Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.898
Filter
1.
Prev Vet Med ; 230: 106285, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39089163

ABSTRACT

Foot-and-mouth disease (FMD) is an ailment that causes serious damage to the productive chain, and its control through vaccination is of utmost importance for its eradication. Brazil initiated the National Foot-and-Mouth Disease Surveillance Program (PNEFA) with the aim of making the country FMD-free by 2026. As part of the program, notifications of vesicular lesions became mandatory for the Official Veterinary Service (OVS), which is responsible for verifying them. Due to its size, border areas with countries that do not have FMD-free status pose a risk to Brazil and require greater attention. This study described the profile of notifications of suspected outbreaks of vesicular syndrome in Brazil and analyzed the performance of the surveillance system. The results showed 7134 registered notifications of suspected vesicular syndrome outbreaks from 2018 to 2022, with 2022 having the highest number (n = 2343 or 32.85 %). The species that generated the most notifications were swine (90.99 %), cattle and buffaloes (7.54 %), goats and sheep (1.44 %), and others (0.03 %). The sources of notification were "Veterinary medicine professionals" (61.82 %), "Owners or employees" (13.66 %), "Third parties" (8.90 %), "OVS" (7.20 %), and "others" (2.66 %). 41.69 % of notifications originated from non-border municipalities, and 58.32 % from border areas. Only the state of Paraná account for 51.73 % of the total notifications. This state also accounted for 66.70 % of the 32.47 % of notifications with a final diagnosis of "absence of clinically compatible signs or susceptible animals", indicating a certain lack of knowledge in the area, leading to unnecessary notifications and system overload. The performance of the OVS was evaluated based on the service response time from notification registration trough Logistic and Negative binomial regressions. A total of 27.83 % of notifications did not meet the Brazilian legally specified time, and the zone related to the state of Parana needs improvements in performance. The presence and peaks of Senecavirus A cases may have influenced an increased number of swine notifications and led to a decrease in OVS response time. The results demonstrate better performance of surveillance in border areas. Given the vast territory of Brazil, it is not expected that 100 % of responses occur within the legal timeframe, however, the performance of the surveillance system proved to be adequate, with 86 % complied to the legislation. The performance indicators could be used as a monitoring tool, along with indicators to demonstrate system overload. Continued education actions are crucial for strengthening PNEFA.


Subject(s)
Cattle Diseases , Disease Outbreaks , Foot-and-Mouth Disease , Brazil/epidemiology , Animals , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/prevention & control , Disease Outbreaks/veterinary , Disease Outbreaks/prevention & control , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/virology , Cattle Diseases/prevention & control , Swine , Disease Notification/statistics & numerical data , Sheep , Swine Diseases/epidemiology , Swine Diseases/virology , Swine Diseases/prevention & control , Population Surveillance/methods , Sheep Diseases/epidemiology , Sheep Diseases/virology , Sheep Diseases/prevention & control , Goat Diseases/epidemiology , Goat Diseases/virology , Goat Diseases/prevention & control , Goats , Buffaloes , Epidemiological Monitoring/veterinary
2.
Sci Rep ; 14(1): 15466, 2024 07 05.
Article in English | MEDLINE | ID: mdl-38965336

ABSTRACT

This study aimed to evaluate the efficacy of Lactiplantibacillus argentoratensis AGMB00912 (LA) in reducing Salmonella Typhimurium infection in weaned piglets. The investigation focused on the influence of LA on the gut microbiota composition, growth performance, and Salmonella fecal shedding. The results indicated that LA supplementation significantly improved average daily gain and reduced the prevalence and severity of diarrhea. Fecal analysis revealed reduced Salmonella shedding in the LA-supplemented group. Furthermore, LA notably altered the composition of the gut microbiota, increasing the levels of beneficial Bacillus and decreasing those of harmful Proteobacteria and Spirochaetes. Histopathological examination showed less intestinal damage in LA-treated piglets than in the controls. The study also observed that LA affected metabolic functions related to carbohydrate, amino acid, and fatty acid metabolism, thereby enhancing gut health and resilience against infection. Short-chain fatty acid concentrations in the feces were higher in the LA group, suggesting improved gut microbial activity. LA supplementation enriched the population of beneficial bacteria, including Streptococcus, Clostridium, and Bifidobacterium, while reducing the number of harmful bacteria, such as Escherichia and Campylobacter. These findings indicate the potential of LA as a probiotic alternative for swine nutrition, offering protective effects to the gut microbiota against Salmonella infection.


Subject(s)
Feces , Gastrointestinal Microbiome , Probiotics , Weaning , Animals , Gastrointestinal Microbiome/drug effects , Swine , Pilot Projects , Probiotics/administration & dosage , Feces/microbiology , Salmonella Infections, Animal/microbiology , Swine Diseases/microbiology , Swine Diseases/prevention & control , Lactobacillaceae , Salmonella typhimurium/drug effects
3.
Microb Biotechnol ; 17(7): e14518, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953907

ABSTRACT

Porcine epidemic diarrhoea virus (PEDV) infects pigs of all ages by invading small intestine, causing acute diarrhoea, vomiting, and dehydration with high morbidity and mortality among newborn piglets. However, current PEDV vaccines are not effective to protect the pigs from field epidemic strains because of poor mucosal immune response and strain variation. Therefore, it is indispensable to develop a novel oral vaccine based on epidemic strains. Bacillus subtilis spores are attractive delivery vehicles for oral vaccination on account of the safety, high stability, and low cost. In this study, a chimeric gene CotC-Linker-COE (CLE), comprising of the B. subtilis spore coat gene cotC fused to the core neutralizing epitope CO-26 K equivalent (COE) of the epidemic strain PEDV-AJ1102 spike protein gene, was constructed. Then recombinant B. subtilis displaying the CLE on the spore surface was developed by homologous recombination. Mice were immunized by oral route with B. subtilis 168-CLE, B. subtilis 168, or phosphate-buffered saline (PBS) as control. Results showed that the IgG antibodies and cytokine (IL-4, IFN-γ) levels in the B. subtilis 168-CLE group were significantly higher than the control groups. This study demonstrates that B. subtilis 168-CLE can generate specific systemic immune and mucosal immune responses and is a potential vaccine candidate against PEDV infection.


Subject(s)
Antibodies, Viral , Bacillus subtilis , Porcine epidemic diarrhea virus , Spores, Bacterial , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/immunology , Animals , Bacillus subtilis/genetics , Bacillus subtilis/immunology , Spores, Bacterial/genetics , Spores, Bacterial/immunology , Mice , Antibodies, Viral/blood , Swine , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Coronavirus Infections/veterinary , Coronavirus Infections/prevention & control , Swine Diseases/prevention & control , Swine Diseases/virology , Swine Diseases/microbiology , Swine Diseases/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , Administration, Oral , Cytokines/metabolism , Immunoglobulin G/blood , Mice, Inbred BALB C , Female , Cell Surface Display Techniques , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
5.
Virol J ; 21(1): 160, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039549

ABSTRACT

Porcine Rotavirus (PoRV) is a significant pathogen affecting swine-rearing regions globally, presenting a substantial threat to the economic development of the livestock sector. At present, no specific pharmaceuticals are available for this disease, and treatment options remain exceedingly limited. This study seeks to design a multi-epitope peptide vaccine for PoRV employing bioinformatics approaches to robustly activate T-cell and B-cell immune responses. Two antigenic proteins, VP7 and VP8*, were selected from PoRV, and potential immunogenic T-cell and B-cell epitopes were predicted using immunoinformatic tools. These epitopes were further screened according to non-toxicity, antigenicity, non-allergenicity, and immunogenicity criteria. The selected epitopes were linked with linkers to form a novel multi-epitope vaccine construct, with the PADRE sequence (AKFVAAWTLKAAA) and RS09 peptide attached at the N-terminus of the designed peptide chain to enhance the vaccine's antigenicity. Protein-protein docking of the vaccine constructs with toll-like receptors (TLR3 and TLR4) was conducted using computational methods, with the lowest energy docking results selected as the optimal predictive model. Subsequently, molecular dynamics (MD) simulation methods were employed to assess the stability of the protein vaccine constructs and TLR3 and TLR4 receptors. The results indicated that the vaccine-TLR3 and vaccine-TLR4 docking models remained stable throughout the simulation period. Additionally, the C-IMMSIM tool was utilized to determine the immunogenic triggering capability of the vaccine protein, demonstrating that the constructed vaccine protein could induce both cell-mediated and humoral immune responses, thereby playing a role in eliciting host immune responses. In conclusion, this study successfully constructed a multi-epitope vaccine against PoRV and validated the stability and efficacy of the vaccine through computational analysis. However, as the study is purely computational, experimental evaluation is required to validate the safety and immunogenicity of the newly constructed vaccine protein.


Subject(s)
Antigens, Viral , Computational Biology , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Molecular Dynamics Simulation , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Vaccines, Subunit , Animals , Swine , Rotavirus/immunology , Rotavirus/genetics , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Rotavirus Vaccines/immunology , Rotavirus Vaccines/chemistry , Rotavirus Vaccines/genetics , Rotavirus Infections/prevention & control , Rotavirus Infections/immunology , Rotavirus Infections/virology , Vaccines, Subunit/immunology , Vaccines, Subunit/genetics , Vaccines, Subunit/chemistry , Antigens, Viral/immunology , Antigens, Viral/genetics , Antigens, Viral/chemistry , Molecular Docking Simulation , Swine Diseases/prevention & control , Swine Diseases/immunology , Swine Diseases/virology , Capsid Proteins/immunology , Capsid Proteins/genetics , Capsid Proteins/chemistry , Vaccine Development , Immunogenicity, Vaccine
6.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2150-2161, 2024 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-39044581

ABSTRACT

This study aims to develop an effective bivalent subunit vaccine that is promising to prevent both porcine deltacoronavirus (PDCoV) and porcine epidemic diarrhea virus (PEDV). The receptor-binding domains (RBDs) of PDCoV and PEDV were fused and cloned into the eukaryotic expression vector pCDNA3.1(+). The fusion protein PDCoV-RBD-PEDV-RBD (pdRBD-peRBD) was expressed by the ExpiCHOTM expression system and purified. Mice were immunized with the fusion protein at three different doses (10, 20, and 30 µg). The humoral immune response and cellular immune response induced by the fusion protein were evaluated by ELISA and flow cytometry. The neutralization titers of the serum of immunized mice against PDCoV and PEDV were determined by the microneutralization test. The results showed that high levels of IgG antibodies were induced in the three different dose groups after booster immunization, and there was no significant difference in the antibody level between different dose groups, indicating that the immunization dose of 10 µg could achieve the fine immune effect. The results of flow cytometry showed that the immunization groups demonstrated increased proportion of CD3+CD4+ T cells and decreased proportion of CD3+CD8+ T cells, which was consistent with the expectation about the humoral immune response induced by the subunit vaccine. At the same time, the levels of interleukin (IL)-2, IL-4, and interferon (IFN)-γ in the serum were determined. The results showed that the fusion protein induced both humoral immune effect and cellular immune response. The results of the neutralization test showed that the antibody induced by 10 µg fusion protein neutralized both PDCoV and PEDV in vitro, with the titers of 1:179.25 and 1:141.21, respectively. The above results suggested that the pdRBD-peRBD could induce a high level of humoral immune response at a dose of 10 µg, and the induced antibody could neutralize both PDCoV and PEDV. Therefore, the fusion protein pdRBD-peRBD is expected to be an effective subunit vaccine that can simultaneously prevent PDCoV and PEDV.


Subject(s)
Antibodies, Viral , Coronavirus Infections , Porcine epidemic diarrhea virus , Recombinant Fusion Proteins , Viral Vaccines , Animals , Porcine epidemic diarrhea virus/immunology , Porcine epidemic diarrhea virus/genetics , Mice , Swine , Viral Vaccines/immunology , Viral Vaccines/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Deltacoronavirus/immunology , Deltacoronavirus/genetics , Swine Diseases/prevention & control , Swine Diseases/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/genetics , Mice, Inbred BALB C , Female , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Protein Domains , Immunogenicity, Vaccine , Immunity, Humoral
7.
Prev Vet Med ; 230: 106264, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39003835

ABSTRACT

Identifying and restricting animal movements is a common approach used to mitigate the spread of diseases between premises in livestock systems. Therefore, it is essential to uncover between-premises movement dynamics, including shipment distances and network-based control strategies. Here, we analyzed three years of between-premises pig movements, which include 197,022 unique animal shipments, 3973 premises, and 391,625,374 pigs shipped across 20 U.S. states. We constructed unweighted, directed, temporal networks at 180-day intervals to calculate premises-to-premises movement distances, the size of connected components, network loyalty, and degree distributions, and, based on the out-going contact chains, identified network-based control actions. Our results show that the median distance between premises pig movements was 74.37 km, with median intrastate and interstate movements of 52.71 km and 328.76 km, respectively. On average, 2842 premises were connected via 6705 edges, resulting in a weak giant connected component that included 91 % of the premises. The premises-level network exhibited loyalty, with a median of 0.65 (IQR: 0.45 - 0.77). Results highlight the effectiveness of node targeting to reduce the risk of disease spread; we demonstrated that targeting 25 % of farms with the highest degree or betweenness limited spread to 1.23 % and 1.7 % of premises, respectively. While there is no complete shipment data for the entire U.S., our multi-state movement analysis demonstrated the value and the needs of such data for enhancing the design and implementation of proactive- disease control tactics.


Subject(s)
Animal Husbandry , Swine Diseases , Transportation , Animals , United States , Swine , Animal Husbandry/methods , Animal Husbandry/statistics & numerical data , Swine Diseases/epidemiology , Swine Diseases/prevention & control , Sus scrofa/physiology
8.
BMC Vet Res ; 20(1): 336, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080763

ABSTRACT

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that causes severe diarrhea and death in neonatal piglets, which has brought huge economic losses to the pork industry worldwide since its first discovery in the early 1970s in Europe. Passive immunization with neutralizing antibodies against PEDV is an effective prevention measure. To date, there are no effective therapeutic drugs to treat the PEDV infection. RESULTS: We conducted a screening of specific nanobodies against the S1 protein from a phage display library obtained from immunized alpacas. Through competitive binding to antigenic epitopes, we selected instead of chose nanobodies with high affinity and constructed a multivalent tandem. These nanobodies were shown to inhibit PEDV infectivity by the neutralization assay. The antiviral capacity of nanobody was found to display a dose-dependent pattern, as demonstrated by IFA, TCID50, and qRT-PCR analyses. Notably, biparatopic nanobody SF-B exhibited superior antiviral activity. Nanobodies exhibited low cytotoxicity and high stability even under harsh temperature and pH conditions, demonstrating their potential practical applicability to animals. CONCLUSIONS: Nanobodies exhibit remarkable biological properties and antiviral effects, rendering them a promising candidate for the development of anti-PEDV drugs.


