Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Clin Transl Oncol ; 25(6): 1629-1640, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36630025

ABSTRACT

PURPOSE: Breast cancer is one of the leading causes of tumor death worldwide in female, and the five-year overall survival of breast cancer patients remains poor. It is an urgent need to seek novel target for its treatment. Synaptotagmin 13 (SYT13) is a synaptic vesicle transporting protein that regulates the malignant phenotypes of various cancers. However, its role in breast cancer is still unclear. The current study aimed to investigate the effects of SYT13 on the progression of breast cancer. METHODS: Twenty-five pairs of breast cancer tissues and non-tumor tissues were obtained to assess the expression of SYT13. We manually modified the expression of SYT13 in MCF-7 and MDA-MB-231 cells. CCK-8 assay, EdU staining, and cell cycle analysis were carried out to measure the proliferated ability of cells. Annexin V/PI and TUNEL assays were used to detect the apoptotic ability of cells. Wound healing and transwell assays were employed to evaluate the migrated and invasive ability of breast cancer cells. RESULTS: The results revealed that the mRNA and protein levels of SYT13 were higher in breast cancer tissues and cell lines. Knockdown of SYT13 inhibited the cell proliferation and induced cell cycle arrest in G1 phase of MCF-7 cells by downregulating cyclin D1 and CDK4, as well as upregulating p21. The migration and invasion of MCF-7 cells were repressed by the loss of SYT13 via the gain of E-cadherin and the loss of vimentin. Overexpression of SYT13 in MDA-MB-231 cells led to the opposite effects. Silencing of SYT13 induced the apoptosis ability of MCF-7 cells by the upregulation of bax and the downregulation of bcl-2. Moreover, we found that SYT13 depletion suppressed the FAK/AKT signaling pathway. PF573228 (a FAK inhibitor) and MK2206 (an AKT inhibitor) reversed the SYT13 overexpression-induced promotion of proliferation, migration, and invasion of MDA-MB-231 cells. CONCLUSION: The results indicated that SYT13 promoted the malignant phenotypes of breast cancer cells by the activation of FAK/AKT signaling pathway.


Subject(s)
Breast Neoplasms , Proto-Oncogene Proteins c-akt , Signal Transduction , Synaptotagmins , Female , Humans , Apoptosis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , MCF-7 Cells , Proto-Oncogene Proteins c-akt/metabolism , Synaptotagmins/genetics , Synaptotagmins/metabolism
2.
Adv Anat Embryol Cell Biol ; 220: 71-92, 2016.
Article in English | MEDLINE | ID: mdl-27194350

ABSTRACT

Exocytosis is a fundamental process used by eukaryotic cells to release biological compounds and to insert lipids and proteins in the plasma membrane. Specialized secretory cells undergo regulated exocytosis in response to physiological signals. Sperm exocytosis or acrosome reaction (AR) is essentially a regulated secretion with special characteristics. We will focus here on some of these unique features, covering the topology, kinetics, and molecular mechanisms that prepare, drive, and regulate membrane fusion during the AR. Last, we will compare acrosomal release with exocytosis in other model systems.


Subject(s)
Acrosome Reaction/physiology , Acrosome/metabolism , Cell Membrane/metabolism , Exocytosis/physiology , Acrosome/chemistry , Animals , Calcium/metabolism , Cell Membrane/chemistry , Gene Expression Regulation , Kinetics , Male , Membrane Fusion/physiology , Mice , Phosphatidylinositol Phosphates/metabolism , SNARE Proteins/genetics , SNARE Proteins/metabolism , Signal Transduction , Synaptotagmins/genetics , Synaptotagmins/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab27 GTP-Binding Proteins , rab3 GTP-Binding Proteins/genetics , rab3 GTP-Binding Proteins/metabolism
3.
PLoS One ; 8(12): e82988, 2013.
Article in English | MEDLINE | ID: mdl-24376622

ABSTRACT

In a previous study we had shown that membrane cholesterol removal induced unregulated lysosomal exocytosis events leading to the depletion of lysosomes located at cell periphery. However, the mechanism by which cholesterol triggered these exocytic events had not been uncovered. In this study we investigated the importance of cholesterol in controlling mechanical properties of cells and its connection with lysosomal exocytosis. Tether extraction with optical tweezers and defocusing microscopy were used to assess cell dynamics in mouse fibroblasts. These assays showed that bending modulus and surface tension increased when cholesterol was extracted from fibroblasts plasma membrane upon incubation with MßCD, and that the membrane-cytoskeleton relaxation time increased at the beginning of MßCD treatment and decreased at the end. We also showed for the first time that the amplitude of membrane-cytoskeleton fluctuation decreased during cholesterol sequestration, showing that these cells become stiffer. These changes in membrane dynamics involved not only rearrangement of the actin cytoskeleton, but also de novo actin polymerization and stress fiber formation through Rho activation. We found that these mechanical changes observed after cholesterol sequestration were involved in triggering lysosomal exocytosis. Exocytosis occurred even in the absence of the lysosomal calcium sensor synaptotagmin VII, and was associated with actin polymerization induced by MßCD. Notably, exocytosis triggered by cholesterol removal led to the secretion of a unique population of lysosomes, different from the pool mobilized by actin depolymerizing drugs such as Latrunculin-A. These data support the existence of at least two different pools of lysosomes with different exocytosis dynamics, one of which is directly mobilized for plasma membrane fusion after cholesterol removal.


Subject(s)
Cell Membrane/drug effects , Cholesterol/chemistry , Fibroblasts/drug effects , Lysosomes/metabolism , beta-Cyclodextrins/pharmacology , Actins/genetics , Actins/metabolism , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line , Cell Membrane/ultrastructure , Cholesterol/deficiency , Cytoskeleton/drug effects , Cytoskeleton/ultrastructure , Exocytosis/drug effects , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression , Lysosomes/classification , Membrane Fluidity/drug effects , Mice , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Synaptotagmins/antagonists & inhibitors , Synaptotagmins/genetics , Synaptotagmins/metabolism , Thiazolidines/pharmacology , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism
4.
Invest Ophthalmol Vis Sci ; 53(8): 4720-9, 2012 Jul 12.
Article in English | MEDLINE | ID: mdl-22695963

ABSTRACT

PURPOSE: Bone marrow mononuclear cells (BMMCs) have been used with considerable success to improve regeneration and/or functional recovery in animal models of neurologic diseases. Injected into the host, they migrate to the damaged areas and release cytokines and/or trophic factors, which are capable of altering the genetic program of the injured tissue cells. In this study, there was a search for genes with altered expression in a model of optic nerve crush and cell therapy. METHODS: Optic nerve crush was followed by an intravitreous injection of BMMCs or vehicle in adult rats. After 14 days, we obtained a transcriptome screening of the retinas using differential display and automatic sequencing, followed by q-PCR, Western blot, and immunohistochemistry of selected genes and proteins. RESULTS: Among the differentially displayed genes, transcription of the antiapoptotic Tax1-binding protein 1 (Tax1BP1) and Synaptotagmin IV (Syt IV), an immediate early gene, is increased in the treated group. Tax1BP1 expression is robust in the ganglion cell layer and is significantly increased by cell therapy. Syt IV is expressed by activated Müller cells and astrocytes in the retina and optic nerve, without changes in protein levels among the groups. CONCLUSIONS: Tax1BP1 and Syt IV transcription and/or expression are differently modulated by optic nerve crush and BMMC treatment, and might be related to neuronal damage and cell-therapy effects in the retina. The increased expression of Tax1BP1 in the treated eyes could be involved in the neuroprotective effects of BMMCs that were described previously by our group.


Subject(s)
Bone Marrow Cells/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Nerve Crush , Optic Nerve Injuries/metabolism , Synaptotagmins/metabolism , Animals , Apoptosis Regulatory Proteins , Blotting, Western , Disease Models, Animal , Neoplasm Proteins/metabolism , Optic Nerve/metabolism , Polymerase Chain Reaction/methods , Rats , Retina/metabolism , Retinal Ganglion Cells/metabolism
5.
Redox Rep ; 16(4): 173-80, 2011.
Article in English | MEDLINE | ID: mdl-21888768

ABSTRACT

OBJECTIVES: Reactive oxygen species (ROS) are involved in many physiological and pathological processes. In the present study, we analysed whether the synthetic glucocorticoid dexamethasone induces oxidative stress in cultured pancreatic islets and whether the effects of dexamethasone on insulin secretion, gene expression, and viability can be counteracted by concomitant incubation with N-acetylcysteine (NAC). METHODS: ROS production was measured by dichlorofluorescein (DCFH-DA) assay, insulin secretion by radioimmunoassay, intracellular calcium dynamics by fura-2-based fluorescence, gene expression by real-time polymerase chain reaction analyses and cell viability by the MTS assay. RESULTS: Dexamethasone (Dexa) increased ROS production and decreased glucose-stimulated insulin secretion after 72 hours incubation. Intracellular ROS levels were decreased and the insulin secretion capacity was recovered by concomitant treatment with Dexa+NAC. The total insulin content and intracellular Ca2+ levels were not modulated in either Dexa or Dexa+NAC groups. There was a decrease in the NAD(P)H production, used as an indicator of viability, after dexamethasone treatment. Concomitant incubation with NAC returned viability to control levels. Dexa also decreased synaptotagmin VII (SYT VII) gene expression. In contrast, the Dexa+NAC group demonstrated an increased expression of SYT VII compared to controls. Surprisingly, treatment with NAC decreased the gene expression of the antioxidant enzyme copper zinc superoxide dismutase soluble. DISCUSSION: Our results indicate that dexamethasone increases ROS production, decreases viability, and impairs insulin secretion in pancreatic rat islets. These effects can be counteracted by NAC, which not only decreases ROS levels but also modulates the expression of genes involved in the secretory pathway and those coding for antioxidant enzymes.


Subject(s)
Acetylcysteine/pharmacology , Dexamethasone/antagonists & inhibitors , Glucocorticoids/antagonists & inhibitors , Insulin/metabolism , Islets of Langerhans/drug effects , Protective Agents/pharmacology , Reactive Oxygen Species/metabolism , Animals , Cell Survival/drug effects , Cells, Cultured , Dexamethasone/toxicity , Free Radical Scavengers/pharmacology , Free Radicals/metabolism , Glucocorticoids/toxicity , Insulin Secretion , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Rats, Wistar , Synaptotagmins/drug effects , Synaptotagmins/metabolism
6.
J Biol Chem ; 285(34): 26269-78, 2010 Aug 20.
Article in English | MEDLINE | ID: mdl-20551332

ABSTRACT

Regulated secretion is a fundamental process underlying the function of many cell types. In particular, acrosomal exocytosis in mammalian sperm is essential for egg fertilization. In general, exocytosis is initiated by a cytosolic calcium increase. In this report we show that calcium affects several factors during human sperm acrosomal exocytosis. By using an antibody that specifically recognizes synaptotagmin VI phosphorylated at the polybasic region of the C2B domain, we showed that a calcium-dependent dephosphorylation of this protein occurred at early stages of the acrosomal exocytosis in streptolysin O-permeabilized sperm. We identified the phosphatase as calcineurin and showed that the activity of this enzyme is absolutely required during the early steps of the secretory process. When added to sperm, an inhibitor-insensitive, catalytically active domain of calcineurin was able to rescue the effect of the specific calcineurin inhibitor cyclosporin A. This same domain dephosphorylated recombinant synaptotagmin VI C2B domain, validating this protein as a new substrate for calcineurin. When sperm were treated with catalytically active calcineurin before stimulation, exocytosis was inhibited, an effect that was rescued by the phosphomimetic synaptotagmin VI C2B-T418E,T419E mutant domain. These observations indicate that synaptotagmin must be dephosphorylated at a specific window of time and suggest that phosphorylated synaptotagmin has an active role at early stages of the acrosomal exocytosis.


Subject(s)
Acrosome/physiology , Calcineurin/metabolism , Exocytosis , Synaptotagmins/metabolism , Humans , Male , Mutation , Phosphorylation/physiology , Protein Structure, Tertiary , Spermatozoa/metabolism , Synaptotagmins/genetics , Time Factors
7.
Neuroscience ; 163(1): 180-9, 2009 Sep 29.
Article in English | MEDLINE | ID: mdl-19524025

ABSTRACT

Sympathetic preganglionic neurons (SPN) coexpress the acetylcholine (ACh)-synthesizing enzyme choline acetyltransferase and different peptides in their cell bodies, but can express them independently in separate varicosities, indicating that SPN segregate transmitters to different synapses. Consequently, there are populations of preganglionic varicosities (peptidergic and noncholinergic) that store peptides but not ACh. We studied in the cell bodies and axon processes of the rat SPN the expression and the proportional coexpression of the vesicular ACh transporter-like immunoreactivity (VAChT), a specific marker of cholinergic synaptic vesicles or ChAT-like immunoreactivity (ChAT), and the peptide methionine enkephalin-like immunoreactivity (mENK), and confirmed the presence of a population of SPN peptidergic, noncholinergic varicosities. We characterized these varicosities by exploring the occurrence of synaptophysin-like immunoreactivity (Syn), a marker of small clear vesicles, and synaptotagmin-like immunoreactivity (Syt), a preferential marker of large dense core vesicles. We found that (i) VAChT and mENK, like ChAT-mENK, were coexpressed in only 59% of the mENK-containing varicosities, although they colocalized in the SPN cell bodies; and (ii) almost 60% of the population of mENK-containing varicosities did not express Syn or Syt, and over 80% of the mENK-containing varicosities negative for VAChT also lacked Syn. These data prove that SPN segregate mENK from VAChT and ChAT, and show that most of the subset of mENKergic varicosities negative for VAChT also does not express Syn, suggesting the presence of a different vesicular pattern in these sympathetic preganglionic varicosities.


Subject(s)
Acetylcholine/metabolism , Choline O-Acetyltransferase/metabolism , Enkephalin, Methionine/metabolism , Ganglia, Sympathetic/metabolism , Presynaptic Terminals/metabolism , Vesicular Acetylcholine Transport Proteins/metabolism , Animals , Ganglia, Sympathetic/ultrastructure , Immunohistochemistry , Male , Presynaptic Terminals/ultrastructure , Rats , Rats, Wistar , Synaptic Transmission/physiology , Synaptophysin/metabolism , Synaptotagmins/metabolism
8.
J Biol Chem ; 282(36): 26335-43, 2007 Sep 07.
Article in English | MEDLINE | ID: mdl-17613520

ABSTRACT

Regulated secretion is a fundamental process underlying the function of many cell types. In particular, acrosomal exocytosis in mammalian sperm is essential for egg fertilization. Regulated secretion requires SNARE proteins and, in neurons, also synaptotagmin I and complexin. Recent reports suggest that complexin imposes a fusion block that is released by Ca(2+) and synaptotagmin I. However, no direct evidence for this model in secreting cells has been provided and whether this complexin/synaptotagmin interplay functions in other types of secretion is unknown. In this report, we show that the C2B domain of synaptotagmin VI and an anti-complexin antibody blocked the formation of trans SNARE complexes in permeabilized human sperm, and that this effect was reversed by adding complexin. In contrast, an excess of complexin stopped exocytosis at a later step, when SNAREs were assembled in loose trans complexes. Interestingly, this blockage was released by the addition of the synaptotagmin VI C2B domain in the presence of Ca(2+). We have previously demonstrated that the activity of this domain is regulated by protein kinase C-mediated phosphorylation. Here, we show that a phosphomimetic mutation in the polybasic region of the C2B domain strongly affects its Ca(2+) and phospholipids binding properties. Importantly, this mutation completely abrogates its ability to rescue the complexin block. Our results show that the functional interplay between complexin and synaptotagmin has a central role in a physiological secretion event, and that this interplay can be modulated by phosphorylation of the C2B domain.


Subject(s)
Acrosome/metabolism , Exocytosis/physiology , Nerve Tissue Proteins/metabolism , Synaptotagmin I/metabolism , Synaptotagmins/metabolism , Adaptor Proteins, Vesicular Transport , Animals , Calcium/metabolism , Exocytosis/drug effects , Fertilization/physiology , Humans , Male , Nerve Tissue Proteins/pharmacology , Phosphorylation/drug effects , Protein Binding/physiology , Protein Structure, Tertiary/physiology , Rats , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Synaptotagmin I/pharmacology , Synaptotagmins/pharmacology
9.
Neurochem Int ; 50(2): 356-64, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17092608

ABSTRACT

Trafficking of the vesicular acetylcholine transporter (VAChT) to synaptic vesicles has the potential to regulate storage and release of acetylcholine. We used the C-terminal tail of the vesicular acetylcholine transporter as bait for the screening of a brain cDNA library by yeast-two hybrids. Here we report an interaction uncovered in this screening with SEC14L1, a mammalian SEC14-like protein that may function as a phospholipid transfer protein. The interaction of VAChT and SEC14L1 occurred through the GOLD domain found in the latter and was confirmed in mammalian cells. In addition, we also found that SEC14L1 co-immunoprecipitates with the high affinity choline transporter (CHT1), but not with synaptophysin or synaptotagmin. In cultured cells SEC14L1 was predominantly found in the cytosol with little or no localization in defined organelles. In contrast, overexpression of VAChT or CHT1 with SEC14L1 recruited the latter to large intracellular organelles similar to vesicles or vesicle aggregates. Finally, we find that overexpression of SEC14L1 modestly decreases high affinity choline transport activity. We suggest that interaction of cholinergic transporters with proteins containing the GOLD domain may be relevant for transporter function.


Subject(s)
Carrier Proteins/metabolism , Lipoproteins/metabolism , Trans-Activators/metabolism , Vesicular Acetylcholine Transport Proteins/metabolism , Amino Acid Sequence , Animals , Brain Chemistry/genetics , Cation Transport Proteins/metabolism , Cell Line , Cells, Cultured , Choline/metabolism , Cloning, Molecular , Cytosol/metabolism , DNA, Complementary/genetics , Fluorescent Antibody Technique , Gene Library , Humans , Immunoprecipitation , Microscopy, Confocal , Molecular Sequence Data , PC12 Cells , Phospholipid Transfer Proteins/metabolism , Plasmids/genetics , Rats , Reverse Transcriptase Polymerase Chain Reaction , Synaptic Transmission/physiology , Synaptophysin/metabolism , Synaptotagmins/metabolism , Transfection
10.
Biol Res ; 39(3): 555-66, 2006.
Article in English | MEDLINE | ID: mdl-17106586

ABSTRACT

During pregnancy and the perinatal period of life, prolactin (PRL) and other lactogenic substances induce adaptation and maturation of the stimulus-secretion coupling system in pancreatic beta-cells. Since the SNARE molecules, SNAP-25, syntaxin 1, VAMP-2, and synaptotagmins participate in insulin secretion, we investigated whether the improved secretory response to glucose during these periods involves alteration in the expression of these proteins. mRNA was extracted from neonatal rat islets cultured for 5 days in the presence of PRL and from pregnant rats (17th-18th days of pregnancy) and reverse transcribed. The expression of genes was analyzed by semi-quantitative RT-PCR assay. The expression of proteins was analyzed by Western blotting and confocal microscopy. Transcription and expression of all SNARE genes and proteins were increased in islets from pregnant and PRL-treated neonatal rats when compared with controls. The only exception was VAMP-2 production in islets from pregnant rats. Increased mRNA and protein expression of synaptotagmin IV, but not the isoform I, also was observed in islets from pregnant and PRL-treated rats. This effect was not inhibited by wortmannin or PD098059, inhibitors of the PI3-kinase and MAPK pathways, respectively. As revealed by confocal laser microscopy, both syntaxin 1A and synaptotagmin IV were immunolocated in islet cells, including the insulin-containing cells. These results indicate that PRL modulates the final steps of insulin secretion by increasing the expression of proteins involved in membrane fusion.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Insulin/metabolism , Islets of Langerhans/metabolism , Prolactin/pharmacology , SNARE Proteins/genetics , Synaptotagmins/genetics , Animals , Animals, Newborn , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Female , Gene Expression Regulation, Developmental/drug effects , Immunoblotting , Immunochemistry , Insulin/genetics , Insulin Secretion , Islets of Langerhans/drug effects , Islets of Langerhans/embryology , Microscopy, Confocal , Pregnancy , RNA, Messenger/analysis , Rats , Reverse Transcriptase Polymerase Chain Reaction , SNARE Proteins/metabolism , Synaptosomal-Associated Protein 25/genetics , Synaptosomal-Associated Protein 25/metabolism , Synaptotagmins/metabolism , Syntaxin 1/genetics , Syntaxin 1/metabolism , Vesicle-Associated Membrane Protein 2/genetics , Vesicle-Associated Membrane Protein 2/metabolism
11.
Brain Res ; 1100(1): 93-103, 2006 Jul 19.
Article in English | MEDLINE | ID: mdl-16765327

ABSTRACT

An immunohistochemical analysis of brain subcortical white matter astroglia from human (infant, adult) and adult monkey (Cebus apella, Macaca nemestrina) cases without any known neurological disease, is described. Expression of synaptic vesicle-associated proteins, excitatory amino acid transporters (EAAT1 and EAAT2) and GABAA Ralpha2 receptor produced coarse punctate labeling in human adult white matter astrocytes. A finer, generalized, punctate labeling was observed in human infants and adult C. apella monkeys. Labeling of neuronal somata and processes with microtubule-associated proteins (MAP2a-c) and neuron nuclear (NeuN) antibodies, was also observed in subcortical white matter of humans and monkeys. Results suggest competence of subcortical white matter astroglia of the primate brain to participate in various transmitter regulatory pathways. It is also proposed that, collectively with resident neurons, they may exert some role in affecting the transfer of information that takes place through the various associational and projecting fiber systems coursing through this brain compartment.


Subject(s)
Astrocytes/metabolism , Brain/cytology , Neurons/physiology , Primates/physiology , Aged , Animals , Biomarkers , Cebus , Connexin 43 , Glial Fibrillary Acidic Protein/metabolism , Glutamate Synthase/metabolism , Humans , Immunohistochemistry , Macaca fascicularis , Microtubule-Associated Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neural Pathways/physiology , Neuropeptide Y/metabolism , Neurotransmitter Agents/metabolism , Synapsins/metabolism , Synaptic Vesicles/metabolism , Synaptophysin/metabolism , Synaptotagmins/metabolism
12.
Biol. Res ; 39(3): 555-566, 2006. ilus, tab
Article in English | LILACS | ID: lil-437387

ABSTRACT

During pregnancy and the perinatal period of life, prolactin (PRL) and other lactogenic substances induce adaptation and maturation of the stimulus-secretion coupling system in pancreatic â-cells. Since the SNARE molecules, SNAP-25, syntaxin 1, VAMP-2, and synaptotagmins participate in insulin secretion, we investigated whether the improved secretory response to glucose during these periods involves alteration in the expression of these proteins. mRNA was extracted from neonatal rat islets cultured for 5 days in the presence of PRL and from pregnant rats (17th-18th days of pregnancy) and reverse transcribed. The expression of genes was analyzed by semi-quantitative RT-PCR assay. The expression of proteins was analyzed by Western blotting and confocal microscopy. Transcription and expression of all SNARE genes and proteins were increased in islets from pregnant and PRL-treated neonatal rats when compared with controls. The only exception was VAMP-2 production in islets from pregnant rats. Increased mRNA and protein expression of synaptotagmin IV, but not the isoform I, also was observed in islets from pregnant and PRL-treated rats. This effect was not inhibited by wortmannin or PD098059, inhibitors of the PI3-kinase and MAPK pathways, respectively. As revealed by confocal laser microscopy, both syntaxin 1A and synaptotagmin IV were immunolocated in islet cells, including the insulin-containing cells. These results indicate that PRL modulates the final steps of insulin secretion by increasing the expression of proteins involved in membrane fusion.


Subject(s)
Animals , Female , Pregnancy , Rats , Gene Expression Regulation, Developmental/genetics , Insulin , Islets of Langerhans , Prolactin/pharmacology , SNARE Proteins/genetics , Synaptotagmins/genetics , Animals, Newborn , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Gene Expression Regulation, Developmental/drug effects , Immunoblotting , Immunochemistry , Insulin/genetics , Islets of Langerhans/drug effects , Islets of Langerhans/embryology , Microscopy, Confocal , Reverse Transcriptase Polymerase Chain Reaction , RNA, Messenger/analysis , SNARE Proteins/metabolism , /genetics , /metabolism , Synaptotagmins/metabolism , Syntaxin 1/genetics , Syntaxin 1/metabolism , /genetics , /metabolism
13.
Dev Biol ; 285(2): 422-35, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16111671

ABSTRACT

We have previously reported that synaptotagmin VI is present in human sperm cells and that a recombinant protein containing the C2A and C2B domains abrogates acrosomal exocytosis in permeabilized spermatozoa, an effect that was regulated by phosphorylation. In this report, we show that each individual C2 domain blocks acrosomal exocytosis. The inhibitory effect was completely abrogated by phosphorylation of the domains with purified PKCbetaII. We found by site-directed mutagenesis that Thr418 and/or Thr419 in the polybasic region (KKKTTIK) of the C2B domain--a key region for the function of synaptotagmins--are the PKC target that regulates its inhibitory effect on acrosomal exocytosis. Similarly, we showed that Thr284 in the polybasic region of C2A (KCKLQTR) is the target for PKC-mediated phosphorylation in this domain. An antibody that specifically binds to the phosphorylated polybasic region of the C2B domain recognized endogenous phosphorylated synaptotagmin in the sperm acrosomal region. The antibody was inhibitory only at early stages of exocytosis in sperm acrosome reaction assays, and the immunolabeling decreased upon sperm stimulation, indicating that the protein is dephosphorylated during acrosomal exocytosis. Our results indicate that acrosomal exocytosis is regulated through the PKC-mediated phosphorylation of conserved threonines in the polybasic regions of synaptotagmin VI.


Subject(s)
Acrosome/physiology , Exocytosis/physiology , Models, Biological , Protein Kinase C/metabolism , Synaptotagmins/metabolism , Acrosome/metabolism , Amino Acid Sequence , Analysis of Variance , DNA Primers , Fluorescent Antibody Technique, Indirect , Humans , Male , Molecular Sequence Data , Mutagenesis, Site-Directed , Phosphorylation , Protein Kinase C/genetics , Protein Kinase C beta , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL