus aureus , Surface-Active Agents , Soaps/pharmacology , Escherichia coli/drug effects , Hand Disinfection/methods , Quaternary Ammonium Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Antiviral Agents/pharmacology , Skin/drug effects , Skin/microbiology , Surface-Active Agents/pharmacology , Humans , Fatty Acids/pharmacology , Fatty Acids/analysis , Time Factors , Orthomyxoviridae/drug effects
5.
J Colloid Interface Sci ; 672: 209-223, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38838629

ABSTRACT

Multidrug resistance (MDR) is a rising threat to global health because the number of essential antibiotics used for treating MDR infections is increasingly compromised. In this work we report a group of new amphiphilic peptides (AMPs) derived from the well-studied G3 (G(IIKK)3I-NH2) to fight infections from Gram-positive bacteria including susceptible Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA), focusing on membrane interactions. Time-dependent killing experiments revealed that substitutions of II by WW (GWK), II by FF (GFK) and KK by RR (GIR) resulted in improved bactericidal efficiencies compared to G3 (GIK) on both S. aureus and MRSA, with the order of GWK > GIR > GFK > GIK. Electronic microscopy imaging revealed structural disruptions of AMP binding to bacterial cell walls. Fluorescence assays including AMP binding to anionic lipoteichoic acids (LTA) in cell-free and cell systems indicated concentration and time-dependent membrane destabilization associated with bacterial killing. Furthermore, AMP's binding to anionic plasma membrane via similar fluorescence assays revealed a different extent of membrane depolarization and leakage. These observations were supported by the penetration of AMPs into the LTA barrier and the subsequent structural compromise to the cytoplasmic membrane as revealed from SANS (small angle neutron scattering). Both experiments and molecular dynamics (MD) simulations revealed that GWK and GIR could make the membrane more rigid but less effective in diffusive efficiency than GIK and GFK through forming intramembrane peptide nanoaggregates associated with hydrophobic mismatch and formation of fluidic and rigid patches. The reported peptide-aggregate-induced phase-separation emerged as a crucial factor in accelerated membrane disintegration and fast bacterial killing. This work has demonstrated the importance of membrane interactions to the development of more effective AMPs and the relevance of the approaches as reported in assisting this area of research.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Staphylococcus aureus/drug effects , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Cations/chemistry , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Molecular Dynamics Simulation
6.
Bull Exp Biol Med ; 176(6): 709-715, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38888647

ABSTRACT

The review presents the results of the blood substitute development based on perfluororganic compounds (PFC). The limitations of PFC due to which their further development was suspended are described. The presented data allows us to imagine a possible way to create optimal drugs based on PFC. Chemically inactive perfluorocomponents should be used - perfluorinated hydrocarbons and tertiary perfluorinated amines. However, in order to emulsify and stabilize the emulsion, other types of effective and chemically indifferent surfactants that do not interact with oxygen and other components of the drug are needed.


Subject(s)
Blood Substitutes , Fluorocarbons , Fluorocarbons/chemistry , Humans , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Emulsions/chemistry , Oxygen/chemistry , Animals
7.
Molecules ; 29(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38893420

ABSTRACT

Surfactants, also known as surface-active agents, have emerged as an important class of compounds with a wide range of applications. However, the use of chemical-derived surfactants must be restricted due to their potential adverse impact on the ecosystem and the health of human and other living organisms. In the past few years, there has been a growing inclination towards natural-derived alternatives, particularly microbial surfactants, as substitutes for synthetic or chemical-based counterparts. Microbial biosurfactants are abundantly found in bacterial species, predominantly Bacillus spp. and Pseudomonas spp. The chemical structures of biosurfactants involve the complexation of lipids with carbohydrates (glycolipoproteins and glycolipids), peptides (lipopeptides), and phosphates (phospholipids). Lipopeptides, in particular, have been the subject of extensive research due to their versatile properties, including emulsifying, antimicrobial, anticancer, and anti-inflammatory properties. This review provides an update on research progress in the classification of surfactants. Furthermore, it explores various bacterial biosurfactants and their functionalities, along with their advantages over synthetic surfactants. Finally, the potential applications of these biosurfactants in many industries and insights into future research directions are discussed.


Subject(s)
Surface-Active Agents , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Lipopeptides/chemistry , Lipopeptides/pharmacology , Humans , Bacteria/drug effects , Glycolipids/chemistry
8.
BMC Oral Health ; 24(1): 707, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898470

ABSTRACT

BACKGROUND: Biosurfactants are amphiphilic compounds produced by various microorganisms. Current research evaluates diverse types of biosurfactants against a range of oral pathogens. OBJECTIVES: This systematic review aims to explore the potential of microbial-derived biosurfactants for oral applications. METHODOLOGY: A systematic literature search was performed utilizing PubMed-MEDLINE, Scopus, and Web of Science databases with designated keywords. The results were registered in the PROSPERO database and conducted following the PRISMA checklist. Criteria for eligibility, guided by the PICOS framework, were established for both inclusion and exclusion criteria. The QUIN tool was used to assess the bias risk for in vitro dentistry studies. RESULTS: Among the initial 357 findings, ten studies were selected for further analysis. The outcomes of this systematic review reveal that both crude and purified forms of biosurfactants exhibit antimicrobial and antibiofilm properties against various oral pathogens. Noteworthy applications of biosurfactants in oral products include mouthwash, toothpaste, and implant coating. CONCLUSION: Biosurfactants have garnered considerable interest and demonstrated their potential for application in oral health. This is attributed to their surface-active properties, antiadhesive activity, biodegradability, and antimicrobial effectiveness against a variety of oral microorganisms, including bacteria and fungi.


Subject(s)
Surface-Active Agents , Surface-Active Agents/pharmacology , Humans , Anti-Infective Agents/pharmacology , Biofilms/drug effects , Mouth/microbiology , Mouthwashes/pharmacology , Toothpastes/pharmacology
9.
Sci Rep ; 14(1): 14110, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898117

ABSTRACT

Newly synthesized gemini quaternary ammonium salts (QAS) with different counterions (bromide, hydrogen chloride, methylcarbonate, acetate, lactate), chain lengths (C12, C14, C16) and methylene linker (3xCH2) were tested. Dihydrochlorides and dibromides with 12 carbon atoms in hydrophobic chains were characterized by the highest biological activity against planktonic forms of yeast and yeast-like fungi. The tested gemini surfactants also inhibited the production of filaments by C. albicans. Moreover, they reduced the adhesion of C. albicans cells to the surfaces of stainless steel, silicone and glass, and slightly to polystyrene. In particular, the gemini compounds with 16-carbon alkyl chains were most effective against biofilms. It was also found that the tested surfactants were not cytotoxic to yeast cells. Moreover, dimethylcarbonate (2xC12MeCO3G3) did not cause hemolysis of sheep erythrocytes. Dihydrochlorides, dilactate and diacetate showed no mutagenic potential.


Subject(s)
Antifungal Agents , Biofilms , Candida albicans , Quaternary Ammonium Compounds , Biofilms/drug effects , Quaternary Ammonium Compounds/pharmacology , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/chemical synthesis , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Candida albicans/drug effects , Animals , Sheep , Surface-Active Agents/pharmacology , Surface-Active Agents/chemical synthesis , Surface-Active Agents/chemistry , Hemolysis/drug effects , Erythrocytes/drug effects , Microbial Sensitivity Tests , Cell Adhesion/drug effects , Stainless Steel/chemistry
10.
Molecules ; 29(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930908

ABSTRACT

BACKGROUND: This work proposes the development of new vesicular systems based on anesthetic compounds (lidocaine (LID) and capsaicin (CA)) and antimicrobial agents (amino acid-based surfactants from phenylalanine), with a focus on physicochemical characterization and the evaluation of antimicrobial and cytotoxic properties. METHOD: Phenylalanine surfactants were characterized via high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). Different niosomal systems based on capsaicin, lidocaine, cationic phenylalanine surfactants, and dipalmitoyl phosphatidylcholine (DPPC) were characterized in terms of size, polydispersion index (PI), zeta potential, and encapsulation efficiency using dynamic light scattering (DLS), transmitted light microscopy (TEM), and small-angle X-ray scattering (SAXS). Furthermore, the interaction of the pure compounds used to prepare the niosomal formulations with DPPC monolayers was determined using a Langmuir balance. The antibacterial activity of the vesicular systems and their biocompatibility were evaluated, and molecular docking studies were carried out to obtain information about the mechanism by which these compounds interact with bacteria. RESULTS: The stability and reduced size of the analyzed niosomal formulations demonstrate their potential in pharmaceutical applications. The nanosystems exhibit promising antimicrobial activity, marking a significant advancement in pharmaceutical delivery systems with dual therapeutic properties. The biocompatibility of some formulations underscores their viability. CONCLUSIONS: The proposed niosomal formulations could constitute an important advance in the pharmaceutical field, offering delivery systems for combined therapies thanks to the pharmacological properties of the individual components.


Subject(s)
Liposomes , Surface-Active Agents , Liposomes/chemistry , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Amino Acids/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Molecular Docking Simulation , Anesthetics/chemistry , Anesthetics/pharmacology , Drug Compounding , Microbial Sensitivity Tests
11.
Biomater Adv ; 162: 213918, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38880016

ABSTRACT

Multifunctional wound dressings based on hydrogels are an efficacious and practicable strategy in therapeutic processes and accelerated chronic wound healing. Here, copper (Cu) nanoparticles were added to chitosan/sodium alginate (CS/SA) hydrogels to improve the antibacterial properties of the prepared wound dressings. Due to the super-hydrophobicity of Cu nanoparticles, polyethylene glycol (PEG) was used as a surfactant, and then added to the CS/SA-based hydrogels. The CS/SA/Cu hydrogels were synthesized with 0, 2, 3.5, and 5 wt% Cu nanoparticles. The structural and morphological properties in presence of PEG were evaluated using Fourier-transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), and field emission scanning electron microscopy (FESEM). The biodegradation and swelling properties of the hydrogels were investigated in phosphate buffer saline (PBS) at 37 °C for up to 30 days. Cell viability and adhesion, as well as antibacterial behavior, were investigated via MTT assay, FESEM, and disk diffusion method, respectively. The obtained results showed that PEG provided new intra- and intermolecular bonds that affected significantly the hydrogels' degradation and swelling ratio, which increased up to ~1200 %. Cell viability reached ~110 % and all samples showed remarkable antibacterial behavior when CS/SA/Cu containing 2 wt% was introduced. This study provided new insights regarding the use of PEG as a surfactant for Cu nanoparticles in CS/SA hydrogel wound dressing, ultimately affecting the chemical bonding and various properties of the prepared hydrogels.


Subject(s)
Alginates , Anti-Bacterial Agents , Bandages , Chitosan , Copper , Surface-Active Agents , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Alginates/chemistry , Alginates/pharmacology , Copper/chemistry , Copper/pharmacology , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Wound Healing/drug effects , Metal Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Humans , Cell Survival/drug effects
12.
Bioprocess Biosyst Eng ; 47(7): 1039-1056, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744689

ABSTRACT

Cosmetics have been extremely popular throughout history and continue to be so today. Cosmetic and personal care products, including toothpaste, shampoo, lotions, and makeup, are typically made with petroleum-based surfactants. Currently, there is an increasing demand to enhance the sustainability of surface-active compounds in dermal formulations. Biosurfactants, derived from living cells, are considered more environmentally friendly than synthetic surfactants. Thus, the use of biosurfactants is a promising strategy for formulating more environmentally friendly and sustainable dermal products. Biosurfactants have the potential to replace chemical surface-active agents in the cosmetic sector due to their multifunctional qualities, such as foaming, emulsifying, and skin-moisturizing activities.In this study, two glycolipopeptide biosurfactants derived from Lactiplantibacillus plantarum OL5 were used as stabilizing factors in oil-in-water emulsions in the presence of coconut oils. Both biosurfactants increased emulsion stability, particularly in the 1:3 ratio, dispersion, and droplet size. Moreover, the cytotoxicity of the two Lactiplantibacillus plantarum biosurfactants was assessed on B lymphocytes and MCF-7 cells. Overall, the results gathered herein are very promising for the development of new green cosmetic formulations.


Subject(s)
Cosmetics , Surface-Active Agents , Cosmetics/chemistry , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Humans , MCF-7 Cells , Skin Care , Emulsions/chemistry , Lactobacillus plantarum/metabolism
13.
Biotechnol Adv ; 73: 108373, 2024.
Article in English | MEDLINE | ID: mdl-38704106

ABSTRACT

Biochemicals are widely used in the medicine and food industries and are more efficient and safer than synthetic chemicals. The amphipathic surfactants can interact with the microorganisms and embed the extracellular metabolites, which induce microbial metabolites secretion and biosynthesis, performing an attractive prospect of promoting the biochemical production. However, the commonness and differences of surfactant-mediated bio-manufacture in various fields are largely unexplored. Accordingly, this review comprehensively summarized the properties of surfactants, different application scenarios of surfactant-meditated bio-manufacture, and the mechanism of surfactants increasing metabolites production. Various biochemical productions such as pigments, amino acids, and alcohols could be enhanced using the cloud point and the micelles of surfactants. Besides, the amphiphilicity of surfactants also promoted the utilization of fermentation substrates, especially lignocellulose and waste sludge, by microorganisms, indirectly increasing the metabolites production. The increase in target metabolites production was attributed to the surfactants changing the permeability and composition of the cell membrane, hence improving the secretion ability of microorganisms. Moreover, surfactants could regulate the energy metabolism, the redox state and metabolic flow in microorganisms, which induced target metabolites synthesis. This review aimed to broaden the application fields of surfactants and provide novel insights into the production of microbial biochemicals.


Subject(s)
Bacteria , Industrial Microbiology , Surface-Active Agents , Amino Acids/metabolism , Bacteria/metabolism , Biotechnology/methods , Fermentation , Industrial Microbiology/methods , Lignin/metabolism , Lignin/chemistry , Surface-Active Agents/metabolism , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry
14.
J Environ Manage ; 360: 121232, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38801804

ABSTRACT

Surfactant pollution is escalatitheng in eutrophic waters, but the effect of surfactant charge properties on the physiological and biochemical properties of toxin-producing microalgae remains inadequately explored. To address this gap, this study explores the effects and mechanisms of three common surfactants-cetyltrimethylammonium bromide (CTAB, cationic), sodium dodecyl sulfate (SDS, anionic), and Triton X-100 (nonionic)-found in surface waters, on the agglomeration behavior, physiological indicators, and Microcystin-LR (MC-LR) release of Microcystis aeruginosa (M. aeruginosa) by using UV-visible spectroscope, Malvern Zetasizer, fluorescence spectrometer, etc. Results suggest that charge properties significantly affect cyanobacterial aggregation and cellular metabolism. The CTAB-treated group demonstrates a ∼5.74 and ∼9.74 times higher aggregation effect compared to Triton X-100 and SDS (300 mg/L for 180 min) due to strong electrostatic attraction. Triton X-100 outperforms CTAB and SDS in polysaccharide extraction, attributed to its higher water solubility and lower critical micelle concentration. CTAB stimulates cyanobacteria to secrete proteins, xanthohumic acid, and humic acids to maintain normal physiological cells. Additionally, the results of SEM and ion content showed that CTAB damages the cell membrane, resulting in a ∼90% increase in the release of intracellular MC-LR without cell disintegration. Ionic analyses confirm that all three surfactants alter cell membrane permeability and disrupt ionic metabolic pathways in microalgae. This study highlights the relationship between the surface charge properties of typical surfactants and the dispersion/agglomeration behavior of cyanobacteria. It provides insights into the impact mechanism of exogenous surfactants on toxic algae production in eutrophic water bodies, offering theoretical references for managing surfactant pollution and treating algae blooms.


Subject(s)
Microcystins , Microcystis , Surface-Active Agents , Microcystins/chemistry , Microcystins/metabolism , Microcystis/drug effects , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Octoxynol/chemistry , Octoxynol/pharmacology , Sodium Dodecyl Sulfate/chemistry , Sodium Dodecyl Sulfate/pharmacology
15.
Poult Sci ; 103(7): 103847, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38776858

ABSTRACT

Organic acids are applied to poultry carcasses during processing to reduce foodborne pathogens and spoilage microorganisms. Scald water surfactant agents employed to improve feather removal may enhance the efficacy of organic acids during processing. This study investigated the effects of concurrent application of a scald water surfactant and organic acid dip on microbial contamination of carcasses processed in a small-scale production model. Broilers were reared in litter floor pens to 47 d of age and slaughtered using standard practices. Carcasses were scalded in either control or surfactant scald water initially and dipped in either a 2% organic acid blend or water after feather removal to complete a 2 × 2 factorial arrangement with n = 15 carcasses per treatment group. The commercially available scald water additive was a slightly alkaline surfactant solution labelled as a feather removal aid. The organic acid dip consisting of lactic and citric acid was maintained at pH of 2.5. Approximately 10 g of neck skin was collected 1-min postdipping and placed in buffered peptone water with an added neutralizing agent, sodium thiosulfate. Serial dilutions were performed to determine general coliform (GC), E. coli (EC), and aerobic plate (APC) counts as CFU per gram of skin sample. A significant 0.61, 0.76, and 1.6 log reduction of GC, EC, and APC, respectively, was attributed to use of the organic acid carcass dip (P ≤ 0.01). There were no significant differences in carcass microbial reduction due to surfactant scald water alone. A 0.69, 0.73 (P ≤ 0.05), and 1.96 log reduction of GC, EC, and APC, respectively, was observed in surfactant-scalded, acid-dipped carcasses compared to water-scalded, water-dipped control groups. These data demonstrated that a surfactant scald water additive and an organic acid carcass dip can have beneficial effects of microbial reduction when employed simultaneously during broiler processing.


Subject(s)
Chickens , Food Handling , Food Microbiology , Surface-Active Agents , Animals , Surface-Active Agents/pharmacology , Surface-Active Agents/administration & dosage , Food Handling/methods , Meat/analysis , Meat/microbiology , Citric Acid/pharmacology , Citric Acid/administration & dosage , Abattoirs , Lactic Acid/pharmacology
16.
Sci Rep ; 14(1): 11408, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762671

ABSTRACT

In the enhanced oil recovery (EOR) process, interfacial tension (IFT) has become a crucial factor because of its impact on the recovery of residual oil. The use of surfactants and biosurfactants can reduce IFT and enhance oil recovery by decreasing it. Asphaltene in crude oil has the structural ability to act as a surface-active material. In microbial-enhanced oil recovery (MEOR), biosurfactant production, even in small amounts, is a significant mechanism that reduces IFT. This study aimed to investigate fluid/fluid interaction by combining low biosurfactant values and low-salinity water using NaCl, MgCl2, and CaCl2 salts at concentrations of 0, 1000, and 5000 ppm, along with Geobacillus stearothermophilus. By evaluating the IFT, this study investigated different percentages of 0, 1, and 5 wt.% of varying asphaltene with aqueous bulk containing low-salinity water and its combination with bacteria. The results indicated G. Stearothermophilus led to the formation of biosurfactants, resulting in a reduction in IFT for both acidic and basic asphaltene. Moreover, the interaction between asphaltene and G. Stearothermophilus with higher asphaltene percentages showed a decrease in IFT under both acidic and basic conditions. Additionally, the study found that the interaction between acidic asphaltene and G. stearothermophilus, in the presence of CaCl2, NaCl, and MgCl2 salts, resulted in a higher formation of biosurfactants and intrinsic surfactants at the interface of the two phases, in contrast to the interaction involving basic asphaltene. These findings emphasize the dependence of the interactions between asphaltene and G. Stearothermophilus, salt, and bacteria on the specific type and concentration of asphaltene.


Subject(s)
Salinity , Surface Tension , Surface-Active Agents , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Water/chemistry , Geobacillus stearothermophilus , Sodium Chloride/chemistry , Petroleum , Calcium Chloride/chemistry
17.
ACS Appl Bio Mater ; 7(6): 3758-3765, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38768375

ABSTRACT

Drug-resistant bacteria present a grave threat to human health. Fluorescence imaging-guided photodynamic antibacterial therapy holds enormous potential as an innovative treatment in antibacterial therapy. However, the development of a fluorescent material with good water solubility, large Stokes shift, bacterial identification, and high photodynamic antibacterial efficiency remains challenging. In this study, we successfully synthesized an amphiphilic aggregation-induced emission (AIE) fluorescent probe referred to as NPTPA-QM. This probe possesses the ability to perform live-bacteria fluorescence imaging while also exhibiting antibacterial activity, specifically against Staphylococcus aureus (S. aureus). We demonstrate that NPTPA-QM can eliminate S. aureus at a very low concentration (2 µmol L-1). Moreover, it can effectively promote skin wound healing. Meanwhile, this NPTPA-QM exhibits an excellent imaging ability by simple mixing with S. aureus. In summary, this research presents a straightforward and highly effective method for creating "amphiphilic" AIE fluorescent probes with antibacterial properties. Additionally, it offers a rapid approach for imaging bacteria utilizing red emission.


Subject(s)
Anti-Bacterial Agents , Biocompatible Materials , Fluorescent Dyes , Materials Testing , Microbial Sensitivity Tests , Optical Imaging , Particle Size , Staphylococcus aureus , Staphylococcus aureus/drug effects , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Fluorescent Dyes/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Molecular Structure , Mice , Animals , Humans , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Surface-Active Agents/chemical synthesis
18.
Colloids Surf B Biointerfaces ; 239: 113932, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749165

ABSTRACT

Quaternary ammonium salts (QAS) are widely used in medicine, industry and agriculture as disinfectants, biocides, and fungicides. QAS have the ability to coat various surfaces, prevent adhesion of microorganisms to them and inhibit the formation of biofilm. A group of surfactants derived from benzoic acid with different chemical structures was tested: monomeric QAS with different alkyl chain lengths (C12, C14, C16), gemini QAS containing 12-carbon alkyl chains and linkers of various lengths (3,4,6 methylene groups), as well as multifunctional QAS. Among the tested surfactants, monomeric QAS showed the highest bactericidal and fungicidal activity. All three groups of tested compounds inhibited the filamentation of C. albicans. The best antimicrobial activity was demonstrated by the monomeric surfactant C12AA, while the multifunctional equivalent (2xC12AA) was characterized by good anti-adhesive activity. All tested compounds are non-mutagenic and cause low hemolysis of sheep erythrocytes. Multifunctional and gemini surfactants are also non-toxic.


Subject(s)
Candida albicans , Hemolysis , Microbial Sensitivity Tests , Surface-Active Agents , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry , Surface-Active Agents/chemical synthesis , Sheep , Animals , Candida albicans/drug effects , Hemolysis/drug effects , Erythrocytes/drug effects , Biofilms/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Quaternary Ammonium Compounds/chemical synthesis , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry
19.
Eur J Med Chem ; 271: 116449, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38691893

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen causing clinical infections and is multi-resistant to many antibiotics, making it urgent need to develop novel antibacterials to combat MRSA. Herein, we designed and prepared a series of novel osthole amphiphiles 6a-6ad by mimicking the structures and function of antimicrobial peptides (AMPs). Antibacterial assays showed that osthole amphiphile 6aa strongly inhibited S. aureus and 10 clinical MRSA isolates with MIC values of 1-2 µg/mL, comparable to that of the commercial antibiotic vancomycin. Additionally, 6aa had the advantages of rapid bacteria killing without readily developing drug resistance, low toxicity, good membrane selectivity, and good plasma stability. Mechanistic studies indicated that 6aa possesses good membrane-targeting ability to bind to phosphatidylglycerol (PG) on the bacterial cell membranes, thereby disrupting the cell membranes and causing an increase in intracellular ROS as well as leakage of proteins and DNA, and accelerating bacterial death. Notably, in vivo activity results revealed that 6aa exhibits strong anti-MRSA efficacy than vancomycin as well as a substantial reduction in MRSA-induced proinflammatory cytokines, including TNF-α and IL-6. Given the impressive in vitro and in vivo anti-MRSA efficacy of 6aa, which makes it a potential candidate against MRSA infections.


Subject(s)
Anti-Bacterial Agents , Coumarins , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Molecular Structure , Structure-Activity Relationship , Humans , Dose-Response Relationship, Drug , Mice , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry , Surface-Active Agents/chemical synthesis
20.
Biol Pharm Bull ; 47(5): 997-999, 2024.
Article in English | MEDLINE | ID: mdl-38777759

ABSTRACT

Patch tests are often used in safety evaluations to identify the substance causing skin irritation, but the same substance can sometimes give positive or negative results depending on the test conditions. Here, we investigated differences in the skin penetration of two test compounds under different application conditions. We studied the effects of the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant polysorbate 80 (PS) on skin penetration of the preservatives methylisothiazolinone (MT) and methylchloroisothiazolinone (MCT), which are used in cosmetics such as shampoos. The skin permeation of MT was enhanced by SDS but was unchanged by PS. Skin impedance decreased in the presence of SDS whereas PS had the same effect as the control aqueous solution, suggesting that SDS reduction of the barrier function of skin affects the permeation of MT, a hydrophilic drug. Application of a mixture of MCT and MT in the presence of SDS did not affect the skin permeation of MCT whereas the permeation of MT was enhanced by SDS, indicating that the skin permeation of MCT is less affected by SDS than is MT. Thus, attention should be paid to the possible effect of co-solutes, especially hydrophilic drugs.


Subject(s)
Polysorbates , Skin Absorption , Skin , Sodium Dodecyl Sulfate , Surface-Active Agents , Thiazoles , Thiazoles/pharmacokinetics , Surface-Active Agents/pharmacology , Skin Absorption/drug effects , Polysorbates/pharmacology , Skin/metabolism , Skin/drug effects , Animals , Preservatives, Pharmaceutical , Swine , Cosmetics/pharmacokinetics , Electric Impedance , Permeability/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...