Subject(s)
Antibodies, Neutralizing , Coronavirus Infections , Porcine epidemic diarrhea virus , Single-Domain Antibodies , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Camelids, New World/immunology , Chlorocebus aethiops , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Porcine epidemic diarrhea virus/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/immunology , Swine , Swine Diseases/virology , Swine Diseases/immunology , Swine Diseases/prevention & control , Vero Cells
9.
Vet Res ; 55(1): 96, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075542

ABSTRACT

Glaesserella parasuis (G. parasuis) induces vascular damage and systemic inflammation. However, the mechanism by which it causes vascular damage is currently unclear. Baicalin has important anti-inflammatory, antibacterial and immunomodulatory functions. In this study, we explored the ability of baicalin and probenecid to protect against G. parasuis challenge in a piglet model. Sixty piglets were randomly divided into a control group; an infection group; a probenecid group; and 25 mg/kg, 50 mg/kg and 100 mg/kg baicalin groups. The probenecid group and the 25 mg/kg, 50 mg/kg and 100 mg/kg baicalin groups were injected intramuscularly with 20 mg/kg body weight (BW) probenecid and 25 mg/kg BW, 50 mg/kg BW and 100 mg/kg BW baicalin, respectively. All piglets except those from the control group were injected intraperitoneally with 1 × 108 CFU of G. parasuis. The control group was injected intraperitoneally with TSB. The results showed baicalin and probenecid protected piglets against G. parasuis challenge, improved body weight and decreased temperature changes in piglets. Baicalin and probenecid attenuated IL-1ß, IL-10, IL-18, TNF-α and IFN-γ mRNA levels in the blood for 48 h, inhibited the production of the nucleosides ATP, ADP, AMP and UMP from 24 to 72 h, reduced Panx-1/P2Y6/P2X7 expression, weakened NF-kB, AP-1, NLRP3/Caspase-1 and ROCK/MLCK/MLC signalling activation, and upregulated VE-cadherin expression in the blood vessels of piglets challenged with G. parasuis. Baicalin and probenecid alleviated pathological tissue damage in piglets induced by G. parasuis. Our results might provide a promising strategy to control and treat G. parasuis infection in the clinical setting.


Subject(s)
Flavonoids , Haemophilus parasuis , Probenecid , Swine Diseases , Animals , Probenecid/pharmacology , Flavonoids/pharmacology , Flavonoids/administration & dosage , Swine , Swine Diseases/microbiology , Swine Diseases/prevention & control , Haemophilus parasuis/drug effects , Haemophilus Infections/veterinary , Haemophilus Infections/prevention & control
10.
Vet Res ; 55(1): 93, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075605

ABSTRACT

Glaesserella parasuis is usually a benign swine commensal in the upper respiratory tract, but virulent strains can cause systemic infection characterized by pneumonia, meningitis, and fibrinous polyserositis. The intensive pulmonary inflammatory response following G. parasuis infection is the main cause of lung injury and death in pigs. Vaccination has failed to control the disease due to the lack of extended cross-protection. Accumulating evidence indicates that the heme-binding protein A (HbpA) is a potential virulence determinant and a promising antigen candidate for the development of a broader range of vaccines. However, it is not yet known whether HbpA contributes to G. parasuis virulence or has any potential immune protective effects against G. parasuis. Here, we show that HbpA can induce the transcription and secretion of proinflammatory cytokines (IL-6, TNF-α, and MCP-1) in porcine alveolar macrophages (PAM, 3D4/31). The HbpA protein is recognized by Toll-like receptors 2 and 4 on 3D4/21 macrophages, resulting in the activation of MAP kinase and NF-κB signalling cascades and the transcription and secretion of proinflammatory cytokines. HbpA contributes to virulence and bacterial pulmonary colonization in C57BL/6 mice and plays a role in adhesion to host cells and evasion of the bactericidal effect of pulmonary macrophages. In addition, mice immunized with HbpA were partially protected against challenge by G. parasuis SC1401. The results suggest that HbpA plays an important role in the pathogenesis of disease caused by G. parasuis and lay a foundation for the development of a subunit or chimeric anti-G. parasuis vaccine.


Subject(s)
Haemophilus Infections , Haemophilus parasuis , NF-kappa B , Signal Transduction , Swine Diseases , Animals , Mice , Haemophilus parasuis/immunology , Haemophilus Infections/veterinary , Haemophilus Infections/prevention & control , Haemophilus Infections/immunology , Haemophilus Infections/microbiology , NF-kappa B/metabolism , Swine Diseases/prevention & control , Swine Diseases/microbiology , Swine Diseases/immunology , Swine , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Pasteurellaceae/immunology , Inflammation/prevention & control , Inflammation/veterinary , Female
11.
Vet Microbiol ; 296: 110198, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39067145

ABSTRACT

Senecavirus A (SVA) is a causative agent that can cause vesicular disease in swine, which causes a great threat to the swine husbandry in the world. Therefore, it is necessary to develop a vaccine that can effectively prevent the spread of SVA. In this study, we developed a 24-polymeric nano-scaffold using ß-annulus peptide from tomato bushy effect virus (TBSV) by coupling this antigen to SVA B cell epitope VP121-26 and VP2 proteins via linkers, respectively. The SVA-based nanoparticle protein of the VP1(B)-ß-VP2 was expressed and purified by low-cost prokaryotic system to prepare a SVA nanoparticle vaccine. The immunological protective effect of SVA nanoparticle vaccine was evaluated in mouse and swine models, respectively. The results suggested that both mice and swine could induce high levels SVA neutralizing antibodies and IgG antibodies after two doses immunization. In addition, the swine challenge protection experiment showed that the protection rate of immune SVA nanoparticle vaccine and SVA inactivated vaccine both were 80 %, while the negative control had no protection effect. It demonstrated that SVA nanoparticle vaccine effectively prevented SVA infection in swine. In summary, the preparation of SVA vaccine by using ß-annulus peptide is a promising candidate vaccine for prevent SVA transmission, and provides a new idea for the development of novel SVA vaccines.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Nanovaccines , Picornaviridae Infections , Picornaviridae , Swine Diseases , Viral Vaccines , Animals , Female , Mice , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Capsid Proteins/immunology , Mice, Inbred BALB C , Nanovaccines/administration & dosage , Nanovaccines/immunology , Picornaviridae/immunology , Picornaviridae Infections/veterinary , Picornaviridae Infections/prevention & control , Picornaviridae Infections/immunology , Picornaviridae Infections/virology , Swine , Swine Diseases/prevention & control , Swine Diseases/virology , Swine Diseases/immunology , Viral Structural Proteins/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage
12.
Virology ; 597: 110150, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38917690

ABSTRACT

Coronaviruses (CoVs) comprise a group of important human and animal pathogens that threaten public health because of their interspecies transmission potential to humans. However, virus-like particles (VLPs) constitute versatile tools in CoVs vaccine development due to their favorable immunological characteristics. Here, we engineered the VLPs composed of the spike (S), membrane (M), and envelope (E) structural proteins of the Porcine deltacoronavirus (PDCoV) and examined their immune responses in mice. Neutralization assays and flow Cytometry demonstrated that PDCoV VLPs induced highly robust neutralizing antibodies (NAbs) and elicited cellular immunity. To assess the protective efficacy of VLPs in newborn piglets, pregnant sows received vaccinations with either a PDCoV-inactivated vaccine or VLPs at 40 and 20 days before delivery. Five days post-farrowing, piglets were orally challenged with the PDCoV strain. Severe diarrhea, high viral RNA copies, and substantial intestinal villus atrophy were detected in piglets born to unimmunized sows. However, piglets from sows immunized with VLPs exhibited high NAbs titers and markedly reduced microscopic damage to the intestinal tissues, with no piglet showing diarrhea. Hence, the results indicate that the VLPs are a potential clinical candidate for PDCoV vaccination, while the strategy may serve as a platform for developing other coronavirus vaccines.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Coronavirus Infections , Deltacoronavirus , Swine Diseases , Vaccines, Virus-Like Particle , Viral Vaccines , Animals , Swine , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Swine Diseases/prevention & control , Swine Diseases/virology , Swine Diseases/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Female , Deltacoronavirus/immunology , Mice , Pregnancy , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Animals, Newborn
13.
Microb Pathog ; 193: 106759, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38906494

ABSTRACT

Streptococcus suis is one of the major pathogens of pigs circulating worldwide, and the development of vaccines will help to effectively control streptococcosis in swine. In this study, we evaluated the potential of three membrane associated proteins, histidine kinase (HK), glycosyltransferase family 2 (Gtf-2) and phosphate binding protein (PsbP) of S. suis as subunit vaccines. Bioinformatics analysis shows that protein ABC is highly conserved in S. suis. To verify the protective effects of these proteins in animal models, recombinant protein HK, Gtf-2 and PsbP were used to immunize BALB/c mice separately. The results showed that these proteins immunization in mice can effectively induce strong humoral immune responses, protect mice from cytokine storms caused by S. suis infection, and have a significant protective effect against lethal doses of S. suis infection. Furthermore, antibodies with opsonic activity exist in the recombinant proteins antiserum to assist phagocytic cells in killing S. suis. Overall, these results indicated that these recombinant proteins all elicit good immune protective effect against S. suis infection and can be represent promising candidate antigens for subunit vaccines against S. suis.


Subject(s)
Antibodies, Bacterial , Bacterial Proteins , Disease Models, Animal , Mice, Inbred BALB C , Recombinant Proteins , Streptococcal Infections , Streptococcal Vaccines , Streptococcus suis , Vaccines, Subunit , Streptococcus suis/immunology , Streptococcus suis/genetics , Animals , Streptococcal Infections/prevention & control , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Mice , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Vaccines, Subunit/immunology , Vaccines, Subunit/genetics , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Streptococcal Vaccines/immunology , Streptococcal Vaccines/administration & dosage , Streptococcal Vaccines/genetics , Serogroup , Cytokines/metabolism , Female , Membrane Proteins/immunology , Membrane Proteins/genetics , Immunity, Humoral , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Swine Diseases/prevention & control , Swine Diseases/immunology , Swine Diseases/microbiology , Swine , Computational Biology
14.
Open Vet J ; 14(5): 1224-1242, 2024 May.
Article in English | MEDLINE | ID: mdl-38938443

ABSTRACT

Background: Porcine epidemic diarrhea (PED), caused by the porcine epidemic diarrhea virus (PEDV), is associated with high mortality and morbidity rates, especially in neonatal pigs. This has resulted in significant economic losses for the pig industry. PEDV genotype II-based vaccines were found to confer better immunity against both heterologous and homologous challenges; specifically, spike (S) proteins, which are known to play a significant role during infection, are ideal for vaccine development. Aim: This study aims to design a multi-epitope subunit vaccine targeting the S protein of the PEDV GIIa strain using an immunoinformatics approach. Methods: Various bioinformatics tools were used to predict HTL, CTL, and B-cell epitopes. The epitopes were connected using appropriate linkers and conjugated with the CTB adjuvant and M-ligand. The final multiepitope vaccine construct (fMEVc) was then docked to toll-like receptor 4 (TLR4). The stability of the fMEVc-TLR4 complex was then simulated using GROMACS. C-immsim was then used to predict the in vitro immune response of the fMEVc. Results: Six epitopes were predicted to induce antibody production, ten epitopes were predicted to induce CTL responses, and four epitopes were predicted to induce HTL responses. The assembled epitopes conjugated with the CTB adjuvant and M-ligand, fMEVc, is antigenic, non-allergenic, stable, and soluble. The construct showed a favorable binding affinity for TLR4, and the protein complex was shown to be stable through molecular dynamics simulations. A robust immune response was induced after immunization, as demonstrated through immune stimulation. Conclusion: In conclusion, the multi-epitope subunit vaccine construct for PEDV designed in this study exhibits promising antigenicity, stability, and immunogenicity, eliciting robust immune responses and suggesting its potential as a candidate for further vaccine development.


Subject(s)
Computational Biology , Coronavirus Infections , Porcine epidemic diarrhea virus , Spike Glycoprotein, Coronavirus , Swine Diseases , Vaccines, Subunit , Viral Vaccines , Animals , Porcine epidemic diarrhea virus/immunology , Vaccines, Subunit/immunology , Swine , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Viral Vaccines/immunology , Swine Diseases/prevention & control , Swine Diseases/immunology , Swine Diseases/virology , Genotype , Epitopes/immunology , Epitopes, T-Lymphocyte/immunology , Epitopes, B-Lymphocyte/immunology , Molecular Docking Simulation , Immunoinformatics
15.
Viruses ; 16(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38932126

ABSTRACT

Pig farming has become a strategically significant and economically important industry across the globe. It is also a potentially vulnerable sector due to challenges posed by transboundary diseases in which viral infections are at the forefront. Among the porcine viral diseases, African swine fever, classical swine fever, foot and mouth disease, porcine reproductive and respiratory syndrome, pseudorabies, swine influenza, and transmissible gastroenteritis are some of the diseases that cause substantial economic losses in the pig industry. It is a well-established fact that vaccination is undoubtedly the most effective strategy to control viral infections in animals. From the period of Jenner and Pasteur to the recent new-generation technology era, the development of vaccines has contributed significantly to reducing the burden of viral infections on animals and humans. Inactivated and modified live viral vaccines provide partial protection against key pathogens. However, there is a need to improve these vaccines to address emerging infections more comprehensively and ensure their safety. The recent reports on new-generation vaccines against swine viruses like DNA, viral-vector-based replicon, chimeric, peptide, plant-made, virus-like particle, and nanoparticle-based vaccines are very encouraging. The current review gathers comprehensive information on the available vaccines and the future perspectives on porcine viral vaccines.


Subject(s)
Swine Diseases , Viral Vaccines , Virus Diseases , Animals , Swine , Viral Vaccines/immunology , Swine Diseases/prevention & control , Swine Diseases/virology , Virus Diseases/prevention & control , Virus Diseases/veterinary , Virus Diseases/immunology , Vaccination/veterinary , Vaccines, Attenuated/immunology , Vaccines, Inactivated/immunology , Viruses/immunology , Viruses/genetics
16.
Anim Sci J ; 95(1): e13964, 2024.
Article in English | MEDLINE | ID: mdl-38831612

ABSTRACT

This study evaluated the effects of supplementation with Antrodia cinnamomea mycelium by-product (ACBP) on growth performance and immune response in weaning piglets. Total available content and antioxidant capacity of ACBP were determined. Ninety-six black pigs were randomly distributed to 24 pens. Study compared four groups which were supplemented with ACBP at 0%, 2.5%, 5%, or 10% for 6 weeks after weaning at 4 weeks. Results showed that ACBP on total phenolic, total flavonoid, and total triterpenoids contents were 13.68 mg GAE/g DW, 1.67 µg QE/g DW, and 15.6 mg/g, respectively. Weaning piglets fed 2.5% ACBP showed a significant decreased body weight gain compared with those supplemented with 5% ACBP, 10% ACBP, and control groups. Results showed that all ACBP groups increased the villi height of jejunum significantly. Incidence of diarrhea in 11 weeks with supplementation with 5% and 10% ACBP diets were lower than in control group. The 10% ACBP group showed significantly lower expression of immune response genes (IL-1ß, IL-6, IL-8, TNF-α, and IFN-γ) than the 2.5% and 5% ACBP groups. Based on results, dietary supplementation with 10% ACBP did not significantly affect body weight but could decrease piglet diarrhea condition and expression of IL-1ß and IL-6 genes.


Subject(s)
Animal Feed , Antioxidants , Diet , Dietary Supplements , Mycelium , Weaning , Weight Gain , Animals , Swine/growth & development , Swine/immunology , Weight Gain/drug effects , Diet/veterinary , Antioxidants/metabolism , Diarrhea/veterinary , Triterpenes/pharmacology , Triterpenes/administration & dosage , Gene Expression/drug effects , Cytokines/metabolism , Jejunum/metabolism , Phenols/analysis , Animal Nutritional Physiological Phenomena , Swine Diseases/microbiology , Swine Diseases/prevention & control , Swine Diseases/immunology , Polyporales/chemistry
17.
Front Immunol ; 15: 1361323, 2024.
Article in English | MEDLINE | ID: mdl-38835763

ABSTRACT

Introduction: Swine influenza viruses (SIVs) pose significant economic losses to the pig industry and are a burden on global public health systems. The increasing complexity of the distribution and evolution of different serotypes of influenza strains in swine herds escalates the potential for the emergence of novel pandemic viruses, so it is essential to develop new vaccines based on swine influenza. Methods: Here, we constructed a self-assembling ferritin nanoparticle vaccine based on the hemagglutinin (HA) extracellular domain of swine influenza A (H1N1) virus using insect baculovirus expression vector system (IBEVS), and after two immunizations, the immunogenicities and protective efficacies of the HA-Ferritin nanoparticle vaccine against the swine influenza virus H1N1 strain in mice and piglets were evaluated. Results: Our results demonstrated that HA-Ferritin nanoparticle vaccine induced more efficient immunity than traditional swine influenza vaccines. Vaccination with the HA-Ferritin nanoparticle vaccine elicited robust hemagglutinin inhibition titers and antigen-specific IgG antibodies and increased cytokine levels in serum. MF59 adjuvant can significantly promote the humoral immunity of HA-Ferritin nanoparticle vaccine. Furthermore, challenge tests showed that HA-Ferritin nanoparticle vaccine conferred full protection against lethal challenge with H1N1 virus and significantly decreased the severity of virus-associated lung lesions after challenge in both BALB/c mice and piglets. Conclusion: Taken together, these results indicate that the hemagglutinin extracellular-based ferritin nanoparticle vaccine may be a promising vaccine candidate against SIVs infection.


Subject(s)
Antibodies, Viral , Ferritins , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Mice, Inbred BALB C , Nanoparticles , Orthomyxoviridae Infections , Animals , Influenza A Virus, H1N1 Subtype/immunology , Ferritins/immunology , Influenza Vaccines/immunology , Swine , Mice , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Swine Diseases/prevention & control , Swine Diseases/immunology , Swine Diseases/virology , Female , Nanovaccines
18.
Methods Mol Biol ; 2815: 131-142, 2024.
Article in English | MEDLINE | ID: mdl-38884916

ABSTRACT

Streptococcus suis is a bacterial pathogen that can cause significant economic losses in the swine industry due to high morbidity and mortality rates in infected animals. Vaccination with bacterins, which consist of inactivated bacteria and adjuvants to enhance the pig's immune response, is an effective approach to control S. suis infections in piglets. Here we provide a description of S. suis bacterins and the methods for vaccine preparation. Moreover, this chapter also describes the addition of recombinant Sao (rSao-L) protein to the S. suis bacterin, aiming to enhance the efficacy of the bacterins against S. suis in piglets. Furthermore, the methods for evaluating the immune response elicited by the bacterins are also covered in this chapter.


Subject(s)
Streptococcus suis , Animals , Swine , Streptococcus suis/immunology , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcal Infections/prevention & control , Streptococcal Infections/veterinary , Swine Diseases/microbiology , Swine Diseases/prevention & control , Swine Diseases/immunology , Vaccination/methods , Bacterial Vaccines/immunology , Adjuvants, Immunologic/pharmacology , Antibodies, Bacterial/immunology , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Streptococcal Vaccines/immunology , Streptococcal Vaccines/administration & dosage
19.
Prev Vet Med ; 229: 106228, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38850871

ABSTRACT

To prevent foodborne infections from pigs and cattle, the whole food chain must act to minimize the contamination of products, including biosecurity measures which prevent infections via feed and the environment in production farms. Rodents and other small mammals can be reservoirs of and key vectors for transmitting zoonotic bacteria and viruses to farm animals, through direct contact but more often through environmental contamination. In line with One Health concept, we integrated results from a sampling study of small mammals in farm environments and data from a capture-recapture experiment into a probabilistic model which quantifies the degree of environmental exposure of zoonotic bacteria by small mammals to farm premises. We investigated more than 1200 small mammals trapped in and around 38 swine and cattle farm premises in Finland in 2017/2018. Regardless of the farm type, the most common species caught were the yellow-necked mouse (Apodemus flavicollis), bank vole (Clethrionomys glareolus), and house mouse (Mus musculus). Of 554 intestine samples (each pooled from 1 to 10 individuals), 33% were positive for Campylobacter jejuni. Yersinia enterocolitica was detected in 8% of the pooled samples, on 21/38 farm premises. Findings of Salmonella and the Shiga-toxin producing Escherichia coli (STEC) were rare: the pathogens were detected in only single samples from four and six farm premises, respectively. The prevalence of Campylobacter, Salmonella, Yersinia and STEC in small mammal populations was estimated as 26%/13%, 1%/0%, 2%/3%, 1%/1%, respectively, in 2017/2018. The exposure probability within the experimental period of four weeks on farms was 17-60% for Campylobacter and 0-3% for Salmonella. The quantitative model is readily applicable to similar integrative studies. Our results indicate that small mammals increase the risk of exposure to zoonotic bacteria in animal production farms, thus increasing risks also for livestock and human health.


Subject(s)
Cattle Diseases , Swine Diseases , Animals , Cattle , Swine , Prevalence , Swine Diseases/epidemiology , Swine Diseases/microbiology , Swine Diseases/prevention & control , Swine Diseases/transmission , Finland/epidemiology , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Cattle Diseases/transmission , Rodentia/microbiology , Bacterial Zoonoses/epidemiology , Bacterial Zoonoses/microbiology , Zoonoses/epidemiology , Disease Reservoirs/veterinary , Disease Reservoirs/microbiology , Risk Assessment , Farms
20.
Vet Immunol Immunopathol ; 274: 110785, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861830

ABSTRACT

The pig is emerging as a physiologically relevant biomedical large animal model. Delineating the functional roles of porcine adaptive T-lymphocyte subsets in health and disease is of critical significance, which facilitates mechanistic understanding of antigen-specific immune memory responses. We identified a novel T-helper/memory lymphocyte subset in pigs and performed phenotypic and functional characterization of these cells under steady state and following vaccination and infection with swine influenza A virus (SwIAV). A novel subset of CD3+CD4lowCD8α+CD8ß+ memory T-helper cells was identified in the blood of healthy adult pigs under homeostatic conditions. To understand the possible functional role/s of these cells, we characterized the antigen-specific T cell memory responses by multi-color flow cytometry in pigs vaccinated with a whole inactivated SwIAV vaccine, formulated with a phytoglycogen nanoparticle/STING agonist (ADU-S100) adjuvant (NanoS100-SwIAV). As a control, a commercial SwIAV vaccine was included in a heterologous challenge infection trial. The frequencies of antigen-specific IL-17A and IFNγ secreting CD3+CD4lowCD8α+CD8ß+ memory T-helper cells were significantly increased in the lung draining tracheobronchial lymph nodes (TBLN) of intradermal, intramuscular and intranasal inoculated NanoS100-SwIAV vaccine and commercial vaccine administered animals. While the frequencies of antigen-specific, IFNγ secreting CD3+CD4lowCD8α+CD8ß+ memory T-helper cells were significantly enhanced in the blood of intranasal and intramuscular vaccinates. These observations suggest that the CD3+CD4lowCD8α+CD8ß+ T-helper/memory cells in pigs may have a protective and/or regulatory role/s in immune responses against SwIAV infection. These observations highlight the heterogeneity and plasticity of porcine CD4+ T-helper/memory cells in response to respiratory viral infection in pigs. Comprehensive systems immunology studies are needed to further decipher the cellular lineages and functional role/s of this porcine T helper/memory cell subset.


Subject(s)
Influenza Vaccines , Orthomyxoviridae Infections , Swine Diseases , Animals , Swine/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/prevention & control , Swine Diseases/immunology , Swine Diseases/virology , Swine Diseases/prevention & control , T-Lymphocytes, Helper-Inducer/immunology , Respiratory System/immunology , Respiratory System/virology , Lymphoid Tissue/immunology , Immunologic Memory , Memory T Cells/immunology , T-Lymphocyte Subsets/immunology , Influenza A virus/immunology , Vaccination/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL