Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24.040
Filter
1.
Neurol Neuroimmunol Neuroinflamm ; 11(5): e200284, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39141878

ABSTRACT

BACKGROUND AND OBJECTIVES: Autoantibodies against the protein leucine-rich glioma inactivated 1 (LGI1) cause the most common subtype of autoimmune encephalitis with predominant involvement of the limbic system, associated with seizures and memory deficits. LGI1 and its receptor ADAM22 are part of a transsynaptic protein complex that includes several proteins involved in presynaptic neurotransmitter release and postsynaptic glutamate sensing. Autoantibodies against LGI1 increase excitatory synaptic strength, but studies that genetically disrupt the LGI1-ADAM22 complex report a reduction in postsynaptic glutamate receptor-mediated responses. Thus, the mechanisms underlying the increased synaptic strength induced by LGI1 autoantibodies remain elusive, and the contributions of presynaptic molecules to the LGI1-transsynaptic complex remain unclear. We therefore investigated the presynaptic mechanisms that mediate autoantibody-induced synaptic strengthening. METHODS: We studied the effects of patient-derived purified polyclonal LGI1 autoantibodies on synaptic structure and function by combining direct patch-clamp recordings from presynaptic boutons and somata of hippocampal neurons with super-resolution light and electron microscopy of hippocampal cultures and brain slices. We also identified the protein domain mediating the presynaptic effect using domain-specific patient-derived monoclonal antibodies. RESULTS: LGI1 autoantibodies dose-dependently increased short-term depression during high-frequency transmission, consistent with increased release probability. The increased neurotransmission was not related to presynaptic calcium channels because presynaptic Cav2.1 channel density, calcium current amplitude, and calcium channel gating were unaffected by LGI1 autoantibodies. By contrast, application of LGI1 autoantibodies homogeneously reduced Kv1.1 and Kv1.2 channel density on the surface of presynaptic boutons. Direct presynaptic patch-clamp recordings revealed that LGI1 autoantibodies cause a pronounced broadening of the presynaptic action potential. Domain-specific effects of LGI1 autoantibodies were analyzed at the neuronal soma. Somatic action potential broadening was induced by polyclonal LGI1 autoantibodies and patient-derived monoclonal autoantibodies targeting the epitempin domain, but not the leucin-rich repeat domain. DISCUSSION: Our results indicate that LGI1 autoantibodies reduce the density of both Kv1.1 and Kv1.2 on presynaptic boutons, without actions on calcium channel density or function, thereby broadening the presynaptic action potential and increasing neurotransmitter release. This study provides a molecular explanation for the neuronal hyperactivity observed in patients with LGI1 autoantibodies.


Subject(s)
Action Potentials , Autoantibodies , Intracellular Signaling Peptides and Proteins , Presynaptic Terminals , Synaptic Transmission , Autoantibodies/immunology , Autoantibodies/pharmacology , Humans , Animals , Synaptic Transmission/physiology , Intracellular Signaling Peptides and Proteins/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Presynaptic Terminals/metabolism , Action Potentials/physiology , Action Potentials/drug effects , Hippocampus/metabolism , Rats , Kv1.1 Potassium Channel/immunology , Proteins/immunology , Proteins/metabolism , Male , Cells, Cultured
2.
Nat Commun ; 15(1): 6594, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097618

ABSTRACT

Neurons coordinate inter-tissue protein homeostasis to systemically manage cytotoxic stress. In response to neuronal mitochondrial stress, specific neuronal signals coordinate the systemic mitochondrial unfolded protein response (UPRmt) to promote organismal survival. Yet, whether chemical neurotransmitters are sufficient to control the UPRmt in physiological conditions is not well understood. Here, we show that gamma-aminobutyric acid (GABA) inhibits, and acetylcholine (ACh) promotes the UPRmt in the Caenorhabditis elegans intestine. GABA controls the UPRmt by regulating extra-synaptic ACh release through metabotropic GABAB receptors GBB-1/2. We find that elevated ACh levels in animals that are GABA-deficient or lack ACh-degradative enzymes induce the UPRmt through ACR-11, an intestinal nicotinic α7 receptor. This neuro-intestinal circuit is critical for non-autonomously regulating organismal survival of oxidative stress. These findings establish chemical neurotransmission as a crucial regulatory layer for nervous system control of systemic protein homeostasis and stress responses.


Subject(s)
Acetylcholine , Caenorhabditis elegans , Mitochondria , Signal Transduction , Animals , Acetylcholine/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , gamma-Aminobutyric Acid/metabolism , Intestines/physiology , Mitochondria/metabolism , Neurons/metabolism , Oxidative Stress , Receptors, GABA-B/metabolism , Receptors, GABA-B/genetics , Stress, Physiological , Synaptic Transmission/physiology , Unfolded Protein Response
3.
Hippocampus ; 34(9): 454-463, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39150316

ABSTRACT

Estrogens are believed to modulate cognitive functions in part through the modulation of synaptic transmission in the cortex and hippocampus. Administration of 17ß-estradiol (E2) can rapidly enhance excitatory synaptic transmission in the hippocampus and facilitate excitatory synaptic transmission in rat lateral entorhinal cortex via activation of the G protein-coupled estrogen receptor-1 (GPER1). To assess the mechanisms through which GPER1 activation facilitates synaptic transmission, we assessed the effects of acute 10 nM E2 administration on pharmacologically isolated evoked excitatory and inhibitory synaptic currents in layer II/III entorhinal neurons. Female Long-Evans rats were ovariectomized between postnatal day (PD) 63 and 74 and implanted with a subdermal E2 capsule to maintain continuous low levels of E2. Electrophysiological recordings were obtained between 7 and 20 days after ovariectomy. Application of E2 for 20 min did not significantly affect AMPA or NMDA receptor-mediated excitatory synaptic currents. However, GABA receptor-mediated inhibitory synaptic currents (IPSCs) were markedly reduced by E2 and returned towards baseline levels during the 20-min washout period. The inhibition of GABA-mediated IPSCs was blocked in the presence of the GPER1 receptor antagonist G15. GPER1 can modulate protein kinase A (PKA), but blocking PKA with intracellular KT5720 did not prevent the E2-induced reduction in IPSCs. GPER1 can also stimulate extracellular signal-regulated kinase (ERK), a negative modulator of GABAA receptors, and blocking activation of ERK with PD90859 prevented the E2-induced reduction of IPSCs. E2 can therefore result in a rapid GPER1 and ERK signaling-mediated reduction in GABA-mediated IPSCs. This provides a novel mechanism through which E2 can rapidly modulate synaptic excitability in entorhinal layer II/III neurons and may also contribute to E2 and ERK-dependent alterations in synaptic transmission in other brain areas.


Subject(s)
Entorhinal Cortex , Estradiol , Extracellular Signal-Regulated MAP Kinases , Neurons , Rats, Long-Evans , Receptors, G-Protein-Coupled , Animals , Entorhinal Cortex/drug effects , Entorhinal Cortex/physiology , Receptors, G-Protein-Coupled/metabolism , Estradiol/pharmacology , Female , Neurons/drug effects , Neurons/metabolism , Rats , Extracellular Signal-Regulated MAP Kinases/metabolism , Inhibitory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/physiology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Receptors, Estrogen/metabolism , Ovariectomy , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Patch-Clamp Techniques , Estrogens/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors
4.
Elife ; 122024 Aug 06.
Article in English | MEDLINE | ID: mdl-39106188

ABSTRACT

Biological synaptic transmission is unreliable, and this unreliability likely degrades neural circuit performance. While there are biophysical mechanisms that can increase reliability, for instance by increasing vesicle release probability, these mechanisms cost energy. We examined four such mechanisms along with the associated scaling of the energetic costs. We then embedded these energetic costs for reliability in artificial neural networks (ANNs) with trainable stochastic synapses, and trained these networks on standard image classification tasks. The resulting networks revealed a tradeoff between circuit performance and the energetic cost of synaptic reliability. Additionally, the optimised networks exhibited two testable predictions consistent with pre-existing experimental data. Specifically, synapses with lower variability tended to have (1) higher input firing rates and (2) lower learning rates. Surprisingly, these predictions also arise when synapse statistics are inferred through Bayesian inference. Indeed, we were able to find a formal, theoretical link between the performance-reliability cost tradeoff and Bayesian inference. This connection suggests two incompatible possibilities: evolution may have chanced upon a scheme for implementing Bayesian inference by optimising energy efficiency, or alternatively, energy-efficient synapses may display signatures of Bayesian inference without actually using Bayes to reason about uncertainty.


Subject(s)
Bayes Theorem , Neural Networks, Computer , Synapses , Synapses/physiology , Models, Neurological , Synaptic Transmission/physiology , Energy Metabolism , Animals , Neurons/physiology
5.
eNeuro ; 11(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38997143

ABSTRACT

Psychotic symptoms and delusional beliefs have been linked to dopamine transmission in both healthy and clinical samples and are assumed to result at least in part from perceiving illusory patterns in noise. However, the existing literature on the role of dopamine in detecting patterns in noise is inconclusive. To address this issue, we assessed the effect of manipulating dopaminergic neurotransmission on illusory pattern perception in healthy individuals (n = 48, n = 19 female) in a double-blind placebo-controlled within-subjects design (see preregistration at https://osf.io/a4k9j/). We predicted individuals on versus off ʟ-DOPA to be more likely to perceive illusory patterns, specifically objects in images containing only noise. Using a signal detection model, however, we found no credible evidence that ʟ-DOPA compared with placebo increased false alarm rates. Further, ʟ-DOPA did not reliably modulate measures of accuracy, discrimination sensitivity, and response bias. In all cases, Bayesian statistics revealed strong evidence in favor of the null hypothesis. The task design followed previous work on illusory pattern perception and comprised a limited number of items per condition. The results therefore need to be interpreted with caution, as power was limited. Future studies should address illusory pattern perception using more items and take into account potential dose-dependent effects and differential effects in healthy versus clinical samples.


Subject(s)
Dopamine , Illusions , Levodopa , Humans , Female , Male , Double-Blind Method , Adult , Illusions/physiology , Illusions/drug effects , Dopamine/metabolism , Young Adult , Levodopa/pharmacology , Levodopa/administration & dosage , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Dopamine Agents/pharmacology , Pattern Recognition, Visual/physiology , Pattern Recognition, Visual/drug effects , Bayes Theorem
6.
PLoS One ; 19(7): e0306605, 2024.
Article in English | MEDLINE | ID: mdl-38968286

ABSTRACT

Delays in nerve transmission are an important topic in the field of neuroscience. Spike signals fired or received by the dendrites of a neuron travel from the axon to a presynaptic cell. The spike signal then triggers a chemical reaction at the synapse, wherein a presynaptic cell transfers neurotransmitters to the postsynaptic cell, regenerates electrical signals via a chemical reaction through ion channels, and transmits them to neighboring neurons. In the context of describing the complex physiological reaction process as a stochastic process, this study aimed to show that the distribution of the maximum time interval of spike signals follows extreme-order statistics. By considering the statistical variance in the time constant of the leaky Integrate-and-Fire model, a deterministic time evolution model for spike signals, we enabled randomness in the time interval of the spike signals. When the time constant follows an exponential distribution function, the time interval of the spike signal also follows an exponential distribution. In this case, our theory and simulations confirmed that the histogram of the maximum time interval follows the Gumbel distribution, one of the three forms of extreme-value statistics. We further confirmed that the histogram of the maximum time interval followed a Fréchet distribution when the time interval of the spike signal followed a Pareto distribution. These findings confirm that nerve transmission delay can be described using extreme value statistics and can therefore be used as a new indicator of transmission delay.


Subject(s)
Models, Neurological , Synaptic Transmission , Synaptic Transmission/physiology , Action Potentials/physiology , Neurons/physiology , Humans , Time Factors , Stochastic Processes , Computer Simulation
7.
J Biomed Sci ; 31(1): 69, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992696

ABSTRACT

BACKGROUND: Local translation at synapses is important for rapidly remodeling the synaptic proteome to sustain long-term plasticity and memory. While the regulatory mechanisms underlying memory-associated local translation have been widely elucidated in the postsynaptic/dendritic region, there is no direct evidence for which RNA-binding protein (RBP) in axons controls target-specific mRNA translation to promote long-term potentiation (LTP) and memory. We previously reported that translation controlled by cytoplasmic polyadenylation element binding protein 2 (CPEB2) is important for postsynaptic plasticity and memory. Here, we investigated whether CPEB2 regulates axonal translation to support presynaptic plasticity. METHODS: Behavioral and electrophysiological assessments were conducted in mice with pan neuron/glia- or glutamatergic neuron-specific knockout of CPEB2. Hippocampal Schaffer collateral (SC)-CA1 and temporoammonic (TA)-CA1 pathways were electro-recorded to monitor synaptic transmission and LTP evoked by 4 trains of high-frequency stimulation. RNA immunoprecipitation, coupled with bioinformatics analysis, were used to unveil CPEB2-binding axonal RNA candidates associated with learning, which were further validated by Western blotting and luciferase reporter assays. Adeno-associated viruses expressing Cre recombinase were stereotaxically delivered to the pre- or post-synaptic region of the TA circuit to ablate Cpeb2 for further electrophysiological investigation. Biochemically isolated synaptosomes and axotomized neurons cultured on a microfluidic platform were applied to measure axonal protein synthesis and FM4-64FX-loaded synaptic vesicles. RESULTS: Electrophysiological analysis of hippocampal CA1 neurons detected abnormal excitability and vesicle release probability in CPEB2-depleted SC and TA afferents, so we cross-compared the CPEB2-immunoprecipitated transcriptome with a learning-induced axonal translatome in the adult cortex to identify axonal targets possibly regulated by CPEB2. We validated that Slc17a6, encoding vesicular glutamate transporter 2 (VGLUT2), is translationally upregulated by CPEB2. Conditional knockout of CPEB2 in VGLUT2-expressing glutamatergic neurons impaired consolidation of hippocampus-dependent memory in mice. Presynaptic-specific ablation of Cpeb2 in VGLUT2-dominated TA afferents was sufficient to attenuate protein synthesis-dependent LTP. Moreover, blocking activity-induced axonal Slc17a6 translation by CPEB2 deficiency or cycloheximide diminished the releasable pool of VGLUT2-containing synaptic vesicles. CONCLUSIONS: We identified 272 CPEB2-binding transcripts with altered axonal translation post-learning and established a causal link between CPEB2-driven axonal synthesis of VGLUT2 and presynaptic translation-dependent LTP. These findings extend our understanding of memory-related translational control mechanisms in the presynaptic compartment.


Subject(s)
Neuronal Plasticity , RNA-Binding Proteins , Synaptic Transmission , Vesicular Glutamate Transport Protein 2 , Animals , Mice , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Neuronal Plasticity/physiology , Synaptic Transmission/physiology , Vesicular Glutamate Transport Protein 2/metabolism , Vesicular Glutamate Transport Protein 2/genetics , Mice, Knockout , Axons/metabolism , Axons/physiology , RNA, Messenger/metabolism , RNA, Messenger/genetics , Male , Protein Biosynthesis
8.
Proc Natl Acad Sci U S A ; 121(31): e2315599121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39058581

ABSTRACT

Ribbon synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs) in the inner ear are damaged by noise trauma and with aging, causing "synaptopathy" and hearing loss. Cocultures of neonatal denervated organs of Corti and newly introduced SGNs have been developed to find strategies for improving IHC synapse regeneration, but evidence of the physiological normality of regenerated synapses is missing. This study utilizes IHC optogenetic stimulation and SGN recordings, showing that, when P3-5 denervated organs of Corti are cocultured with SGNs, newly formed IHC/SGN synapses are indeed functional, exhibiting glutamatergic excitatory postsynaptic currents. When using older organs of Corti at P10-11, synaptic activity probed by deconvolution showed more mature release properties, closer to the specialized mode of IHC synaptic transmission crucial for coding the sound signal. This functional assessment of newly formed IHC synapses developed here, provides a powerful tool for testing approaches to improve synapse regeneration.


Subject(s)
Spiral Ganglion , Synapses , Animals , Spiral Ganglion/cytology , Spiral Ganglion/physiology , Synapses/physiology , Mice , Hair Cells, Auditory, Inner/physiology , Hair Cells, Auditory, Inner/metabolism , Synaptic Transmission/physiology , Neurons/physiology , Neurons/metabolism , Regeneration/physiology , Hair Cells, Auditory/physiology , Coculture Techniques/methods , Optogenetics/methods , Nerve Regeneration/physiology , Excitatory Postsynaptic Potentials/physiology , Organ of Corti/physiology , Organ of Corti/cytology , Organ of Corti/metabolism
9.
Cell Rep ; 43(7): 114504, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38996064

ABSTRACT

Astroglial networks closely interact with neuronal populations, but their functional contribution to neuronal representation of sensory information remains unexplored. The superior colliculus (SC) integrates multi-sensory information by generating distinct spatial patterns of neuronal functional responses to specific sensory stimulation. Here, we report that astrocytes from the mouse SC form extensive networks in the retinorecipient layer compared to visual cortex. This strong astroglial connectivity relies on high expression of gap-junction proteins. Genetic disruption of this connectivity functionally impairs SC retinotopic and orientation preference responses. These alterations are region specific, absent in primary visual cortex, and associated at the circuit level with a specific impairment of collicular neurons synaptic transmission. This has implications for SC-related visually induced innate behavior, as disrupting astroglial networks impairs light-evoked temporary arrest. Our results indicate that astroglial networks shape synaptic circuit activity underlying SC functional visual responses and play a crucial role in integrating visual cues to drive sensory-motor behavior.


Subject(s)
Astrocytes , Neurons , Superior Colliculi , Animals , Astrocytes/metabolism , Astrocytes/physiology , Mice , Superior Colliculi/physiology , Neurons/physiology , Neurons/metabolism , Mice, Inbred C57BL , Synaptic Transmission/physiology , Photic Stimulation , Visual Cortex/physiology , Nerve Net/physiology , Male
10.
J Neurosci ; 44(31)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38951038

ABSTRACT

At chemical synapses, voltage-gated Ca2+ channels (VGCCs) translate electrical signals into a trigger for synaptic vesicle (SV) fusion. VGCCs and the Ca2+ microdomains they elicit must be located precisely to primed SVs to evoke rapid transmitter release. Localization is mediated by Rab3-interacting molecule (RIM) and RIM-binding proteins, which interact and bind to the C terminus of the CaV2 VGCC α-subunit. We studied this machinery at the mixed cholinergic/GABAergic neuromuscular junction of Caenorhabditis elegans hermaphrodites. rimb-1 mutants had mild synaptic defects, through loosening the anchoring of UNC-2/CaV2 and delaying the onset of SV fusion. UNC-10/RIM deletion much more severely affected transmission. Although postsynaptic depolarization was reduced, rimb-1 mutants had increased cholinergic (but reduced GABAergic) transmission, to compensate for the delayed release. This did not occur when the excitation-inhibition (E-I) balance was altered by removing GABA transmission. Further analyses of GABA defective mutants and GABAA or GABAB receptor deletions, as well as cholinergic rescue of RIMB-1, emphasized that GABA neurons may be more affected than cholinergic neurons. Thus, RIMB-1 function differentially affects excitation-inhibition balance in the different motor neurons, and RIMB-1 thus may differentially regulate transmission within circuits. Untethering the UNC-2/CaV2 channel by removing its C-terminal PDZ ligand exacerbated the rimb-1 defects, and similar phenotypes resulted from acute degradation of the CaV2 ß-subunit CCB-1. Therefore, untethering of the CaV2 complex is as severe as its elimination, yet it does not abolish transmission, likely due to compensation by CaV1. Thus, robustness and flexibility of synaptic transmission emerge from VGCC regulation.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Neuromuscular Junction , Synaptic Transmission , Animals , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/physiology , Synaptic Transmission/physiology , Neuromuscular Junction/metabolism , Neuromuscular Junction/physiology , Synaptic Vesicles/metabolism , Calcium Channels/metabolism , Calcium Channels/physiology , Synapses/metabolism , Synapses/physiology , Nerve Net/physiology , Nerve Net/metabolism , Mutation , Carrier Proteins , Membrane Proteins
11.
J Neurosci ; 44(31)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38951039

ABSTRACT

The release of neurotransmitters (NTs) at central synapses is dependent on a cascade of protein interactions, specific to the presynaptic compartment. Among those dedicated molecules, the cytosolic complexins play an incompletely defined role as synaptic transmission regulators. Complexins are multidomain proteins that bind soluble N-ethylmaleimide sensitive factor attachment protein receptor complexes, conferring both inhibitory and stimulatory functions. Using systematic mutagenesis and comparing reconstituted in vitro membrane fusion assays with electrophysiology in cultured neurons from mice of either sex, we deciphered the function of the N-terminus of complexin (Cpx) II. The N-terminus (amino acid 1-27) starts with a region enriched in hydrophobic amino acids (1-12), which binds lipids. Mutants maintaining this hydrophobic character retained the stimulatory function of Cpx, whereas exchanges introducing charged residues perturbed both spontaneous and evoked exocytosis. Mutants in the more distal region of the N-terminal domain (amino acid 11-18) showed a spectrum of effects. On the one hand, mutation of residue A12 increased spontaneous release without affecting evoked release. On the other hand, replacing D15 with amino acids of different shapes or hydrophobic properties (but not charge) not only increased spontaneous release but also impaired evoked release. Most surprising, this substitution reduced the size of the readily releasable pool, a novel function for Cpx at mammalian synapses. Thus, the exact amino acid composition of the Cpx N-terminus fine-tunes the degree of spontaneous and evoked NT release.


Subject(s)
Nerve Tissue Proteins , Synaptic Vesicles , Animals , Synaptic Vesicles/metabolism , Synaptic Vesicles/genetics , Mice , Male , Female , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/chemistry , Mutation , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Adaptor Proteins, Vesicular Transport/chemistry , Membrane Fusion/physiology , Membrane Fusion/genetics , Cells, Cultured , Phenotype , Neurons/metabolism , Synaptic Transmission/genetics , Synaptic Transmission/physiology , Mice, Inbred C57BL , Exocytosis/physiology , Exocytosis/genetics
12.
Neurobiol Dis ; 199: 106590, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996987

ABSTRACT

The infralimbic cortex (IL) is part of the medial prefrontal cortex (mPFC), exerting top-down control over structures that are critically involved in the development of alcohol use disorder (AUD). Activity of the IL is tightly controlled by γ-aminobutyric acid (GABA) transmission, which is susceptible to chronic alcohol exposure and withdrawal. This inhibitory control is regulated by various neuromodulators, including 5-hydroxytryptamine (5-HT; serotonin). We used chronic intermittent ethanol vapor inhalation exposure, a model of AUD, in male Sprague-Dawley rats to induce alcohol dependence (Dep) followed by protracted withdrawal (WD; 2 weeks) and performed ex vivo electrophysiology using whole-cell patch clamp to study GABAergic transmission in layer V of IL pyramidal neurons. We found that WD increased frequencies of spontaneous inhibitory postsynaptic currents (sIPSCs), whereas miniature IPSCs (mIPSCs; recorded in the presence of tetrodotoxin) were unaffected by either Dep or WD. The application of 5-HT (50 µM) increased sIPSC frequencies and amplitudes in naive and Dep rats but reduced sIPSC frequencies in WD rats. Additionally, 5-HT2A receptor antagonist M100907 and 5-HT2C receptor antagonist SB242084 reduced basal GABA release in all groups to a similar extent. The blockage of either 5-HT2A or 5-HT2C receptors in WD rats restored the impaired response to 5-HT, which then resembled responses in naive rats. Our findings expand our understanding of synaptic inhibition in the IL in AUD, indicating that antagonism of 5-HT2A and 5-HT2C receptors may restore GABAergic control over IL pyramidal neurons. SIGNIFICANCE STATEMENT: Impairment in the serotonergic modulation of GABAergic inhibition in the medial prefrontal cortex contributes to alcohol use disorder (AUD). We used a well-established rat model of AUD and ex vivo whole-cell patch-clamp electrophysiology to characterize the serotonin modulation of GABAergic transmission in layer V infralimbic (IL) pyramidal neurons in ethanol-naive, ethanol-dependent (Dep), and ethanol-withdrawn (WD) male rats. We found increased basal inhibition following WD from chronic alcohol and altered serotonin modulation. Exogenous serotonin enhanced GABAergic transmission in naive and Dep rats but reduced it in WD rats. 5-HT2A and 5-HT2C receptor blockage in WD rats restored the typical serotonin-mediated enhancement of GABAergic inhibition. Our findings expand our understanding of synaptic inhibition in the infralimbic neurons in AUD.


Subject(s)
Alcoholism , Ethanol , Inhibitory Postsynaptic Potentials , Prefrontal Cortex , Rats, Sprague-Dawley , Serotonin , Substance Withdrawal Syndrome , Synaptic Transmission , gamma-Aminobutyric Acid , Animals , Male , Serotonin/metabolism , Rats , Inhibitory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/physiology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Alcoholism/metabolism , Alcoholism/physiopathology , Ethanol/pharmacology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Substance Withdrawal Syndrome/metabolism , Substance Withdrawal Syndrome/physiopathology , gamma-Aminobutyric Acid/metabolism , GABAergic Neurons/drug effects , GABAergic Neurons/metabolism , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism
13.
ACS Chem Neurosci ; 15(15): 2884-2896, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39013013

ABSTRACT

Copper homeostasis is critical to the functioning of the brain, and its breakdown is linked with many brain diseases. Copper is also known to interact with the negatively charged lipid, phosphatidylserine (PS), as well as α-synuclein, an aggregation-prone protein enriched in the synapse, which plays a role in synaptic vesicle docking and fusion. However, the interplay between copper, PS lipid, and α-synuclein is not known. Herein, we report a detailed and predominantly kinetic study of the interactions among these three components pertinent to copper homeostasis and neurotransmission. We found that synaptic vesicle-mimicking small unilamellar vesicles (SUVs) can sequester any excess free Cu2+ within milliseconds, and bound Cu2+ on SUVs can be reduced to Cu+ by GSH at a nearly constant rate under physiological conditions. Moreover, we revealed that SUV-bound Cu2+ does not affect the binding between wild-type α-synuclein and SUVs but affect that between N-terminal acetylated α-synuclein and SUVs. In contrast, Cu2+ can effectively displace both types of α-synuclein from the vesicles. Our results suggest that synaptic vesicles may mediate copper transfer in the brain, while copper could participate in synaptic vesicle docking to the plasma membrane via its regulation of the interaction between α-synuclein and synaptic vesicle.


Subject(s)
Copper , Homeostasis , Phosphatidylserines , Synaptic Vesicles , alpha-Synuclein , alpha-Synuclein/metabolism , Phosphatidylserines/metabolism , Synaptic Vesicles/metabolism , Copper/metabolism , Homeostasis/physiology , Humans , Synaptic Transmission/physiology , Animals
14.
Brain Res ; 1841: 149128, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39053685

ABSTRACT

BACKGROUND: Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a successful treatment option in Parkinson's disease (PD) for different motor and non-motor symptoms, but has been linked to postoperative cognitive impairment. AIM: Since both dopaminergic and norepinephrinergic neurotransmissions play important roles in symptom development, we analysed STN-DBS effects on dopamine and norepinephrine availability in different brain regions and morphological alterations of catecholaminergic neurons in the 6-hydroxydopamine PD rat model. METHODS: We applied one week of continuous unilateral STN-DBS or sham stimulation, respectively, in groups of healthy and 6-hydroxydopamine-lesioned rats to quantify dopamine and norepinephrine contents in the striatum, olfactory bulb and dentate gyrus. In addition, we analysed dopaminergic cell counts in the substantia nigra pars compacta and area tegmentalis ventralis and norepinephrinergic neurons in the locus coeruleus after one and six weeks of STN-DBS. RESULTS: In 6-hydroxydopamine-lesioned animals, one week of STN-DBS did not alter dopamine levels, while striatal norepinephrine levels were decreased. However, neither one nor six weeks of STN-DBS altered dopaminergic neuron numbers in the midbrain or norepinephrinergic neuron counts in the locus coeruleus. Dopaminergic fibre density in the dorsal and ventral striatum also remained unchanged after six weeks of STN-DBS. In healthy animals, one week of STN-DBS resulted in increased dopamine levels in the olfactory bulb and decreased contents in the dentate gyrus, but had no effects on norepinephrine availability. CONCLUSIONS: STN-DBS modulates striatal norepinephrinergic neurotransmission in a PD rat model. Additional behavioural studies are required to investigate the functional impact of this finding.


Subject(s)
Deep Brain Stimulation , Disease Models, Animal , Dopamine , Norepinephrine , Oxidopamine , Subthalamic Nucleus , Synaptic Transmission , Animals , Subthalamic Nucleus/metabolism , Deep Brain Stimulation/methods , Male , Oxidopamine/toxicity , Synaptic Transmission/physiology , Dopamine/metabolism , Norepinephrine/metabolism , Rats , Parkinson Disease/metabolism , Parkinson Disease/therapy , Dopaminergic Neurons/metabolism , Olfactory Bulb/metabolism , Rats, Sprague-Dawley , Corpus Striatum/metabolism , Dentate Gyrus/metabolism , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/therapy , Parkinsonian Disorders/physiopathology
15.
Neuropharmacology ; 258: 110068, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38996832

ABSTRACT

Birth stress is a risk factor for psychiatric disorders and associated with exaggerated release of the stress hormone arginine vasopressin (AVP) into circulation and in the brain. In perinatal hippocampus, AVP activates GABAergic interneurons which leads to suppression of spontaneous network events and suggests a protective function of AVP on cortical networks during birth. However, the role of AVP in developing subcortical networks is not known. Here we tested the effect of AVP on the dorsal raphe nucleus (DRN) 5-hydroxytryptamine (5-HT, serotonin) system in male and female neonatal rats, since early 5-HT homeostasis is critical for the development of cortical brain regions and emotional behaviors. We show that AVP is strongly excitatory in neonatal DRN: it increases excitatory synaptic inputs of 5-HT neurons via V1A receptors in vitro and promotes their action potential firing through a combination of its effect on glutamatergic synaptic transmission and a direct effect on the excitability of these neurons. Furthermore, we identified two major firing patterns of neonatal 5-HT neurons in vivo, tonic regular firing and low frequency oscillations of regular spike trains and confirmed that these neurons are also activated by AVP in vivo. Finally, we show that the sparse vasopressinergic innervation in neonatal DRN originates exclusively from cell groups in medial amygdala and bed nucleus of stria terminalis. Hyperactivation of the neonatal 5-HT system by AVP during birth stress may impact its own functional development and affect the maturation of cortical target regions, which may increase the risk for psychiatric conditions later on.


Subject(s)
Animals, Newborn , Arginine Vasopressin , Dorsal Raphe Nucleus , Serotonergic Neurons , Animals , Arginine Vasopressin/metabolism , Arginine Vasopressin/pharmacology , Female , Serotonergic Neurons/drug effects , Serotonergic Neurons/physiology , Male , Dorsal Raphe Nucleus/drug effects , Dorsal Raphe Nucleus/metabolism , Dorsal Raphe Nucleus/physiology , Rats , Action Potentials/drug effects , Action Potentials/physiology , Rats, Sprague-Dawley , Serotonin/metabolism , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Receptors, Vasopressin/metabolism , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
16.
Front Neuroendocrinol ; 74: 101146, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39004314

ABSTRACT

Over the past two decades, there has been increasing evidence for the importance of rapid-onset actions of corticosteroid hormones in the brain. Here, we highlight the distinct rapid corticosteroid actions that regulate excitatory and inhibitory synaptic transmission in the hypothalamus, the hippocampus, basolateral amygdala, and prefrontal cortex. The receptors that mediate rapid corticosteroid actions are located at or close to the plasma membrane, though many of the receptor characteristics remain unresolved. Rapid-onset corticosteroid effects play a role in fast neuroendocrine feedback as well as in higher brain functions, including increased aggression and anxiety, and impaired memory retrieval. The rapid non-genomic corticosteroid actions precede and complement slow-onset, long-lasting transcriptional actions of the steroids. Both rapid and slow corticosteroid actions appear to be indispensable to adapt to a continuously changing environment, and their imbalance can increase an individual's susceptibility to psychopathology.


Subject(s)
Adrenal Cortex Hormones , Brain , Synaptic Transmission , Animals , Humans , Brain/metabolism , Brain/drug effects , Brain/physiology , Adrenal Cortex Hormones/metabolism , Adrenal Cortex Hormones/pharmacology , Adrenal Cortex Hormones/physiology , Synaptic Transmission/physiology , Synaptic Transmission/drug effects , Signal Transduction/physiology , Signal Transduction/drug effects
17.
Biol Res ; 57(1): 39, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867288

ABSTRACT

BACKGROUND: Spreading depression (SD) is an intriguing phenomenon characterized by massive slow brain depolarizations that affect neurons and glial cells. This phenomenon is repetitive and produces a metabolic overload that increases secondary damage. However, the mechanisms associated with the initiation and propagation of SD are unknown. Multiple lines of evidence indicate that persistent and uncontrolled opening of hemichannels could participate in the pathogenesis and progression of several neurological disorders including acute brain injuries. Here, we explored the contribution of astroglial hemichannels composed of connexin-43 (Cx43) or pannexin-1 (Panx1) to SD evoked by high-K+ stimulation in brain slices. RESULTS: Focal high-K+ stimulation rapidly evoked a wave of SD linked to increased activity of the Cx43 and Panx1 hemichannels in the brain cortex, as measured by light transmittance and dye uptake analysis, respectively. The activation of these channels occurs mainly in astrocytes but also in neurons. More importantly, the inhibition of both the Cx43 and Panx1 hemichannels completely prevented high K+-induced SD in the brain cortex. Electrophysiological recordings also revealed that Cx43 and Panx1 hemichannels critically contribute to the SD-induced decrease in synaptic transmission in the brain cortex and hippocampus. CONCLUSIONS: Targeting Cx43 and Panx1 hemichannels could serve as a new therapeutic strategy to prevent the initiation and propagation of SD in several acute brain injuries.


Subject(s)
Astrocytes , Connexin 43 , Connexins , Cortical Spreading Depression , Synaptic Transmission , Animals , Astrocytes/physiology , Connexins/metabolism , Cortical Spreading Depression/physiology , Cortical Spreading Depression/drug effects , Synaptic Transmission/physiology , Synaptic Transmission/drug effects , Connexin 43/metabolism , Male , Nerve Tissue Proteins/metabolism , Cerebral Cortex , Neurons/physiology , Hippocampus , Rats, Sprague-Dawley , Rats , Potassium/metabolism
18.
Biol Res ; 57(1): 40, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890753

ABSTRACT

BACKGROUND: The brain cortex is responsible for many higher-level cognitive functions. Disruptions during cortical development have long-lasting consequences on brain function and are associated with the etiology of brain disorders. We previously found that the protein tyrosine phosphatase receptor delta Ptprd, which is genetically associated with several human neurodevelopmental disorders, is essential to cortical brain development. Loss of Ptprd expression induced an aberrant increase of excitatory neurons in embryonic and neonatal mice by hyper-activating the pro-neurogenic receptors TrkB and PDGFRß in neural precursor cells. However, whether these alterations have long-lasting consequences in adulthood remains unknown. RESULTS: Here, we found that in Ptprd+/- or Ptprd-/- mice, the developmental increase of excitatory neurons persists through adulthood, affecting excitatory synaptic function in the medial prefrontal cortex. Likewise, heterozygosity or homozygosity for Ptprd also induced an increase of inhibitory cortical GABAergic neurons and impaired inhibitory synaptic transmission. Lastly, Ptprd+/- or Ptprd-/- mice displayed autistic-like behaviors and no learning and memory impairments or anxiety. CONCLUSIONS: These results indicate that loss of Ptprd has long-lasting effects on cortical neuron number and synaptic function that may aberrantly impact ASD-like behaviors.


Subject(s)
Autistic Disorder , Neurons , Receptor-Like Protein Tyrosine Phosphatases, Class 2 , Animals , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics , Mice , Autistic Disorder/genetics , Autistic Disorder/physiopathology , Disease Models, Animal , Male , Cerebral Cortex/metabolism , Mice, Knockout , Synaptic Transmission/physiology , Mice, Inbred C57BL , Female
19.
Phys Rev Lett ; 132(22): 228401, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38877921

ABSTRACT

During electrochemical signal transmission through synapses, triggered by an action potential (AP), a stochastic number of synaptic vesicles (SVs), called the "quantal content," release neurotransmitters in the synaptic cleft. It is widely accepted that the quantal content probability distribution is a binomial based on the number of ready-release SVs in the presynaptic terminal. But the latter number itself fluctuates due to its stochastic replenishment, hence the actual distribution of quantal content is unknown. We show that exact distribution of quantal content can be derived for general stochastic AP inputs in the steady state. For fixed interval AP train, we prove that the distribution is a binomial, and corroborate our predictions by comparison with electrophysiological recordings from MNTB-LSO synapses of juvenile mice. For a Poisson train, we show that the distribution is nonbinomial. Moreover, we find exact moments of the quantal content in the Poisson and other general cases, which may be used to obtain the model parameters from experiments.


Subject(s)
Models, Neurological , Synaptic Transmission , Synaptic Vesicles , Synaptic Transmission/physiology , Animals , Mice , Synaptic Vesicles/physiology , Synaptic Vesicles/metabolism , Action Potentials/physiology , Stochastic Processes , Poisson Distribution
20.
J Neurosci ; 44(23)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839340

ABSTRACT

A decade ago, in 2013, and over the course of 4 summer months, three separate observations were reported that each shed light independently on a new molecular organization that fundamentally reshaped our perception of excitatory synaptic transmission (Fukata et al., 2013; MacGillavry et al., 2013; Nair et al., 2013). This discovery unveiled an intricate arrangement of AMPA-type glutamate receptors and their principal scaffolding protein PSD-95, at synapses. This breakthrough was made possible, thanks to advanced super-resolution imaging techniques. It fundamentally changed our understanding of excitatory synaptic architecture and paved the way for a brand-new area of research. In this Progressions article, the primary investigators of the nanoscale organization of synapses have come together to chronicle the tale of their discovery. We recount the initial inquiry that prompted our research, the preceding studies that inspired our work, the technical obstacles that were encountered, and the breakthroughs that were made in the subsequent decade in the realm of nanoscale synaptic transmission. We review the new discoveries made possible by the democratization of super-resolution imaging techniques in the field of excitatory synaptic physiology and architecture, first by the extension to other glutamate receptors and to presynaptic proteins and then by the notion of trans-synaptic organization. After describing the organizational modifications occurring in various pathologies, we discuss briefly the latest technical developments made possible by super-resolution imaging and emerging concepts in synaptic physiology.


Subject(s)
Receptors, AMPA , Synapses , Receptors, AMPA/metabolism , Receptors, AMPA/chemistry , Synapses/metabolism , Synapses/ultrastructure , Animals , Humans , Synaptic Transmission/physiology , Nanostructures/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL