Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 922
Filter
1.
Nat Commun ; 12(1): 2603, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33972518

ABSTRACT

Synaptic disturbances in excitatory to inhibitory (E/I) balance in forebrain circuits are thought to contribute to the progression of Alzheimer's disease (AD) and dementia, although direct evidence for such imbalance in humans is lacking. We assessed anatomical and electrophysiological synaptic E/I ratios in post-mortem parietal cortex samples from middle-aged individuals with AD (early-onset) or Down syndrome (DS) by fluorescence deconvolution tomography and microtransplantation of synaptic membranes. Both approaches revealed significantly elevated E/I ratios for AD, but not DS, versus controls. Gene expression studies in an independent AD cohort also demonstrated elevated E/I ratios in individuals with AD as compared to controls. These findings provide evidence of a marked pro-excitatory perturbation of synaptic E/I balance in AD parietal cortex, a region within the default mode network that is overly active in the disorder, and support the hypothesis that E/I imbalances disrupt cognition-related shifts in cortical activity which contribute to the intellectual decline in AD.


Subject(s)
Alzheimer Disease/physiopathology , Cognitive Dysfunction/physiopathology , Down Syndrome/physiopathology , Parietal Lobe/anatomy & histology , Parietal Lobe/metabolism , Synapses/metabolism , Synaptic Membranes/physiology , Amyloid beta-Peptides/metabolism , Animals , Anura , Autopsy , Cognitive Dysfunction/metabolism , Disks Large Homolog 4 Protein/metabolism , Down Syndrome/metabolism , Female , GABA Plasma Membrane Transport Proteins/genetics , GABA Plasma Membrane Transport Proteins/metabolism , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Humans , Male , Membrane Proteins/metabolism , Middle Aged , Nerve Net/physiopathology , Oocytes/physiology , Parietal Lobe/physiopathology , Synapses/pathology , Synaptic Membranes/metabolism , Synaptosomes/metabolism , Synaptosomes/pathology , Tomography, Optical , Transcriptome/genetics
2.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33875591

ABSTRACT

Long-term potentiation (LTP) is a cellular mechanism of learning and memory that results in a sustained increase in the probability of vesicular release of neurotransmitter. However, previous work in hippocampal area CA1 of the adult rat revealed that the total number of vesicles per synapse decreases following LTP, seemingly inconsistent with the elevated release probability. Here, electron-microscopic tomography (EMT) was used to assess whether changes in vesicle density or structure of vesicle tethering filaments at the active zone might explain the enhanced release probability following LTP. The spatial relationship of vesicles to the active zone varies with functional status. Tightly docked vesicles contact the presynaptic membrane, have partially formed SNARE complexes, and are primed for release of neurotransmitter upon the next action potential. Loosely docked vesicles are located within 8 nm of the presynaptic membrane where SNARE complexes begin to form. Nondocked vesicles comprise recycling and reserve pools. Vesicles are tethered to the active zone via filaments composed of molecules engaged in docking and release processes. The density of tightly docked vesicles was increased 2 h following LTP compared to control stimulation, whereas the densities of loosely docked or nondocked vesicles congregating within 45 nm above the active zones were unchanged. The tethering filaments on all vesicles were shorter and their attachment sites shifted closer to the active zone. These findings suggest that tethering filaments stabilize more vesicles in the primed state. Such changes would facilitate the long-lasting increase in release probability following LTP.


Subject(s)
Hippocampus/physiology , Long-Term Potentiation/physiology , Synaptic Vesicles/ultrastructure , Animals , Brain/metabolism , Brain/physiology , Cytoskeleton , Electron Microscope Tomography/methods , Hippocampus/metabolism , Long-Term Potentiation/genetics , Male , Neurotransmitter Agents , Presynaptic Terminals/metabolism , Presynaptic Terminals/physiology , Rats , Rats, Long-Evans , Synapses/physiology , Synaptic Membranes/physiology , Synaptic Membranes/ultrastructure , Synaptic Vesicles/physiology
3.
Neuron ; 108(5): 843-860.e8, 2020 12 09.
Article in English | MEDLINE | ID: mdl-32991831

ABSTRACT

Electron microscopy can resolve synapse ultrastructure with nanometer precision, but the capture of time-resolved, activity-dependent synaptic membrane-trafficking events has remained challenging, particularly in functionally distinct synapses in a tissue context. We present a method that combines optogenetic stimulation-coupled cryofixation ("flash-and-freeze") and electron microscopy to visualize membrane trafficking events and synapse-state-specific changes in presynaptic vesicle organization with high spatiotemporal resolution in synapses of cultured mouse brain tissue. With our experimental workflow, electrophysiological and "flash-and-freeze" electron microscopy experiments can be performed under identical conditions in artificial cerebrospinal fluid alone, without the addition of external cryoprotectants, which are otherwise needed to allow adequate tissue preservation upon freezing. Using this approach, we reveal depletion of docked vesicles and resolve compensatory membrane recycling events at individual presynaptic active zones at hippocampal mossy fiber synapses upon sustained stimulation.


Subject(s)
Excitatory Postsynaptic Potentials/physiology , Hippocampus/physiology , Hippocampus/ultrastructure , Synaptic Membranes/physiology , Synaptic Membranes/ultrastructure , Animals , Gene Knock-In Techniques/methods , Mice , Mice, Transgenic , Microscopy, Electron/methods , Microtomy/methods , Organ Culture Techniques , Protein Transport/physiology
4.
J Mol Biol ; 432(17): 4773-4782, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32682743

ABSTRACT

Membrane fusion during synaptic transmission mediates the trafficking of chemical signals and neuronal communication. The fast kinetics of membrane fusion on the order of millisecond is precisely regulated by the assembly of SNAREs and accessory proteins. It is believed that the formation of the SNARE complex is a key step during membrane fusion. Little is known, however, about the molecular machinery that mediates the formation of a large pre-fusion complex, including multiple SNAREs and accessory proteins. Syntaxin, a transmembrane protein on the plasma membrane, has been observed to undergo oligomerization to form clusters. Whether this clustering plays a critical role in membrane fusion is poorly understood in live cells. Optogenetics is an emerging biotechnology armed with the capacity to precisely modulate protein-protein interaction in time and space. Here, we propose an experimental scheme that combines optogenetics with single-vesicle membrane fusion, aiming to gain a better understanding of the molecular mechanism by which the syntaxin cluster regulates membrane fusion. We envision that newly developed optogenetic tools could facilitate the mechanistic understanding of synaptic transmission in live cells and animals.


Subject(s)
Qa-SNARE Proteins/chemistry , Qa-SNARE Proteins/metabolism , Synaptic Membranes/physiology , Animals , Humans , Membrane Fusion , Neurons/physiology , Optogenetics , Protein Multimerization , Synaptic Transmission
5.
PLoS One ; 15(5): e0233020, 2020.
Article in English | MEDLINE | ID: mdl-32437355

ABSTRACT

Signaling through the endocannabinoid system is critical to proper functioning of the cerebellar circuit. However, most studies have focused on signaling through cannabinoid type 1 (CB1) receptors, while relatively little is known about signaling through type 2 (CB2) receptors. We show that functional CB2 receptors are expressed in Purkinje cells using a combination of immunohistochemistry and patch-clamp electrophysiology in juvenile mice. Pharmacological activation of CB2 receptors significantly reduces inhibitory synaptic responses and currents mediated by photolytic uncaging of RuBi-GABA in Purkinje cells. CB2 receptor activation does not change the paired-pulse ratio of inhibitory responses and its effects are blocked by inclusion of GDP-ß-S in the internal solution, indicating a postsynaptic mechanism of action. However, CB2 receptors do not contribute to depolarization induced suppression of inhibition (DSI), indicating they are not activated by endocannabinoids synthesized and released from Purkinje cells using this protocol. This work demonstrates that CB2 receptors inhibit postsynaptic GABAA receptors by a postsynaptic mechanism in Purkinje cells. This represents a novel mechanism by which CB2 receptors may modulate neuronal and circuit function in the central nervous system.


Subject(s)
Purkinje Cells/physiology , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/metabolism , Receptors, GABA-A/metabolism , Animals , Cannabinoids/pharmacology , Cyclohexanes/pharmacology , Female , Gene Knockout Techniques , Male , Mice , Morpholines/pharmacology , Patch-Clamp Techniques , Quinolines/pharmacology , Receptor, Cannabinoid, CB2/agonists , Synaptic Membranes/physiology , Synaptic Transmission
6.
J Comp Physiol B ; 189(2): 213-222, 2019 04.
Article in English | MEDLINE | ID: mdl-30739144

ABSTRACT

Disruption of neuronal function is likely to influence limits to thermal tolerance. We hypothesized that with acute warming the structure and function of neuronal membranes in the Antarctic notothenioid fish Chaenocephalus aceratus are more vulnerable to perturbation than membranes in the more thermotolerant notothenioid Notothenia coriiceps. Fluidity was quantified in synaptic membranes, mitochondrial membranes, and myelin from brains of both species of Antarctic fishes. Polar lipid compositions and cholesterol contents were analyzed in myelin; cholesterol was measured in synaptic membranes. Thermal profiles were determined for activities of two membrane-associated proteins, acetylcholinesterase (AChE) and Na+/K+-ATPase (NKA), from brains of animals maintained at ambient temperature or exposed to their critical thermal maxima (CTMAX). Synaptic membranes of C. aceratus were consistently more fluid than those of N. coriiceps (P < 0.0001). Although the fluidities of both myelin and mitochondrial membranes were similar among species, sensitivity of myelin fluidity to in vitro warming was greater in N. coriiceps than in C. aceratus (P < 0.001), which can be explained by lower cholesterol contents in myelin of N. coriiceps (P < 0.05). Activities of both enzymes, AChE and NKA, declined upon CTMAX exposure in C. aceratus, but not in N. coriiceps. We suggest that hyper-fluidization of synaptic membranes with warming in C. aceratus may explain the greater stenothermy in this species, and that thermal limits in notothenioids are more likely to be influenced by perturbations in synaptic membranes than in other membranes of the nervous system.


Subject(s)
Mitochondrial Membranes/physiology , Myelin Sheath/physiology , Neurons/physiology , Perciformes/physiology , Synaptic Membranes/physiology , Thermotolerance/physiology , Animals , Antarctic Regions , Membrane Fluidity , Species Specificity , Temperature
7.
Curr Opin Neurobiol ; 51: 147-153, 2018 08.
Article in English | MEDLINE | ID: mdl-29902592

ABSTRACT

Synapses differ markedly in their performance, even amongst those on a single neuron. The mechanisms that drive this functional diversification are of great interest because they enable adaptive behaviors and are targets of pathology. Considerable effort has focused on elucidating mechanisms of plasticity that involve changes to presynaptic release probability and the number of postsynaptic receptors. However, recent work is clarifying that nanoscale organization of the proteins within glutamatergic synapses impacts synapse function. Specifically, active zone scaffold proteins form nanoclusters that define sites of neurotransmitter release, and these sites align transsynaptically with clustered postsynaptic receptors. These nanostructural characteristics raise numerous possibilities for how synaptic plasticity could be expressed.


Subject(s)
Neuronal Plasticity/physiology , Neurons/cytology , Presynaptic Terminals/physiology , Synapses/physiology , Synaptic Membranes/physiology , Animals , Nerve Tissue Proteins/metabolism , Synapses/ultrastructure
8.
Rev. neurol. (Ed. impr.) ; 66(supl.1): S97-S102, 1 mar., 2018. ilus
Article in Spanish | IBECS | ID: ibc-171898

ABSTRACT

Objetivo. Conocer los procesos neurales ligados a la formación de sinapsis y circuitos cerebrales para entender su papel en las enfermedades del neurodesarrollo, como el trastorno del espectro autista (TEA) y el trastorno por déficit de atención/hiperactividad (TDAH). Desarrollo. La actividad de los circuitos neuronales es la base neurobiológica de la conducta y la actividad mental (emociones, memoria y pensamientos). Los procesos de diferenciación de las células neurales y la formación de circuitos por contactos sinápticos entre neuronas (sinaptogénesis) ocurren en el sistema nervioso central durante las últimas fases del desarrollo prenatal y los primeros meses después del nacimiento. Los TEA y el TDAH comparten rasgos biológicos, relacionados con alteraciones en los circuitos cerebrales y la función sináptica, que permiten tratarlos científicamente de forma conjunta. Desde el aspecto neurobiológico, el TEA y el TDAH son manifestaciones de anomalías en la formación de circuitos y contactos sinápticos en regiones cerebrales implicadas en la conducta social, especialmente en la corteza cerebral prefrontal. Estas anomalías son causadas por mutaciones en genes involucrados en la formación de sinapsis y plasticidad sináptica, la regulación de la morfología de las espinas dendríticas, la organización del citoesqueleto y el control del equilibrio excitador e inhibidor en la sinapsis. Conclusiones. El TEA y el TDAH son alteraciones funcionales de la corteza cerebral, que presenta anomalías estructurales en la disposición de las neuronas, en el patrón de conexiones de las columnas corticales y en la estructura de las espinas dendríticas. Estas alteraciones afectan fundamentalmente a la corteza prefrontal y sus conexiones (AU)


Aim. To know the neural processes linked to the activity of brain circuits in order to understand the consequences of their dysfunction and their role in the development of neurodevelopmental diseases, such as autistic spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD). Development. The activity of neuronal circuits is the neurobiological basis of behavior and mental activity (emotions, memory and thoughts). The processes of differentiation of neural cells and the formation of circuits by synaptic contacts between neurons (synaptogenesis) occur in the central nervous system during the late stages of prenatal development and the first months after birth. ASD and ADHD share biological features, mainly related to alterations in brain circuits and synaptic function, which allow us to treat them scientifically together. From the neurobiological aspect, ASD and ADHD are manifestations of anomalies in the formation of circuits and synaptic contacts in the brain regions involved in social behavior, and especially in the prefrontal cerebral cortex. These anomalies are caused by mutations in genes involved synaptogenesis and synaptic plasticity, regulation of dendritic spine morphology, synaptic cytoskeletal organization, synthesis and degradation of synaptic proteins, and control of excitatory and inhibitory balance in the synaptic function. Conclusions. ASD and ADHD are functional alterations of the cerebral cortex, which present structural anomalies in the arrangement of neurons, in the pattern of connections of cortical columns and in the structure of dendritic spines. These alterations affect mainly the prefrontal cortex and its connections (AU)


Subject(s)
Humans , Attention Deficit Disorder with Hyperactivity/physiopathology , Autism Spectrum Disorder/physiopathology , Child Development Disorders, Pervasive/physiopathology , Neural Conduction/physiology , Synaptic Membranes/physiology
9.
Curr Opin Neurobiol ; 51: 8-15, 2018 08.
Article in English | MEDLINE | ID: mdl-29353084

ABSTRACT

Research over the past half a century has revealed remarkable diversity among chemical synapses of the CNS. The structural, functional and molecular diversity of synapses was mainly concluded from studying different synapses in distinct brain regions and preparations. It is not surprising that synapses made by molecularly distinct pre-synaptic and post-synaptic cells display different morphological and functional properties with distinct underlying molecular mechanisms. However, synapses made by a single presynaptic cell onto distinct types of postsynaptic cells, or distinct presynaptic inputs onto a single postsynaptic cell, also show remarkable heterogeneity. Here, by reviewing recent experiments, I suggest that robust functional diversity can be achieved by building synapses from the same molecules, but using different numbers, densities and nanoscale arrangements.


Subject(s)
Brain/cytology , Neurotransmitter Agents/metabolism , Presynaptic Terminals/physiology , Synapses/physiology , Animals , Calcium/metabolism , Presynaptic Terminals/ultrastructure , Synaptic Membranes/physiology
10.
J Vis Exp ; (123)2017 05 01.
Article in English | MEDLINE | ID: mdl-28518090

ABSTRACT

Cells constantly change their membrane architecture and protein distribution, but it is extremely difficult to visualize these events at a temporal and spatial resolution on the order of ms and nm, respectively. We have developed a time-resolved electron microscopy technique, "flash-and-freeze," that induces cellular events with optogenetics and visualizes the resulting membrane dynamics by freezing cells at defined time points after stimulation. To demonstrate this technique, we expressed channelrhodopsin, a light-sensitive cation channel, in mouse hippocampal neurons. A flash of light stimulates neuronal activity and induces neurotransmitter release from synaptic terminals through the fusion of synaptic vesicles. The optogenetic stimulation of neurons is coupled with high-pressure freezing to follow morphological changes during synaptic transmission. Using a commercial instrument, we captured the fusion of synaptic vesicles and the recovery of the synaptic vesicle membrane. To visualize the sequence of events, large datasets were generated and analyzed blindly, since morphological changes were followed in different cells over time. Nevertheless, flash-and-freeze allows the visualization of membrane dynamics in electron micrographs with ms temporal resolution.


Subject(s)
Neurons/physiology , Synaptic Membranes/physiology , Animals , Channelrhodopsins/physiology , Freezing , Hippocampus/cytology , Light , Mice , Microscopy, Electron , Neurons/ultrastructure , Optogenetics/methods , Presynaptic Terminals/physiology , Presynaptic Terminals/ultrastructure , Synaptic Membranes/ultrastructure , Synaptic Transmission/physiology , Synaptic Vesicles/physiology , Synaptic Vesicles/ultrastructure
11.
Mol Biol Cell ; 28(2): 285-295, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27852895

ABSTRACT

Ras and Rab interactor 1 (RIN1) is predominantly expressed in the nervous system. RIN1-knockout animals have deficits in latent inhibition and fear extinction in the amygdala, suggesting a critical role for RIN1 in preventing the persistence of unpleasant memories. At the molecular level, RIN1 signals through Rab5 GTPases that control endocytosis of cell-surface receptors and Abl nonreceptor tyrosine kinases that participate in actin cytoskeleton remodeling. Here we report that RIN1 controls the plasticity of cultured mouse hippocampal neurons. Our results show that RIN1 affects the morphology of dendritic protrusions and accelerates dendritic filopodial motility through an Abl kinase-dependent pathway. Lack of RIN1 results in enhanced mEPSC amplitudes, indicating an increase in surface AMPA receptor levels compared with wild-type neurons. We further provide evidence that the Rab5 GEF activity of RIN1 regulates surface GluA1 subunit endocytosis. Consequently loss of RIN1 blocks surface AMPA receptor down-regulation evoked by chemically induced long-term depression. Our findings indicate that RIN1 destabilizes synaptic connections and is a key player in postsynaptic AMPA receptor endocytosis, providing multiple ways of negatively regulating memory stabilization during neuronal plasticity.


Subject(s)
rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/physiology , Animals , Cell Movement/physiology , Dendrites/metabolism , Dendrites/physiology , Endocytosis/physiology , Hippocampus/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity/physiology , Neurons/metabolism , Proto-Oncogene Proteins c-abl/metabolism , Pseudopodia/metabolism , Pseudopodia/physiology , Receptors, AMPA/metabolism , Receptors, AMPA/physiology , Signal Transduction/physiology , Synaptic Membranes/physiology , rab5 GTP-Binding Proteins/metabolism
12.
Methods Mol Biol ; 1538: 3-11, 2017.
Article in English | MEDLINE | ID: mdl-27943179

ABSTRACT

For decades the neuromuscular junction (NMJ) has been a favorite preparation to investigate basic mechanisms of synaptic function and development. As its function is to transmit action potentials in a 1:1 ratio from motor neurons to muscle fibers, the NMJ shows little or no functional plasticity, a property that makes it poorly suited to investigate mechanisms of use-dependent adaptations of synaptic function, which are thought to underlie learning and memory formation in the brain. On the other hand, the NMJ is unique in that the differentiation of the subsynaptic membrane is regulated by one major factor secreted from motor neurons, agrin. As a consequence, myotubes grown on a laminin substrate that is focally impregnated with recombinant neural agrin closely resemble the situation in vivo, where agrin secreted from motor neurons binds to the basal lamina of the NMJ's synaptic cleft to induce and maintain the subsynaptic muscle membrane. We provide here a detailed protocol through which acetylcholine receptor clusters are induced in cultured myotubes contacting laminin-attached agrin, enabling molecular, biochemical and cell biological analyses including high resolution microscopy in 4D. This preparation is ideally suited to investigate the mechanisms involved in the assembly of the postsynaptic muscle membrane, providing distinct advantages over inducing AChR clusters using soluble agrin.


Subject(s)
Cell Culture Techniques , Cell Differentiation , Neuromuscular Junction/cytology , Neuromuscular Junction/physiology , Presynaptic Terminals/physiology , Synaptic Membranes/physiology , Animals , Biomarkers , COS Cells , Chlorocebus aethiops , Mice , Microscopy , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism , Myoblasts/cytology , Myoblasts/metabolism , Primary Cell Culture
14.
Neuron ; 85(3): 484-96, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25654254

ABSTRACT

The function of the nervous system depends on the exocytotic release of neurotransmitter from synaptic vesicles (SVs). To sustain neurotransmission, SV membranes need to be retrieved, and SVs have to be reformed locally within presynaptic nerve terminals. In spite of more than 40 years of research, the mechanisms underlying presynaptic membrane retrieval and SV recycling remain controversial. Here, we review the current state of knowledge in the field, focusing on the molecular mechanism involved in presynaptic membrane retrieval and SV reformation. We discuss the challenges associated with studying these pathways and present perspectives for future research.


Subject(s)
Exocytosis , Presynaptic Terminals/ultrastructure , Synaptic Membranes/ultrastructure , Synaptic Vesicles/ultrastructure , Animals , Endocytosis/physiology , Exocytosis/physiology , Humans , Presynaptic Terminals/physiology , Synaptic Membranes/physiology , Synaptic Vesicles/physiology
15.
Traffic ; 16(4): 338-64, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25620674

ABSTRACT

Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling.


Subject(s)
Synaptic Membranes/physiology , Synaptic Transmission/physiology , Synaptic Vesicles/physiology , Action Potentials/physiology , Animals , Humans , Neurotransmitter Agents/metabolism , Synaptic Membranes/metabolism , Synaptic Vesicles/metabolism
16.
J Comput Neurosci ; 38(2): 405-25, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25601482

ABSTRACT

Sensory neurons are often described in terms of a receptive field, that is, a linear kernel through which stimuli are filtered before they are further processed. If information transmission is assumed to proceed in a feedforward cascade, the receptive field may be interpreted as the external stimulus' profile maximizing neuronal output. The nervous system, however, contains many feedback loops, and sensory neurons filter more currents than the ones representing the transduced external stimulus. Some of the additional currents are generated by the output activity of the neuron itself, and therefore constitute feedback signals. By means of a time-frequency analysis of the input/output transformation, here we show how feedback modifies the receptive field. The model is applicable to various types of feedback processes, from spike-triggered intrinsic conductances to inhibitory synaptic inputs from nearby neurons. We distinguish between the intrinsic receptive field (filtering all input currents) and the effective receptive field (filtering only external stimuli). Whereas the intrinsic receptive field summarizes the biophysical properties of the neuron associated to subthreshold integration and spike generation, only the effective receptive field can be interpreted as the external stimulus' profile maximizing neuronal output. We demonstrate that spike-triggered feedback shifts low-pass filtering towards band-pass processing, transforming integrator neurons into resonators. For strong feedback, a sharp resonance in the spectral neuronal selectivity may appear. Our results provide a unified framework to interpret a collection of previous experimental studies where specific feedback mechanisms were shown to modify the filtering properties of neurons.


Subject(s)
Feedback , Models, Neurological , Sensory Receptor Cells/physiology , Action Potentials/physiology , Animals , Biophysical Phenomena/physiology , Reaction Time/physiology , Synaptic Membranes/physiology
17.
Neurobiol Aging ; 36(1): 344-51, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25146455

ABSTRACT

Fortasyn Connect (FC) is a specific nutrient combination designed to target synaptic dysfunction in Alzheimer's disease by providing neuronal membrane precursors and other supportive nutrients. The aim of the present study was to investigate the effects of FC on hippocampal cholinergic neurotransmission in association with its effects on synaptic membrane formation in aged rats. Eighteen-month-old male Wistar rats were randomized to receive a control diet for 4 weeks or an FC-enriched diet for 4 or 6 weeks. At the end of the dietary treatments, acetylcholine (ACh) release was investigated by in vivo microdialysis in the right hippocampi. On completion of microdialysis studies, the rats were sacrificed, and the left hippocampi were obtained to determine the levels of choline, ACh, membrane phospholipids, synaptic proteins, and choline acetyltransferase. Our results revealed that supplementation with FC diet for 4 or 6 weeks, significantly enhanced basal and stimulated hippocampal ACh release and ACh tissue levels, along with levels of phospholipids. Feeding rats the FC diet for 6 weeks significantly increased the levels of choline acetyltransferase, the presynaptic marker Synapsin-1, and the postsynaptic marker PSD-95, but decreased levels of Nogo-A, a neurite outgrowth inhibitor. These data show that the FC diet enhances hippocampal cholinergic neurotransmission in aged rats and suggest that this effect is mediated by enhanced synaptic membrane formation. These data provide further insight into cellular and molecular mechanisms by which FC may support memory processes in Alzheimer's disease.


Subject(s)
Animal Nutritional Physiological Phenomena/physiology , Cholinergic Neurons/physiology , Diet , Hippocampus/physiology , Synaptic Transmission/physiology , Acetylcholine/metabolism , Alzheimer Disease/physiopathology , Alzheimer Disease/therapy , Animals , Choline O-Acetyltransferase/metabolism , Hippocampus/metabolism , Male , Rats, Wistar , Synaptic Membranes/physiology
18.
Handb Exp Pharmacol ; 220: 17-32, 2014.
Article in English | MEDLINE | ID: mdl-24668468

ABSTRACT

Like most growth factors, neurotrophins are initially synthesized as precursors that are cleaved to release C-terminal mature forms. The well-characterized mature neurotrophins bind to Trk receptors to initiate survival and differentiative responses. More recently, the precursor forms or proneurotrophins have been found to act as distinct ligands by binding to an unrelated receptor complex consisting of the p75 neurotrophin receptor (p75) and sortilin to initiate cell death. Induction of proNGF and p75 has been observed in preclinical injury models and in pathological states in the central nervous system, and strategies that block the proNGF/p75 interaction are effective in limiting neuronal apoptosis. In contrast, the mechanisms that regulate expression of other proneurotrophins, including proBDNF and proNT-3, are less well understood. Here, recent findings on the biological actions, regulation of expression, and pathophysiological effects of proneurotrophins will be reviewed.


Subject(s)
Nerve Growth Factors/physiology , Protein Precursors/physiology , Aging , Animals , Humans , Nerve Growth Factor/physiology , Neuronal Plasticity , Synaptic Membranes/physiology
19.
Nat Neurosci ; 17(4): 522-32, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24562000

ABSTRACT

Synaptic cadherin adhesion complexes are known to be key regulators of synapse plasticity. However, the molecular mechanisms that coordinate activity-induced modifications in cadherin localization and adhesion and the subsequent changes in synapse morphology and efficacy remain unknown. We demonstrate that the intracellular cadherin binding protein δ-catenin is transiently palmitoylated by DHHC5 after enhanced synaptic activity and that palmitoylation increases δ-catenin-cadherin interactions at synapses. Both the palmitoylation of δ-catenin and its binding to cadherin are required for activity-induced stabilization of N-cadherin at synapses and the enlargement of postsynaptic spines, as well as the insertion of GluA1 and GluA2 subunits into the synaptic membrane and the concomitant increase in miniature excitatory postsynaptic current amplitude. Notably, context-dependent fear conditioning in mice resulted in increased δ-catenin palmitoylation, as well as increased δ-catenin-cadherin associations at hippocampal synapses. Together these findings suggest a role for palmitoylated δ-catenin in coordinating activity-dependent changes in synaptic adhesion molecules, synapse structure and receptor localization that are involved in memory formation.


Subject(s)
Catenins/physiology , Lipoylation/physiology , Neuronal Plasticity/physiology , Synapses/physiology , Acyltransferases , Animals , Catenins/metabolism , Female , Hippocampus/cytology , Hippocampus/metabolism , Male , Membrane Proteins/metabolism , Memory/physiology , Mice , Mice, Inbred C57BL , Neurons/cytology , Neurons/metabolism , Neurons/physiology , Rats , Rats, Sprague-Dawley , Synapses/metabolism , Synaptic Membranes/metabolism , Synaptic Membranes/physiology , Delta Catenin
20.
Math Biosci Eng ; 11(2): 189-201, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24245714

ABSTRACT

With the aim to describe the interaction between a couple of neurons a stochastic model is proposed and formalized. In such a model, maintaining statements of the Leaky Integrate-and-Fire framework, we include a random component in the synaptic current, whose role is to modify the equilibrium point of the membrane potential of one of the two neurons and when a spike of the other one occurs it is turned on. The initial and after spike reset positions do not allow to identify the inter-spike intervals with the corresponding first passage times. However, we are able to apply some well-known results for the first passage time problem for the Ornstein-Uhlenbeck process in order to obtain (i) an approximation of the probability density function of the inter-spike intervals in one-way-type interaction and (ii) an approximation of the tail of the probability density function of the inter-spike intervals in the mutual interaction. Such an approximation is admissible for small instantaneous firing rates of both neurons.


Subject(s)
Action Potentials/physiology , Models, Neurological , Neurons/physiology , Synaptic Membranes/physiology , Humans , Normal Distribution , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...