Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.605
Filter
1.
J Neurosci Methods ; 409: 110219, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39013526

ABSTRACT

BACKGROUND: Study of synaptic integrity using conventional electrophysiology is a gold standard for quantitative assessment of neurodegeneration. Fluorescence assisted single-synapse long-term potentiation (FASS-LTP) provides a high throughput method to assess the synaptic integrity of neurotransmission within and between different brain regions as a measure of pharmacological efficacy in translational models. NEW METHOD: We adapted the existing method to our purpose by adding a step during the thawing of frozen samples, by an extra step of placing them on a rocker at room temperature for 30 minutes immediately following thawing with constant mixing on a shaker. This allowed for gradual, uniform thawing, effectively separating the synaptosomes. Our study demonstrates FASS-LTP on four brain regions at 6- and 12-month periods in the 3xTg-AD mouse model, treating sibling cohorts with VU0155069 (a small molecule inhibitor) or vehicle (0.9 % saline). RESULTS: Our findings demonstrate the robust ability of the FASS-LTP technique to characterize the functional synaptic integrity maintained by disease-treatment therapies in multiple brain regions longitudinally using frozen brain tissue. COMPARISON WITH EXISTING METHODS: By providing a detailed, user-friendly protocol for this well-known analysis and including a recovery step improved the ability to robustly replicate the FASS-LTP between different brain regions. This may be extrapolated to a translational use on human clinical samples to improve understanding of the therapeutic impact on synaptic performance related to glutamate neurotransmission. CONCLUSIONS: FASS-LTP method offers a robust analysis of synaptosomes isolated from frozen tissue samples, demonstrating greater reproducibility in rodent and human synapses in physiological and pathological states.


Subject(s)
Brain , Long-Term Potentiation , Synapses , Animals , Brain/physiopathology , Brain/drug effects , Long-Term Potentiation/physiology , Long-Term Potentiation/drug effects , Synapses/physiology , Synapses/drug effects , Synaptosomes/drug effects , Synaptosomes/metabolism , Mice , Mice, Transgenic , Disease Models, Animal , Male , Mice, Inbred C57BL , Female
2.
Neurochem Int ; 178: 105791, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38880231

ABSTRACT

Long-term studies have confirmed a causal relationship between the development of neurodegenerative processes and vitamin B1 (thiamine) deficiency. However, the biochemical mechanisms underlying the high neurotropic activity of thiamine are not fully understood. At the same time, there is increasing evidence that vitamin B1, in addition to its coenzyme functions, may have non-coenzyme activities that are particularly important for neurons. To elucidate which effects of vitamin B1 in neurons are due to its coenzyme function and which are due to its non-coenzyme activity, we conducted a comparative study of the effects of thiamine and its derivative, 3-decyloxycarbonylmethyl-5-(2-hydroxyethyl)-4-methyl-1,3-thiazolium chloride (DMHT), on selected processes in synaptosomes. The ability of DMHT to effectively compete with thiamine for binding to thiamine-binding sites on the plasma membrane of synaptosomes and to participate as a substrate in the thiamine pyrophosphokinase reaction was demonstrated. In experiments with rat brain synaptosomes, unidirectional effects of DMHT and thiamine on the activity of the pyruvate dehydrogenase complex (PDC) and on the incorporation of radiolabeled [2-14C]pyruvate into acetylcholine were demonstrated. The observed effects of thiamine and DMHT on the modulation of acetylcholine synthesis can be explained by suggesting that both compounds, which interact in cells with enzymes of thiamine metabolism, are phosphorylated and exert an inhibitory/activating effect (concentration-dependent) on PDC activity by affecting the regulatory enzymes of the complex. Such effects were not observed in the presence of structural analogues of thiamine and DMHT without a 2-hydroxyethyl substituent at position 5 of the thiazolium cycle. The effect of DMHT on the plasma membrane Ca-ATPase was similar to that of thiamine. At the same time, DMHT showed high cytostatic activity against neuroblastoma cells.


Subject(s)
Rats, Wistar , Synaptosomes , Thiamine , Animals , Synaptosomes/metabolism , Synaptosomes/drug effects , Rats , Thiamine/pharmacology , Thiamine/metabolism , Male , Acetylcholine/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Thiazoles/pharmacology , Coenzymes/metabolism , Brain/metabolism , Brain/drug effects , Pyruvic Acid/metabolism , Pyruvic Acid/pharmacology
3.
Biomolecules ; 14(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38785996

ABSTRACT

Excitotoxicity is a common pathological process in neurological diseases caused by excess glutamate. The purpose of this study was to evaluate the effect of gypenoside XVII (GP-17), a gypenoside monomer, on the glutamatergic system. In vitro, in rat cortical nerve terminals (synaptosomes), GP-17 dose-dependently decreased glutamate release with an IC50 value of 16 µM. The removal of extracellular Ca2+ or blockade of N-and P/Q-type Ca2+ channels and protein kinase A (PKA) abolished the inhibitory effect of GP-17 on glutamate release from cortical synaptosomes. GP-17 also significantly reduced the phosphorylation of PKA, SNAP-25, and synapsin I in cortical synaptosomes. In an in vivo rat model of glutamate excitotoxicity induced by kainic acid (KA), GP-17 pretreatment significantly prevented seizures and rescued neuronal cell injury and glutamate elevation in the cortex. GP-17 pretreatment decreased the expression levels of sodium-coupled neutral amino acid transporter 1, glutamate synthesis enzyme glutaminase and vesicular glutamate transporter 1 but increased the expression level of glutamate metabolism enzyme glutamate dehydrogenase in the cortex of KA-treated rats. In addition, the KA-induced alterations in the N-methyl-D-aspartate receptor subunits GluN2A and GluN2B in the cortex were prevented by GP-17 pretreatment. GP-17 also prevented the KA-induced decrease in cerebral blood flow and arginase II expression. These results suggest that (i) GP-17, through the suppression of N- and P/Q-type Ca2+ channels and consequent PKA-mediated SNAP-25 and synapsin I phosphorylation, reduces glutamate exocytosis from cortical synaptosomes; and (ii) GP-17 has a neuroprotective effect on KA-induced glutamate excitotoxicity in rats through regulating synaptic glutamate release and cerebral blood flow.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Glutamic Acid , Gynostemma , Animals , Glutamic Acid/metabolism , Rats , Male , Gynostemma/chemistry , Cyclic AMP-Dependent Protein Kinases/metabolism , Rats, Sprague-Dawley , Synaptosomes/metabolism , Synaptosomes/drug effects , Neuroprotective Agents/pharmacology , Kainic Acid/toxicity , Seizures/chemically induced , Seizures/metabolism , Seizures/drug therapy , Seizures/prevention & control , Synapses/drug effects , Synapses/metabolism , Synaptosomal-Associated Protein 25/metabolism , Synapsins/metabolism , Phosphorylation/drug effects , Calcium/metabolism , Plant Extracts
4.
Genes (Basel) ; 15(4)2024 04 03.
Article in English | MEDLINE | ID: mdl-38674386

ABSTRACT

Down syndrome (DS) is the most common form of inherited intellectual disability caused by trisomy of chromosome 21, presenting with intellectual impairment, craniofacial abnormalities, cardiac defects, and gastrointestinal disorders. The Ts65Dn mouse model replicates many abnormalities of DS. We hypothesized that investigation of the cerebral cortex of fluoxetine-treated trisomic mice may provide proteomic signatures that identify therapeutic targets for DS. Subcellular fractionation of synaptosomes from cerebral cortices of age- and brain-area-matched samples from fluoxetine-treated vs. water-treated trisomic and euploid male mice were subjected to HPLC-tandem mass spectrometry. Analysis of the data revealed enrichment of trisomic risk genes that participate in regulation of synaptic vesicular traffic, pre-synaptic and post-synaptic development, and mitochondrial energy pathways during early brain development. Proteomic analysis of trisomic synaptic fractions revealed significant downregulation of proteins involved in synaptic vesicular traffic, including vesicular endocytosis (CLTA, CLTB, CLTC), synaptic assembly and maturation (EXOC1, EXOC3, EXOC8), anterograde axonal transport (EXOC1), neurotransmitter transport to PSD (SACM1L), endosomal-lysosomal acidification (ROGDI, DMXL2), and synaptic signaling (NRXN1, HIP1, ITSN1, YWHAG). Additionally, trisomic proteomes revealed upregulation of several trafficking proteins, involved in vesicular exocytosis (Rab5B), synapse elimination (UBE3A), scission of endocytosis (DBN1), transport of ER in dendritic spines (MYO5A), presynaptic activity-dependent bulk endocytosis (FMR1), and NMDA receptor activity (GRIN2A). Chronic fluoxetine treatment of Ts65Dn mice rescued synaptic vesicular abnormalities and prevented abnormal proteomic changes in adult Ts65Dn mice, pointing to therapeutic targets for potential treatment of DS.


Subject(s)
Down Syndrome , Fluoxetine , Proteomics , Synaptic Vesicles , Animals , Fluoxetine/pharmacology , Mice , Down Syndrome/metabolism , Down Syndrome/drug therapy , Down Syndrome/genetics , Down Syndrome/pathology , Male , Proteomics/methods , Synaptic Vesicles/metabolism , Synaptic Vesicles/drug effects , Disease Models, Animal , Proteome/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Synaptosomes/metabolism , Synaptosomes/drug effects , Trisomy/genetics
5.
CNS Neurol Disord Drug Targets ; 21(4): 292-301, 2022.
Article in English | MEDLINE | ID: mdl-34477538

ABSTRACT

BACKGROUND: Regulation of glutamate release is crucial for maintaining normal brain function, but excess glutamate release is implicated in many neuropathological conditions. Therefore, the minimum glutamate release from presynaptic nerve terminals is an important neuroprotective mechanism. OBJECTIVE: In this mini-review, we analyze the three B vitamins, namely vitamin B2 (riboflavin), vitamin B6 (pyridoxine), and vitamin B12 (cyanocobalamin), that affect the 4-aminopyridine (4- AP)-evoked glutamate release from presynaptic nerve terminal in rat and discuss their neuroprotective role. METHODS: In this study, the measurements include glutamate release, DiSC3(5), and Fura-2. RESULTS: The riboflavin, pyridoxine, and cyanocobalamin produced significant inhibitory effects on 4-aminopyridine-evoked glutamate release from rat cerebrocortical nerve terminals (synaptosomes) in a dose-dependent relationship. These presynaptic inhibitory actions of glutamate release are attributed to inhibition of physiologic Ca2+-dependent vesicular exocytosis but not Ca2+-independent nonvesicular release. These effects also did not affect membrane excitability, while diminished cytosolic (Ca2+)c through a reduction of direct Ca2+ influx via Cav2.2 (N-type) and Cav2.1 (P/Q-type) Ca2+ channels, rather than through indirect Ca2+induced Ca2+ release from ryanodine-sensitive intracellular stores. Furthermore, their effects were attenuated by GF109203X and Ro318220, two protein kinase C (PKC) inhibitors, suggesting suppression of PKC activity. Taken together, these results suggest that riboflavin, pyridoxine, and cyanocobalamin inhibit presynaptic vesicular glutamate release from rat cerebrocortical synaptosomes, through the depression Ca2+ influx via voltage- dependent Cav2.2 (N-type) and Cav2.1 (P/Q-type) Ca2+ channels, and PKC signaling cascade. CONCLUSION: Therefore, these B vitamins may reduce the strength of glutamatergic synaptic transmission and is of considerable importance as potential targets for therapeutic agents in glutamate- induced excitation-related diseases.


Subject(s)
Glutamic Acid/metabolism , Synaptic Transmission/drug effects , Vitamin B Complex/metabolism , 4-Aminopyridine , Animals , Calcium/metabolism , Calcium Channels, N-Type , Cerebral Cortex/metabolism , Male , Membrane Potentials/drug effects , Presynaptic Terminals/drug effects , Protein Kinase C/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Synaptosomes/drug effects
6.
Biomolecules ; 11(10)2021 10 18.
Article in English | MEDLINE | ID: mdl-34680170

ABSTRACT

Reduction in glutamate release is a key mechanism for neuroprotection and we investigated the effect of isoliquiritigenin (ISL), an active ingredient of Glycyrrhiza with neuroprotective activities, on glutamate release in rat cerebrocortical nerve terminals (synaptosomes). ISL produced a concentration-dependent inhibition of glutamate release and reduced the intraterminal [Ca2+] increase. The inhibition of glutamate release by ISL was prevented after removing extracellular Ca2+ or blocking P/Q-type Ca2+ channels. This inhibition was mediated through the γ-aminobutyric acid type B (GABAB) receptors because ISL was unable to inhibit glutamate release in the presence of baclofen (an GABAB agonist) or CGP3548 (an GABAB antagonist) and docking data revealed that ISL interacted with GABAB receptors. Furthermore, the ISL inhibition of glutamate release was abolished through the inhibition of Gi/o-mediated responses or Gßγ subunits, but not by 8-bromoadenosine 3',5'-cyclic monophosphate or adenylate cyclase inhibition. The ISL inhibition of glutamate release was also abolished through the inhibition of protein kinase C (PKC), and ISL decreased the phosphorylation of PKC. Thus, we inferred that ISL, through GABAB receptor activation and Gßγ-coupled inhibition of P/Q-type Ca2+ channels, suppressed the PKC phosphorylation to cause a decrease in evoked glutamate release at rat cerebrocortical nerve terminals.


Subject(s)
Chalcones/pharmacology , Glycyrrhiza/chemistry , Receptors, GABA-B/genetics , Synaptosomes/drug effects , Animals , Baclofen/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Calcium/metabolism , Calcium Channels, P-Type/genetics , Calcium Channels, Q-Type/genetics , Chalcones/chemistry , GABA-B Receptor Antagonists/pharmacology , Glutamic Acid/biosynthesis , Humans , Rats , Synaptosomes/metabolism
7.
Biomolecules ; 11(9)2021 08 25.
Article in English | MEDLINE | ID: mdl-34572487

ABSTRACT

BACKGROUND: In the brain, polyamines are mainly synthesized in neurons, but preferentially accumulated in astrocytes, and are proposed to be involved in neurodegenerative/neuroinflammatory disorders and neuron injury. A transgenic mouse overexpressing spermine oxidase (SMOX, which specifically oxidizes spermine) in the neocortex neurons (Dach-SMOX mouse) was proved to be a model of increased susceptibility to excitotoxic injury. METHODS: To investigate possible alterations in synapse functioning in Dach-SMOX mouse, both cerebrocortical nerve terminals (synaptosomes) and astrocytic processes (gliosomes) were analysed by assessing polyamine levels, ezrin and vimentin content, glutamate AMPA receptor activation, calcium influx, and catalase activity. RESULTS: The main findings are as follows: (i) the presence of functional calcium-permeable AMPA receptors in synaptosomes from both control and Dach-SMOX mice, and in gliosomes from Dach-SMOX mice only; (ii) reduced content of spermine in gliosomes from Dach-SMOX mice; and (iii) down-regulation and up-regulation of catalase activity in synaptosomes and gliosomes, respectively, from Dach-SMOX mice. CONCLUSIONS: Chronic activation of SMOX in neurons leads to major changes in the astrocyte processes including reduced spermine levels, increased calcium influx through calcium-permeable AMPA receptors, and stimulation of catalase activity. Astrocytosis and the astrocyte process alterations, depending on chronic activation of polyamine catabolism, result in synapse dysregulation and neuronal suffering.


Subject(s)
Gliosis/metabolism , Gliosis/pathology , Polyamines/metabolism , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Calcium/metabolism , Catalase/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cytoskeletal Proteins/metabolism , Disease Models, Animal , Mice , Mice, Transgenic , Nerve Endings/drug effects , Nerve Endings/metabolism , Neuroglia/drug effects , Neuroglia/metabolism , Neurons/drug effects , Neurons/metabolism , Oxidative Stress/drug effects , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Receptors, AMPA/metabolism , Spermine/analogs & derivatives , Spermine/metabolism , Spermine/pharmacology , Synaptosomes/drug effects , Synaptosomes/metabolism , Vimentin/metabolism , Polyamine Oxidase
8.
EMBO J ; 40(21): e107915, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34585770

ABSTRACT

Synaptic refinement is a critical physiological process that removes excess synapses to establish and maintain functional neuronal circuits. Recent studies have shown that focal exposure of phosphatidylserine (PS) on synapses acts as an "eat me" signal to mediate synaptic pruning. However, the molecular mechanism underlying PS externalization at synapses remains elusive. Here, we find that murine CDC50A, a chaperone of phospholipid flippases, localizes to synapses, and that its expression depends on neuronal activity. Cdc50a knockdown leads to phosphatidylserine exposure at synapses and subsequent erroneous synapse removal by microglia partly via the GPR56 pathway. Taken together, our data support that CDC50A safeguards synapse maintenance by regulating focal phosphatidylserine exposure at synapses.


Subject(s)
Membrane Proteins/genetics , Microglia/drug effects , Neurons/drug effects , Phosphatidylserines/pharmacology , Receptors, G-Protein-Coupled/genetics , Synapses/drug effects , Animals , Gene Expression Regulation , Genes, Reporter , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/cytology , Microglia/metabolism , Neuronal Plasticity , Neurons/cytology , Neurons/metabolism , Phosphatidylserines/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptors, G-Protein-Coupled/metabolism , Synapses/genetics , Synapses/metabolism , Synaptic Transmission , Synaptosomes/drug effects , Synaptosomes/metabolism , Vesicular Glutamate Transport Protein 2 , Red Fluorescent Protein
9.
Biomolecules ; 11(7)2021 07 15.
Article in English | MEDLINE | ID: mdl-34356653

ABSTRACT

Rosmarinic acid, a major component of rosemary, is a polyphenolic compound with potential neuroprotective effects. Asreducing the synaptic release of glutamate is crucial to achieving neuroprotectant's pharmacotherapeutic effects, the effect of rosmarinic acid on glutamate release was investigated in rat cerebrocortical nerve terminals (synaptosomes). Rosmarinic acid depressed the 4-aminopyridine (4-AP)-induced glutamate release in a concentration-dependent manner. The removal of extracellular calcium and the blockade of vesicular transporters prevented the inhibition of glutamate release by rosmarinic acid. Rosmarinic acid reduced 4-AP-induced intrasynaptosomal Ca2+ elevation. The inhibition of N-, P/Q-type Ca2+ channels and the calcium/calmodulin-dependent kinase II (CaMKII) prevented rosmarinic acid from having effects on glutamate release. Rosmarinic acid also reduced the 4-AP-induced activation of CaMKII and the subsequent phosphorylation of synapsin I, the main presynaptic target of CaMKII. In addition, immunocytochemistry confirmed the presence of GABAA receptors. GABAA receptor agonist and antagonist blocked the inhibitory effect of rosmarinic acid on 4-AP-evoked glutamate release. Docking data also revealed that rosmarinic acid formed a hydrogen bond with the amino acid residues of GABAA receptor. These results suggested that rosmarinic acid activates GABAA receptors in cerebrocortical synaptosomes to decrease Ca2+ influx and CaMKII/synapsin I pathway to inhibit the evoked glutamate release.


Subject(s)
Cinnamates/pharmacology , Depsides/pharmacology , Glutamic Acid/metabolism , Synaptosomes/drug effects , 4-Aminopyridine/pharmacology , Animals , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cinnamates/chemistry , Depsides/chemistry , GABA-A Receptor Agonists/pharmacology , GABA-A Receptor Antagonists/pharmacology , Male , Membrane Potentials/drug effects , Molecular Docking Simulation , Neuroprotective Agents/pharmacology , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Rats, Sprague-Dawley , Receptors, GABA-A/chemistry , Receptors, GABA-A/metabolism , Synaptosomes/metabolism , Rosmarinic Acid
10.
Exp Neurol ; 345: 113811, 2021 11.
Article in English | MEDLINE | ID: mdl-34298012

ABSTRACT

Methamphetamine (METH) is a highly addictive and powerful central nervous system psychostimulant with no FDA-approved pharmacotherapy. Parkin is a neuroprotective protein and its loss of function contributes to Parkinson's disease. This study used 3-month-old homozygous parkin knockout (PKO) rats to determine whether loss of parkin protein potentiates neurotoxicity of chronic METH to the nigrostriatal dopamine pathway. PKO rats were chronically treated with 10 mg/kg METH for 10 consecutive days and assessed for neurotoxicity markers in the striatum on the 5th and 10th day of withdrawal from METH. The PKO rats showed higher METH-induced hyperthermia; however, they did not display augmented deficits in dopaminergic and serotonergic neurotoxicity markers, astrocyte activation or decreased mitochondrial enzyme levels as compared to wild-type (WT) rats. Interestingly, saline-treated PKO rats had lower levels of dopamine (DA) as well as mitochondrial complex I and II levels while having increased basal levels of glial fibrillary acidic protein (GFAP), a marker of gliosis. These results indicate PKO display a certain resistance to METH neurotoxicity, possibly mediated by lowered DA levels and downregulated mitochondria.


Subject(s)
Central Nervous System Stimulants/toxicity , Dopamine/metabolism , Locomotion/drug effects , Methamphetamine/toxicity , Ubiquitin-Protein Ligases/deficiency , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Central Nervous System Stimulants/administration & dosage , Dopamine/genetics , Drug Administration Schedule , Hyperthermia, Induced/adverse effects , Hyperthermia, Induced/methods , Locomotion/physiology , Male , Methamphetamine/administration & dosage , Rats , Rats, Long-Evans , Rats, Transgenic , Synaptosomes/drug effects , Synaptosomes/metabolism , Ubiquitin-Protein Ligases/genetics
11.
J Neurochem ; 159(1): 156-171, 2021 10.
Article in English | MEDLINE | ID: mdl-34309872

ABSTRACT

The regulation of the serotonin transporter (SERT) by guanine nucleotide-binding protein alpha (Gα) q was investigated using Gαq knockout mice. In the absence of Gαq, SERT-mediated uptake of 5-hydroxytryptamine (5HT) was enhanced in midbrain and frontal cortex synaptosomes, but only in female mice. The mechanisms underlying this sexual dimorphism were investigated using quantitative western blot analysis revealing brain region-specific differences. In the frontal cortex, SERT protein expression was decreased in male knockout mice, seemingly explaining the sex-dependent variation in SERT activity. The differential expression of Gαi1 in female mice contributes to the sex differences in the midbrain. In fact, Gαi1 levels inversely correlate with 5HT uptake rates across both sexes and genotypes. Likely due to differential SERT regulation as well as sex differences in the expression of tryptophan hydroxylase 2, Gαq knockout mice also displayed sex- and genotype-dependent alterations in total 5HT tissue levels as determined by high-performance liquid chromatography. Gαq inhibitors, YM-254890 and BIM-46187, differentially affected SERT activity in both, synaptosomes and cultured cells. YM-254890 treatment mimicked the effect of Gαq knockout in the frontal cortex. BIM-46187, which promotes the nucleotide-free form of Gα proteins, substantially inhibited 5HT uptake, prompting us to hypothesise that Gαq interacts with SERT similarly as with G-protein-coupled receptors and inhibits SERT activity by modulating transport-associated conformational changes. Taken together, our findings reveal a novel mechanism of SERT regulation and impact our understanding of sex differences in diseases associated with dysregulation of serotonin transmission, such as depression and anxiety.


Subject(s)
Brain/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/deficiency , Serotonin Plasma Membrane Transport Proteins/metabolism , Sex Characteristics , Synaptosomes/metabolism , Animals , Brain/drug effects , Female , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , HEK293 Cells , Humans , Male , Mice , Mice, Knockout , Peptides, Cyclic/pharmacology , Serotonin Plasma Membrane Transport Proteins/genetics , Synaptosomes/drug effects
12.
J Neurochem ; 159(1): 116-127, 2021 10.
Article in English | MEDLINE | ID: mdl-34320222

ABSTRACT

Methcathinone (MCAT) is a psychostimulant of abuse that can cause both persistent striatal dopaminergic and serotonergic, as well as hippocampal serotonergic, deficits. Evidence suggests that the rapid effects of stimulants that are structurally and mechanistically similar to MCAT on monoamine transporter function may contribute to the abuse liability and/or persistent monoaminergic deficits caused by these agents. Thus, effects of MCAT on 1) striatal dopamine (DA) transporter (DAT); and 2) striatal and hippocampal serotonin transporter (SERT) function, as determined in tissues from adult male rats, were assessed. As reported previously, a single administration of MCAT rapidly (within 1 hr) decreases striatal [3 H]DA uptake. Similarly, incubation of rat synaptosomes with MCAT at 37℃ (but not 4˚C) decreased striatal [3 H]DA uptake. Incubation with MCAT likewise decreased [3 H]5HT but not vesicular [3 H]DA uptake. MCAT incubation in vitro was without effect on [3 H]DA uptake in striatal synaptosomes prepared from MCAT-treated rats. The decrease in [3 H]DA uptake caused by MCAT incubation: (a) reflected a decrease in Vmax , with minimal change in Km , and (b) was attenuated by co-incubation with the cell-permeable calcium chelator, N,N'-[1,2-ethanediylbis(oxy-2,1-phenylene)]bis[N-[2-[(acetyloxy)methoxy]-2-oxoethyl]-1,1'-bis[(acetyloxy)methyl] ester-glycine (BAPTA-AM), as well as the non-selective protein kinase-C (PKC) inhibitors bisindolylmaleimide-1 (BIM-1) and 2-[1-3(Aminopropyl)indol-3-yl]-3(1-methyl-1H-indol-3-yl)maleimide (or Bisindolylmaleimide VIII; Ro-31-7549). Taken together, these results suggest that in vitro MCAT incubation may model important aspects of MCAT administration in vivo, and that calcium and PKC contribute to the in vitro effects of MCAT on DAT.


Subject(s)
Central Nervous System Stimulants/pharmacology , Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Dopamine Plasma Membrane Transport Proteins/physiology , Propiophenones/pharmacology , Protein Kinase C/physiology , Animals , Corpus Striatum/drug effects , Corpus Striatum/physiology , Male , Rats , Rats, Sprague-Dawley , Synaptosomes/drug effects , Synaptosomes/physiology
13.
Neurochem Int ; 148: 105100, 2021 09.
Article in English | MEDLINE | ID: mdl-34139299

ABSTRACT

Nitric oxide generation is related to the activity of certain proteins located at synaptic sites. Previous findings show that NOS activity, nNOS protein expression, respiratory parameters and mitochondrial complex activities are altered in rat cerebral cortex by administration of levocabastine, an antagonist of histamine H1 and neurotensin NTS2 receptors. ATP provision by mitochondria may play an important role in the functional interaction between synaptic proteins NMDA receptor and PSD-95 with NO synthesis. In this context, our purpose was to evaluate the effect of levocabastine administration on protein expression of PSD-95, GluN2B and iNOS, as well as on mitochondrial ATP production. Male Wistar rats received a single (i.p.) dose of levocabastine (50 µg/kg) or saline solution (controls) and were decapitated 18 h later. Mitochondrial and synaptosomal membrane fractions were isolated from cerebral cortex by differential and sucrose gradient centrifugation. Expression of synaptic proteins was evaluated by Western blot assays in synaptosomal membrane fractions. Oxygen consumption, mitochondrial membrane potential and ATP production rate were determined in fresh crude mitochondrial fractions. After levocabastine treatment, protein expression of PSD-95, GluN2B and ß-actin decreased 97, 45 and 55%, respectively, whereas that of iNOS enhanced 3.5-fold versus controls. In crude mitochondrial fractions levocabastine administration reduced roughly 15% respiratory control rate as assayed with malate-glutamate or succinate as substrates, decreased mitochondrial membrane potential (21%), and ATP production rates (57%). Results suggested that levocabastine administration induces alterations in synaptic proteins of the protein complex PSD-95/NMDA receptor/nNOS and in neuron cytoskeleton. Mitochondrial bioenergetics impairment may play a role in the functional link between synaptic proteins and NO synthesis.


Subject(s)
Disks Large Homolog 4 Protein/metabolism , Histamine H1 Antagonists/pharmacology , Nitric Oxide Synthase Type II/metabolism , Piperidines/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Adenosine Triphosphate/biosynthesis , Animals , Male , Membrane Potential, Mitochondrial/drug effects , Mitochondrial Membranes/drug effects , Nitric Oxide Synthase Type II/drug effects , Oxygen Consumption/drug effects , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/drug effects , Synapses/drug effects , Synaptosomes/drug effects
14.
Front Immunol ; 12: 586521, 2021.
Article in English | MEDLINE | ID: mdl-33717067

ABSTRACT

Antibodies recognizing the amino-terminal domain of receptor subunit proteins modify the receptor efficiency to controlling transmitter release in isolated nerve endings (e.g., synaptosomes) indirectly confirming their presence in these particles but also allowing to speculate on their subunit composition. Western blot analysis and confocal microscopy unveiled the presence of the GluA1, GluA2, GluA3, and GluA4 receptor subunits in cortical synaptosomes. Functional studies confirmed the presence of presynaptic release-regulating AMPA autoreceptors in these terminals, whose activation releases [3H]D-aspartate ([3H]D-Asp, here used as a marker of glutamate) in a NBQX-dependent manner. The AMPA autoreceptors traffic in a constitutive manner, since entrapping synaptosomes with the pep2-SVKI peptide (which interferes with the GluA2-GRIP1/PICK1 interaction) amplified the AMPA-evoked releasing activity, while the inactive pep2-SVKE peptide was devoid of activity. Incubation of synaptosomes with antibodies recognizing the NH2 terminus of the GluA2 and the GluA3 subunits increased, although to a different extent, the GluA2 and 3 densities in synaptosomal membranes, also amplifying the AMPA-evoked glutamate release in a NBQX-dependent fashion. We then analyzed the releasing activity of complement (1:300) from both treated and untreated synaptosomes and found that the complement-induced overflow occurred in a DL-t-BOA-sensitive, NBQX-insensitive fashion. We hypothesized that anti-GluA/GluA complexes in neuronal membranes could trigger the classic pathway of activation of the complement, modifying its releasing activity. Accordingly, the complement-evoked release of [3H]D-Asp from antiGluA2 and anti-GluA3 antibody treated synaptosomes was significantly increased when compared to untreated terminals and facilitation was prevented by omitting the C1q component of the immunocomplex. Antibodies recognizing the NH2 terminus of the GluA1 or the GluA4 subunits failed to affect both the AMPA and the complement-evoked tritium overflow. Our results suggest the presence of GluA2/GluA3-containing release-regulating AMPA autoreceptors in cortical synaptosomes. Incubation of synaptosomes with commercial anti-GluA2 or anti-GluA3 antibodies amplifies the AMPA-evoked exocytosis of glutamate through a complement-independent pathway, involving an excessive insertion of AMPA autoreceptors in plasma membranes but also affects the complement-dependent releasing activity, by promoting the classic pathway of activation of the immunocomplex. Both events could be relevant to the development of autoimmune diseases typified by an overproduction of anti-GluA subunits.


Subject(s)
Antibodies/pharmacology , Protein Interaction Domains and Motifs/drug effects , Protein Subunits/antagonists & inhibitors , Receptors, AMPA/antagonists & inhibitors , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Cerebral Cortex/metabolism , Complement C1q/immunology , Fluorescent Antibody Technique , Male , Mice , Receptors, AMPA/chemistry , Synaptosomes/drug effects , Synaptosomes/metabolism
15.
Chem Res Toxicol ; 34(5): 1286-1295, 2021 05 17.
Article in English | MEDLINE | ID: mdl-33621091

ABSTRACT

Glutamate is the major excitatory neurotransmitter in the brain and is involved in many brain functions. In this study, we investigated whether typhaneoside, a flavonoid from Typhae angustifolia pollen, affects endogenous glutamate release from rat cortical synaptosomes. Using a one-line enzyme-coupled fluorometric assay, glutamate release stimulated by the K+ channel blocker 4-aminopyridine was monitored to explore the possible underlying mechanisms. The vesicular transporter inhibitor bafilomycin A1 and chelation of extracellular Ca2+ ions with EGTA suppressed the effect of typhaneoside on the induced glutamate release. Nevertheless, the typhaneoside activity has not been affected by the glutamate transporter inhibitor dl-threo-beta-benzyloxyaspartate. The synaptosomal plasma membrane potential was assayed using a membrane potential-sensitive dye DiSC3(5), and cytosolic Ca2+ concentrations ([Ca2+]C) was monitored by a Ca2+ indicator Fura-2. Results showed that typhaneoside did not alter the synaptosomal membrane potential but lowered 4-aminopyridine-induced increases in [Ca2+]C. Furthermore, the Cav2.2 (N-type) channel blocker ω-conotoxin GVIA blocked Ca2+ entry and inhibited the effect of typhaneoside on 4-aminopyridine-induced glutamate release. However, the inhibitor of intracellular Ca2+ release dantrolene and the mitochondrial Na+/Ca2+ exchanger blocker 7-chloro-5-(2-chloropheny)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one have no effect on the suppression of glutamate release mediated by typhaneoside. Moreover, inhibition of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) prevented the inhibitory effect of typhaneoside on induced glutamate release. Typhaneoside reduced 4-aminopyridine-induced phosphorylation of ERK1/2 and the major presynaptic ERK target synapsin I, which is a synaptic vesicle-associated protein. In conclusion, these findings suggest a role for typhaneoside in modulating glutamate release by suppressing voltage-dependent Ca2+ channel mediated presynaptic Ca2+ influx and the MAPK/ERK/synapsin I signaling cascade.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels, N-Type/metabolism , Cerebral Cortex/drug effects , Glutamic Acid/metabolism , Glycosides/pharmacology , Animals , Cerebral Cortex/metabolism , Male , Membrane Potentials/drug effects , Rats , Rats, Sprague-Dawley , Synaptosomes/drug effects , Synaptosomes/metabolism
16.
Eur J Pharmacol ; 898: 173986, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33640406

ABSTRACT

The high-affinity choline transporter CHT1 mediates choline uptake, the rate-limiting and regulatory step in acetylcholine synthesis at cholinergic presynaptic terminals. CHT1-medated choline uptake is specifically inhibited by hemicholinium-3, which is a type of choline analog that acts as a competitive inhibitor. Although the substrate choline and the inhibitor hemicholinium-3 are well-established ligands of CHT1, few potent ligands other than choline analogs have been reported. Here we show that tetrahydropyrimidine anthelmintics, known as nicotinic acetylcholine receptor agonists, act as competitive inhibitors of CHT1. A ligand-dependent trafficking assay in cell lines expressing human CHT1 was designed to search for CHT1 ligands from a collection of biologically active compounds. We found that morantel as well as other tetrahydropyrimidines, pyrantel and oxantel, potently inhibits the high-affinity choline uptake activity of CHT1 in a competitive manner similar to the inhibitor hemicholinium-3. They also inhibit the high-affinity choline transporter from the nematode Caenorhabditis elegans. Finally, tetrahydropyrimidines potently inhibit the high-affinity choline uptake in rat brain synaptosomes at a low micromolar level, resulting in the inhibition of acetylcholine synthesis. The rank order of potency in synaptosomes is as follows: morantel > pyarantel > oxantel (Ki = 1.3, 5.7, and 8.3 µM, respectively). Our results reveal that tetrahydropyrimidine anthelmintics are novel CHT1 ligands that inhibit the high-affinity choline uptake for acetylcholine synthesis in cholinergic neurons.


Subject(s)
Anthelmintics/pharmacology , Brain/drug effects , Cation Transport Proteins/antagonists & inhibitors , Choline/metabolism , Pyrimidines/pharmacology , Symporters/antagonists & inhibitors , Animals , Anthelmintics/metabolism , Binding, Competitive , Biological Transport , Brain/metabolism , Cation Transport Proteins/metabolism , Female , HEK293 Cells , Humans , Ligands , Mice , Morantel/metabolism , Morantel/pharmacology , Protein Binding , Protein Transport , Pyrantel/analogs & derivatives , Pyrantel/metabolism , Pyrantel/pharmacology , Pyrimidines/metabolism , Symporters/genetics , Symporters/metabolism , Synaptosomes/drug effects , Synaptosomes/metabolism
17.
Article in English | MEDLINE | ID: mdl-33400944

ABSTRACT

Ketamine produces a rapid antidepressant effect, but its use can be associated with serious side effects. Hence, other therapeutic options that will allow us to obtain a quick and safe antidepressant effect by modulating glutamatergic transmission are needed. Antagonists of mGlu2/3 receptors, which share some mechanisms of action with ketamine, may be good candidates to obtain this effect. Here, we show that the metabotropic glutamate (mGlu) 2/3 receptor antagonist LY341495 induced a dose-dependent antidepressant-like effect in the chronic unpredictable mild stress (CUMS) model of depression in C57BL/6J mice after both single and subchronic (three-day) administration. Furthermore, a noneffective dose of LY341495 (0.3 mg/kg) given jointly with a noneffective dose of ketamine (3 mg/kg) reversed the CUMS-induced behavioral effects, indicating that coadministration of ketamine with an mGlu2/3 receptor antagonist might allow its therapeutically effective dose to be lowered. Western blot results indicate that mTOR pathway activation might be involved in the mechanism of action of this drug combination. Moreover, the combined doses of both substances did not produce undesirable behavioral effects characteristic of a higher dose of ketamine (10 mg/kg) commonly used in rodent studies to induce antidepressant effects. Coadministration of low doses of ketamine and LY341495 did not induce the hyperactivity typical of NMDA channel blockers, did not disturb short-term memory in the novel object recognition (NOR) test, and did not disturb motor coordination in the rotarod test. Our research not only confirmed the earlier data on the rapid antidepressant effect of mGlu2/3 receptor antagonists but also indicated that such compounds can safely lower the effective dose of ketamine.


Subject(s)
Amino Acids/therapeutic use , Antidepressive Agents/therapeutic use , Depression/drug therapy , Excitatory Amino Acid Antagonists/therapeutic use , Ketamine/therapeutic use , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Xanthenes/therapeutic use , Amino Acids/pharmacology , Animals , Antidepressive Agents/pharmacology , Disease Models, Animal , Excitatory Amino Acid Antagonists/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Ketamine/pharmacology , Male , Mice , Mice, Inbred C57BL , Motor Skills/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Synaptosomes/drug effects , Synaptosomes/metabolism , Xanthenes/pharmacology
18.
Neurochem Res ; 46(4): 804-818, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33428094

ABSTRACT

In this study, we were aimed to investigate the neuroprotective effects of bexarotene and nicotinamide in synaptosomes incubated with amyloid-beta (Aß). Our study consists of 2 parts, in vivo and in vitro. In the in vivo section, twenty-four Wistar albino male rats were divided into 4 groups (control, dimethyl sulfoxide (DMSO), nicotinamide and bexarotene) with six animals in each group. DMSO(1%), nicotinamide(100 mg/kg) and bexarotene(0.1 mg/kg) were administered intraperitoneally to animals in the experimental groups for seven days. In the in vitro part of our study, three different isolation methods were used to obtain the synaptosomes from the brain tissue. Total antioxidant capacity(TAS), total oxidant capacity(TOS), cleaved caspase 3(CASP3), cytochrome c(Cyt c), sirtuin 1(SIRT1), peroxisome proliferator-activated receptor gamma(PPARγ) and poly(ADP-ribose) polymerase-1(PARP-1) levels in the synaptosomes incubated with a concentration of 10 µM Aß(1-42) were measured by enzyme-linked immunosorbent assay method. Biochemical analysis and histopathological examinations in serum and brain samples showed that DMSO, nicotinamide and bexarotene treatments did not cause any damage to the rat brain tissue. We found that in vitro Aß(1-42) administration decreased TAS, SIRT1 and PPARγ levels in synaptosomes while increasing TOS, CASP3, Cyt c, and PARP1 levels. Nicotinamide treatment suppressed oxidative stress and apoptosis by supporting antioxidant capacity and increased PPARγ through SIRT1 activation, causing PARP1 to decrease. On the other hand, bexarotene caused a moderate increase in SIRT1 levels with PPARγ activation. Consequently, we found that nicotinamide can be more effective than bexarotene in AD pathogenesis by regulating mitochondrial functions in synaptosomes.


Subject(s)
Bexarotene/pharmacology , Neuroprotective Agents/pharmacology , Niacinamide/pharmacology , Synaptosomes/drug effects , Alzheimer Disease/chemically induced , Alzheimer Disease/metabolism , Amyloid beta-Peptides , Animals , Apoptosis/drug effects , Brain/metabolism , Brain/pathology , Male , Oxidative Stress/drug effects , PPAR gamma/metabolism , Peptide Fragments , Poly (ADP-Ribose) Polymerase-1/metabolism , Rats, Wistar , Signal Transduction/drug effects , Sirtuin 1/metabolism , Synaptosomes/metabolism
19.
Neurochem Res ; 46(1): 100-107, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32130629

ABSTRACT

Reductions in the activities of mitochondrial electron transport chain (ETC) enzymes have been implicated in the pathogenesis of numerous chronic neurodegenerative disorders. Maintenance of the mitochondrial membrane potential (Δψm) is a primary function of these enzyme complexes, and is essential for ATP production and neuronal survival. We examined the effects of inhibition of mitochondrial ETC complexes I, II/III, III and IV activities by titrations of respective inhibitors on Δψm in synaptosomal mitochondria. Small perturbations in the activity of complex I, brought about by low concentrations of rotenone (1-50 nM), caused depolarisation of Δψm. Small decreases in complex I activity caused an immediate and partial Δψm depolarisation, whereas inhibition of complex II/III activity by more than 70% with antimycin A was required to affect Δψm. A similarly high threshold of inhibition was found when complex III was inhibited with myxothiazol, and inhibition of complex IV by more than 90% with KCN was required. The plasma membrane potential (Δψp) had a complex I inhibition threshold of 40% whereas complex III and IV had to be inhibited by more than 90% before changes in Δψp were registered. These data indicate that in synaptosomes, both Δψm and Δψp are more susceptible to reductions in complex I activity than reductions in the other ETC complexes. These findings may be of relevance to the mechanism of neuronal cell death in Parkinson's disease in particular, where such reductions in complex I activity are present.


Subject(s)
Electron Transport Complex I/metabolism , Membrane Potential, Mitochondrial/physiology , Mitochondria/metabolism , Animals , Antimycin A/pharmacology , Electron Transport Complex I/antagonists & inhibitors , Enzyme Assays , Enzyme Inhibitors/pharmacology , Female , Membrane Potential, Mitochondrial/drug effects , Methacrylates/pharmacology , Mitochondria/drug effects , Potassium Cyanide/pharmacology , Rats, Wistar , Rotenone/pharmacology , Synaptosomes/drug effects , Thiazoles/pharmacology
20.
Int J Mol Sci ; 23(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35008791

ABSTRACT

Methamphetamine (METH) is a highly abused psychostimulant that is neurotoxic to dopaminergic (DAergic) nerve terminals in the striatum and increases the risk of developing Parkinson's disease (PD). In vivo, METH-mediated DA release, followed by DA-mediated oxidative stress and mitochondrial dysfunction in pre- and postsynaptic neurons, mediates METH neurotoxicity. METH-triggered oxidative stress damages parkin, a neuroprotective protein involved in PD etiology via its involvement in the maintenance of mitochondria. It is not known whether METH itself contributes to mitochondrial dysfunction and whether parkin regulates complex I, an enzymatic complex downregulated in PD. To determine this, we separately assessed the effects of METH or DA alone on electron transport chain (ETC) complexes and the protein parkin in isolated striatal mitochondria. We show that METH decreases the levels of selected complex I, II, and III subunits (NDUFS3, SDHA, and UQCRC2, respectively), whereas DA decreases the levels only of the NDUFS3 subunit in our preparations. We also show that the selected subunits are not decreased in synaptosomal mitochondria under similar experimental conditions. Finally, we found that parkin overexpression does not influence the levels of the NDUFS3 subunit in rat striatum. The presented results indicate that METH itself is a factor promoting dysfunction of striatal mitochondria; therefore, it is a potential drug target against METH neurotoxicity. The observed decreases in ETC complex subunits suggest that DA and METH decrease activities of the ETC complexes via oxidative damage to their subunits and that synaptosomal mitochondria may be somewhat "resistant" to DA- and METH-induced disruption in mitochondrial ETC complexes than perikaryal mitochondria. The results also suggest that parkin does not regulate NDUFS3 turnover in rat striatum.


Subject(s)
Corpus Striatum/metabolism , Dopamine/pharmacology , Methamphetamine/toxicity , Neurotoxins/toxicity , Ubiquitin-Protein Ligases/metabolism , Animals , Buffers , Corpus Striatum/drug effects , Electron Transport/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Models, Biological , NADH Dehydrogenase/metabolism , Protein Subunits/metabolism , Rats , Synaptosomes/drug effects , Synaptosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL