Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 532
Filter
1.
Sci Rep ; 14(1): 20358, 2024 09 02.
Article in English | MEDLINE | ID: mdl-39223192

ABSTRACT

Follicular helper and regulatory T cells (Tfh/TFR) cells are distinct subsets of CD4+ cells that have been recognized for their critical role in regulating cellular reactions within the germinal centers of lymphoid follicles. In the present study, we aimed to determine the presence and the frequency of these cells in draining lymph nodes of patients with bladder cancer (BC). Forty-six patients with BC who had undergone radical cystectomy and pelvic lymph node dissection were enrolled. Following routine pathological examination, a portion of the dissected lymph nodes was minced to obtain a single-cell suspension. Mononuclear cells were then separated using Ficoll-Hypaque gradient centrifugation, and the samples with proper viability (> 95%) were subjected to further analysis. To phenotype the follicular subsets, cells were stained with appropriate fluorochrome-conjugated antibodies specific for CD4, CXCR5, BCL6, and FOXP3. The cells were then acquired on a four-color flow cytometer. The data were analyzed with the FlowJo software version 10.8.1 package. Our analysis indicated that, on average 37.89 ± 16.36% of CD4+ lymphocytes in draining lymph nodes of patients with BC expressed CXCR5. The majority of them were negative for FOXP3, representing helper subsets (28.73 ± 13.66). A small percent simultaneously expressed BCL6 transcription factor (1.65% ± 1.35), designated as Tfh (CD4+BCL6+CXCR5+FOXP3-). While less than 10% of CD4+ lymphocytes expressed CXCR5 and FOXP3, 1.78 ± 2.54 were also positive for BCL6, known as TFR. Statistical analysis revealed that the frequency of both Tfh and TFR cells was higher in draining lymph nodes of patients with tumor-infiltrated nodes (P = 0.035 and P = 0.079, respectively) compared to those with negative ones. The percentage of these cells was also higher in high-grade tumors compared to low-grade ones (P = 0.031 for both). Our data collectively indicated that however approximately one third of CD4+ lymphocytes expressed CXCR5 and accordingly had the capacity to enter the follicles, less than 2% of them represented Tfh and TFR phenotypes. The percentage of these cells increased in progressed tumors and showed an association with negative prognostic factors.


Subject(s)
Lymph Nodes , T-Lymphocytes, Regulatory , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/pathology , Humans , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Male , Female , Lymph Nodes/pathology , Lymph Nodes/immunology , Prognosis , Middle Aged , Aged , T Follicular Helper Cells/immunology , T Follicular Helper Cells/metabolism , Receptors, CXCR5/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Adult , Proto-Oncogene Proteins c-bcl-6/metabolism
2.
Cancer Immunol Immunother ; 73(10): 187, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093451

ABSTRACT

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) typically present with a complex anatomical distribution, often accompanied by insidious symptoms. This combination contributes to its high incidence and poor prognosis. It is now understood that the immune features of cellular components within the tumor ecosystem and their complex interactions are critical factors influencing both tumor progression and the effective immune response. METHODS: We obtained single-cell RNA sequencing data of 26,496 cells from three tumor tissues and five normal tissues and performed subsequent analyses. Immunohistochemical staining on tumor sections was used to validate the presence of malignant cells. Additionally, we included bulk RNA sequencing data from 502 HNSCC patients. Kaplan-Meier analysis and the log-rank test were employed to assess predictors of patient outcomes. RESULTS: We identified three epithelial subclusters exhibiting immune-related features. These subclusters promoted the infiltration of T cells, dendritic cells, and monocytes into the tumor microenvironment. Additionally, cancer-associated fibroblasts displayed tumor-promoting and angiogenesis characteristics, contrasting with the predominant antigen-presenting and inflammatory roles observed in fibroblasts from normal tissues. Furthermore, tumor endothelial subsets exhibited a double-sided effect, promoting tumor progression and enhancing the effectiveness of immune response. Finally, follicular helper T cells and T helper 17 cells were found to be significantly correlated with improved outcomes in HNSCC patients. These CD4+ T cell subpopulations could promote the anti-tumor immune response by recruiting and activating B and T cells. CONCLUSION: Our findings provide deeper insights into the immune features of the tumor ecosystem and reveal the prognostic significance of follicular helper T cells and T helper 17 cells. These findings may pave the way for the development of therapeutic approaches.


Subject(s)
Head and Neck Neoplasms , Lymphocytes, Tumor-Infiltrating , Single-Cell Gene Expression Analysis , Squamous Cell Carcinoma of Head and Neck , Th17 Cells , Tumor Microenvironment , Female , Humans , Male , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Prognosis , RNA-Seq/methods , Single-Cell Gene Expression Analysis/methods , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , T Follicular Helper Cells/immunology , Th17 Cells/immunology , Tumor Microenvironment/immunology
3.
Adv Clin Exp Med ; 33(8): 889-899, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39194161

ABSTRACT

BACKGROUND: T follicular helper (Tfh) cells drive humoral immunity by facilitating B cell responses, but the functional role of Tfh cells in the pathogenesis of idiopathic membranous nephropathy (IMN) remains unclear. OBJECTIVES: This study aimed to establish a rat experimental membranous nephropathy model, investigate the phenotypic characteristics of Tfh cells, and analyze a clinically significant correlation between Tfh cells. MATERIAL AND METHODS: Passive Heymann nephritis (PHN) rats were induced by immunizing Sprague Dawley rats with anti-Fx1A serum. The frequency of Tfh and B cell subsets was analyzed with flow cytometry (FC). The serum concentration of interleukin-21 (IL-21), the relative mRNA expression levels of IL-21 and B cell lymphoma 6 (Bcl-6) in spleen mononuclear cells (MNCs), and the kidney infiltration of CD4+ T cells and IL-21 were assessed. The potential correlations among these measures were analyzed. RESULTS: In comparison with the control group, significantly increased percentages of Tfh cells, inducible T cell co-stimulator-positive (ICOS+) Tfh cells, and mRNA expression of Bcl-6 were detected in the spleen of PHN rats. Elevated IL-21 expression was detected in the serum and kidneys. Remarkably, the percentage of splenic ICOS+ Tfh cells was positively correlated with 24 h urine protein concentrations (r = 0.676, p = 0.011) in PHN rats. CONCLUSION: These data indicate that ICOS+ Tfh cells contribute to development of IMN, and they might be potential therapeutic targets for IMN.


Subject(s)
Disease Models, Animal , Disease Progression , Glomerulonephritis, Membranous , Interleukins , Proto-Oncogene Proteins c-bcl-6 , Rats, Sprague-Dawley , T Follicular Helper Cells , Animals , Glomerulonephritis, Membranous/immunology , Glomerulonephritis, Membranous/pathology , Glomerulonephritis, Membranous/blood , T Follicular Helper Cells/immunology , T Follicular Helper Cells/metabolism , Rats , Interleukins/blood , Interleukins/metabolism , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Male , Spleen/immunology , Spleen/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism
5.
Nat Immunol ; 25(9): 1742-1753, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39164477

ABSTRACT

The differentiation and specificity of human CD4+ T follicular helper cells (TFH cells) after influenza vaccination have been poorly defined. Here we profiled blood and draining lymph node (LN) samples from human volunteers for over 2 years after two influenza vaccines were administered 1 year apart to define the evolution of the CD4+ TFH cell response. The first vaccination induced an increase in the frequency of circulating TFH (cTFH) and LN TFH cells at week 1 postvaccination. This increase was transient for cTFH cells, whereas the LN TFH cells further expanded during week 2 and remained elevated in frequency for at least 3 months. We observed several distinct subsets of TFH cells in the LN, including pre-TFH cells, memory TFH cells, germinal center (GC) TFH cells and interleukin-10+ TFH cell subsets beginning at baseline and at all time points postvaccination. The shift toward a GC TFH cell phenotype occurred with faster kinetics after the second vaccine compared to the first vaccine. We identified several influenza-specific TFH cell clonal lineages, including multiple responses targeting internal influenza virus proteins, and found that each TFH cell state was attainable within a clonal lineage. Thus, human TFH cells form a durable and dynamic multitissue network.


Subject(s)
Cell Differentiation , Germinal Center , Influenza Vaccines , Influenza, Human , T Follicular Helper Cells , Vaccination , Humans , Influenza Vaccines/immunology , T Follicular Helper Cells/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Germinal Center/immunology , Cell Differentiation/immunology , Lymph Nodes/immunology , Adult , Female , Male , Middle Aged , Interleukin-10/immunology , Interleukin-10/metabolism , Immunologic Memory/immunology , T-Lymphocytes, Helper-Inducer/immunology , Young Adult
6.
Immunol Lett ; 269: 106905, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39103125

ABSTRACT

OBJECTIVE: We focused to analyze the time-course changes at pre- and post-flare of T peripheral helper (Tph) cells and circulating T follicular helper (Tfh) cells in the blood of patients with systemic lupus erythematosus (SLE) with lupus low disease activity state (LLDAS) before flare. METHODS: This study included inactive (n = 29) and active (n = 55) patients with SLE. Tph subsets, Tfh subsets, CD11chi B cells, and plasma cells in the blood were determined by flow cytometry. The blood levels of cytokines including interferons (IFNs) were measured by electrochemiluminescence assay or cytokine beads array. RESULTS: Active SLE patients exhibited the increased frequency of Tph1, Tph2, Tfh1, and Tfh2 subsets when compared to inactive patients, but no clear changes in the other subsets. During the treatment with medications, Tph1, Tph2, and Tfh2 subsets were significantly reduced along with disease activity and Tph1 and Tph2 subsets were positively correlated with SLE disease activity index (SLEDAI). The time course analysis of patients at pre- and post-flare revealed that in the patients at LLDAS before flare, Tph subsets and Tfh subsets were relatively low levels. At the flare, Tph cells, particularly Tph1 and Tph2 subsets, were increased and correlated with SLEDAI. Furthermore, the blood levels of IFN-α2a, IFN-γ, and IFN-λ1 were low in the patients with LLDAS before flare but these IFNs, particularly IFN-λ1, were increased along with flare. CONCLUSION: Increased frequency of Tph1 and Tph2 subsets and elevated levels of serum IFN-λ1 are presumably critical for triggering of flare in SLE.


Subject(s)
Lupus Erythematosus, Systemic , T Follicular Helper Cells , T-Lymphocytes, Helper-Inducer , Humans , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/blood , Female , Adult , Male , Middle Aged , T Follicular Helper Cells/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Longitudinal Studies , Cytokines/blood , Cytokines/metabolism , Biomarkers/blood , Severity of Illness Index , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Young Adult
7.
J Infect Dis ; 230(1): 28-37, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052730

ABSTRACT

Regulatory T (Treg) cells are involved in the antiviral immune response in patients with coronavirus disease 2019 (COVID-19); however, whether Treg cells are involved in the neutralizing antibody (nAb) response remains unclear. Here, we found that individuals who recovered from mild but not severe COVID-19 had significantly greater frequencies of Treg cells and lower frequencies of CXCR3+ circulating T follicular helper (cTfh) cells than healthy controls. Furthermore, the frequencies of Treg and CXCR3+ cTfh cells were negatively and positively correlated with the nAb responses, respectively, and Treg cells was inversely associated with CXCR3+ cTfh cells in individuals who recovered from mild COVID-19 but not in those with severe disease. Mechanistically, Treg cells inhibited memory B-cell differentiation and antibody production by limiting the activation and proliferation of cTfh cells, especially CXCR3+ cTfh cells, and functional molecule expression. This study provides novel insight showing that mild COVID-19 elicits concerted nAb responses, which are shaped by both Treg and Tfh cells.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Receptors, CXCR3 , T Follicular Helper Cells , T-Lymphocytes, Regulatory , Adult , Aged , Female , Humans , Male , Middle Aged , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , Memory B Cells/immunology , Receptors, CXCR3/metabolism , Receptors, CXCR3/immunology , T Follicular Helper Cells/immunology , T-Lymphocytes, Regulatory/immunology
8.
Front Immunol ; 15: 1397098, 2024.
Article in English | MEDLINE | ID: mdl-39044830

ABSTRACT

Background: Follicular helper T cells (Tfh) are pivotal in B cell responses. Activation of the purinergic receptor P2X7 on Tfh cells regulates their activity. We investigated the ATP-P2X7R axis in circulating Tfh (cTfh) cells during Respiratory Syncytial Virus (RSV) infection. Methods: We analyzed two cohorts: children with RSV infection (moderate, n=30; severe, n=21) and healthy children (n=23). We utilized ELISA to quantify the levels of PreF RSV protein-specific IgG antibodies, IL-21 cytokine, and soluble P2X7R (sP2X7R) in both plasma and nasopharyngeal aspirates (NPA). Additionally, luminometry was employed to determine ATP levels in plasma, NPA and supernatant culture. The frequency of cTfh cells, P2X7R expression, and plasmablasts were assessed by flow cytometry. To evaluate apoptosis, proliferation, and IL-21 production by cTfh cells, we cultured PBMCs in the presence of Bz-ATP and/or P2X7R antagonist (KN-62) and a flow cytometry analysis was performed. Results: In children with severe RSV disease, we observed diminished titers of neutralizing anti-PreF IgG antibodies. Additionally, severe infections, compared to moderate cases, were associated with fewer cTfh cells and reduced plasma levels of IL-21. Our investigation revealed dysregulation in the ATP-P2X7R pathway during RSV infection. This was characterized by elevated ATP levels in both plasma and NPA samples, increased expression of P2X7R on cTfh cells, lower levels of sP2X7R, and heightened ATP release from PBMCs upon stimulation, particularly evident in severe cases. Importantly, ATP exposure decreased cTfh proliferative response and IL-21 production, while promoting their apoptosis. The P2X7R antagonist KN-62 mitigated these effects. Furthermore, disease severity positively correlated with ATP levels in plasma and NPA samples and inversely correlated with cTfh frequency. Conclusion: Our findings indicate that activation of the ATP-P2X7R pathway during RSV infection may contribute to limiting the cTfh cell compartment by promoting cell death and dysfunction, ultimately leading to increased disease severity.


Subject(s)
Adenosine Triphosphate , Receptors, Purinergic P2X7 , Respiratory Syncytial Virus Infections , T Follicular Helper Cells , Humans , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/metabolism , Receptors, Purinergic P2X7/metabolism , Adenosine Triphosphate/metabolism , Male , Infant , Female , T Follicular Helper Cells/immunology , T Follicular Helper Cells/metabolism , Child, Preschool , Signal Transduction , Interleukins/metabolism , Interleukins/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Child , Respiratory Syncytial Virus, Human/immunology
9.
Clin Immunol ; 266: 110329, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39067679

ABSTRACT

Overwhelming evidence has shown that aging is a significant risk factor for COVID-19-related hospitalizations, death and other adverse health outcomes. Particular T cell subsets that susceptible to aging and associated with COVID-19 disease severity requires further elucidation. Our study recruited 57 elderly patients with acute COVID-19 and 27 convalescent donors. Adaptive immunity was assessed across the COVID-19 severity spectrum. Patients underwent age-dependent CD4+ T lymphopenia, preferential loss of circulating T follicular regulatory cells (cTfh) subsets including cTfh-em, cTfh-cm, cTfh1, cTfh2, cTfh17 and circulating T follicular regulatory cells (cTfr), which regulated antibody production through different pathways and correlated with COVID-19 severity, were observed. Moreover, vaccination improved cTfh-cm, cTfh2, cTfr proportion and promoted NAb production. In conclusion, the elderly had gone through age-dependent cTfh subsets deficiency, which impeded NAb production and enabled aggravation of COVID-19 to critical illness, whereas SARS-CoV-2 vaccine inoculation helped to rejuvenate cTfh, cTfr and intensify NAb responses.


Subject(s)
COVID-19 , SARS-CoV-2 , Severity of Illness Index , T Follicular Helper Cells , Humans , COVID-19/immunology , Aged , Male , Female , SARS-CoV-2/immunology , T Follicular Helper Cells/immunology , Aged, 80 and over , Aging/immunology , T-Lymphocytes, Regulatory/immunology , Middle Aged , COVID-19 Vaccines/immunology , Age Factors , Antibodies, Viral/blood , Antibodies, Viral/immunology , Adaptive Immunity/immunology
10.
Arch Pharm Res ; 47(7): 632-644, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38977652

ABSTRACT

Systemic lupus erythematosus (SLE) is a common autoimmune disease, and its pathogenesis mainly involves the aberrant activation of B cells through follicular helper T (Tfh) cells to produce pathogenic antibodies, which requires more effective and safe treatment methods. Dihydroartemisinin (DHA) is the main active ingredient of artemisinin and has immunosuppressive effects. In this study, in vitro experiments confirmed that DHA inhibited Tfh cell induction and weakened its auxiliary function in B cell differentiation; furthermore, DHA directly inhibited B cell activation, differentiation, and antibody production. Furthermore, a mouse model of SLE was established, and we confirmed that DHA significantly reduced the symptoms of SLE and lupus nephritis, and decreased serum immunoglobulin (Ig)G, IgM, IgA, and anti-dsDNA levels. Moreover, DHA reduced the frequencies of total Tfh cells, activated Tfh cells, and B cell lymphoma 6, and interleukin (IL)-21 levels in Tfh cells from the spleen and lymph nodes, as well as the levels of B cells, germinal center B cells, and plasma cells in the spleen, lymph nodes, and kidneys. Additionally, DHA inhibited Tfh cells by blocking IL-2-inducible T cell kinase (ITK) signaling and its downstream nuclear factor (NF)-κB, nuclear factor of activated T cell, and activating protein-1 pathways, and directly inhibited B cells by blocking Bruton's tyrosine kinase (BTK) signaling and the downstream NF-κB and Myc pathways. Overall, our results demonstrated that DHA inhibited Tfh cells by blocking ITK signaling and also directly inhibited B cells by blocking BTK signaling. Therefore, reducing the production of pathogenic antibodies might effectively treat SLE.


Subject(s)
Artemisinins , B-Lymphocytes , Lupus Erythematosus, Systemic , Artemisinins/pharmacology , Animals , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Mice , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Female , T Follicular Helper Cells/immunology , T Follicular Helper Cells/drug effects , T Follicular Helper Cells/metabolism , Disease Models, Animal , Cell Differentiation/drug effects
11.
Transpl Immunol ; 86: 102095, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39038741

ABSTRACT

Renal transplantation is the preferred treatment option for patients with end-stage renal disease (ESRD) in a clinical setting. Antibody mediated rejection (AMR) is one of the leading causes of graft dysfunction. To address the current shortcomings in the early diagnosis and treatment of AMR in clinical practice, this article analyzes the distribution of different circulating T follicular helper (cTfh) cell subtypes and B cell subpopulations in peripheral blood and detects the cytokine levels of chemokine ligand 13 (CXCL13), interleukin-21 (IL-21), and interleukin-4 (IL-4) related to cTfh cells in peripheral blood of kidney transplant recipients. Moreover, we also explore the correlation between cTfh cells, peripheral blood memory B cells, and AMR, their value as early predictive indicators of AMR, and explore potential therapeutic targets for AMR patients. Our results indicate that the proportion of cTfh cells increased at the onset of AMR, which plays an important role in antigen-specific B-cell immune regulation. Activation of cTfh cells in AMR patients correlates with phenotypes of memory B cells and plasma blasts. cTfh cells and memory B cells have promising diagnostic efficacies and predictive values for AMR. The proportion of cTfh cells to CD4+ T cells and the proportion of memory B cells to CD19+ B cells are correlated with serum creatinine levels, indicating that cTfh cells and memory B cells may be involved in the progression of AMR. In addition, the CXCL13, IL-21, and IL-4, which were associated with cTfh cells, may be involved in the onset of AMR.


Subject(s)
Graft Rejection , Kidney Transplantation , Memory B Cells , Humans , Graft Rejection/immunology , Graft Rejection/diagnosis , Female , Memory B Cells/immunology , Male , Middle Aged , Adult , Chemokine CXCL13/metabolism , T Follicular Helper Cells/immunology , Kidney Failure, Chronic/immunology , Kidney Failure, Chronic/surgery , Interleukins/metabolism , Interleukin-4/metabolism , Immunologic Memory
12.
PLoS Pathog ; 20(7): e1012352, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39024388

ABSTRACT

CD4+ T cells are central mediators of protective immunity to blood-stage malaria, particularly for their capacity in orchestrating germinal center reaction and generating parasite-specific high-affinity antibodies. T follicular helper (Tfh) cells are predominant CD4+ effector T cell subset implicated in these processes, yet the factors and detailed mechanisms that assist Tfh cell development and function during Plasmodium infection are largely undefined. Here we provide evidence that receptor for activated C kinase 1 (RACK1), an adaptor protein of various intracellular signals, is not only important for CD4+ T cell expansion as previously implied but also plays a prominent role in Tfh cell differentiation and function during blood-stage Plasmodium yoelii 17XNL infection. Consequently, RACK1 in CD4+ T cells contributes significantly to germinal center formation, parasite-specific IgG production, and host resistance to the infection. Mechanistic exploration detects specific interaction of RACK1 with STAT3 in P. yoelii 17XNL-responsive CD4+ T cells, ablation of RACK1 leads to defective STAT3 phosphorylation, accompanied by substantially lower amount of STAT3 protein in CD4+ T cells, whereas retroviral overexpression of RACK1 or STAT3 in RACK1-deficient CD4+ T cells greatly restores STAT3 activity and Bcl-6 expression under the Tfh polarization condition. Further analyses suggest RACK1 positively regulates STAT3 stability by inhibiting the ubiquitin-proteasomal degradation process, thus promoting optimal STAT3 activity and Bcl-6 induction during Tfh cell differentiation. These findings uncover a novel mechanism by which RACK1 participates in posttranslational regulation of STAT3, Tfh cell differentiation, and subsequent development of anti-Plasmodium humoral immunity.


Subject(s)
Cell Differentiation , Malaria , Plasmodium yoelii , Receptors for Activated C Kinase , STAT3 Transcription Factor , T Follicular Helper Cells , Animals , Receptors for Activated C Kinase/metabolism , STAT3 Transcription Factor/metabolism , Malaria/immunology , Malaria/parasitology , Mice , Plasmodium yoelii/immunology , T Follicular Helper Cells/immunology , T Follicular Helper Cells/metabolism , Mice, Inbred C57BL , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Mice, Knockout , Germinal Center/immunology
13.
Front Immunol ; 15: 1406138, 2024.
Article in English | MEDLINE | ID: mdl-38975334

ABSTRACT

Heterologous prime-boost has broken the protective immune response bottleneck of the COVID-19 vaccines. however, the underlying mechanisms have not been fully elucidated. Here, we investigated antibody responses and explored the response of germinal center (GC) to priming with inactivated vaccines and boosting with heterologous adenoviral-vectored vaccines or homologous inactivated vaccines in mice. Antibody responses were dramatically enhanced by both boosting regimens. Heterologous immunization induced more robust GC activation, characterized by increased Tfh cell populations and enhanced helper function. Additionally, increased B-cell activation and antibody production were observed in a heterologous regimen. Libra-seq was used to compare the differences of S1-, S2- and NTD-specific B cells between homologous and heterologous vaccination, respectively. S2-specific CD19+ B cells presented increased somatic hypermutations (SHMs), which were mainly enriched in plasma cells. Moreover, a heterologous booster dose promoted the clonal expansion of B cells specific to S2 and NTD regions. In conclusion, the functional role of Tfh and B cells following SARS-CoV-2 heterologous vaccination may be important for modulating antibody responses. These findings provide new insights for the development of SARS-CoV-2 vaccines that induce more robust antibody response.


Subject(s)
Antibodies, Viral , Antibody Formation , B-Lymphocytes , COVID-19 Vaccines , COVID-19 , Germinal Center , Immunization, Secondary , SARS-CoV-2 , T Follicular Helper Cells , Animals , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , B-Lymphocytes/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Mice , COVID-19/immunology , COVID-19/prevention & control , T Follicular Helper Cells/immunology , Germinal Center/immunology , Antibody Formation/immunology , Female , Somatic Hypermutation, Immunoglobulin , Vaccination , Mice, Inbred BALB C , Humans , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics
14.
Front Immunol ; 15: 1403769, 2024.
Article in English | MEDLINE | ID: mdl-38947319

ABSTRACT

Introduction: Follicular helper T cells are essential for helping in the maturation of B cells and the production of neutralizing antibodies (NAbs) during primary viral infections. However, their role during recall responses is unclear. Here, we used hepatitis C virus (HCV) reinfection in humans as a model to study the recall collaborative interaction between circulating CD4 T follicular helper cells (cTfh) and memory B cells (MBCs) leading to the generation of NAbs. Methods: We evaluated this interaction longitudinally in subjects who have spontaneously resolved primary HCV infection during a subsequent reinfection episode that resulted in either another spontaneous resolution (SR/SR, n = 14) or chronic infection (SR/CI, n = 8). Results: Both groups exhibited virus-specific memory T cells that expanded upon reinfection. However, early expansion of activated cTfh (CD4+CXCR5+PD-1+ICOS+FoxP3-) occurred in SR/SR only. The frequency of activated cTfh negatively correlated with time post-infection. Concomitantly, NAbs and HCV-specific MBCs (CD19+CD27+IgM-E2-Tet+) peaked during the early acute phase in SR/SR but not in SR/CI. Finally, the frequency of the activated cTfh1 (CXCR3+CCR6-) subset correlated with the neutralization breadth and potency of NAbs. Conclusion: These results underscore a key role for early activation of cTfh1 cells in helping antigen-specific B cells to produce NAbs that mediate the clearance of HCV reinfection.


Subject(s)
Hepacivirus , Hepatitis C , Memory B Cells , Reinfection , T Follicular Helper Cells , Humans , Hepacivirus/immunology , T Follicular Helper Cells/immunology , Male , Female , Hepatitis C/immunology , Hepatitis C/virology , Memory B Cells/immunology , Adult , Middle Aged , Reinfection/immunology , Reinfection/virology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Immunologic Memory , Hepatitis C Antibodies/immunology , Hepatitis C Antibodies/blood , Hepatitis C, Chronic/immunology , Hepatitis C, Chronic/virology , Lymphocyte Activation/immunology
15.
J Immunol Res ; 2024: 9527268, 2024.
Article in English | MEDLINE | ID: mdl-38966668

ABSTRACT

Aberrant accumulation of circulating follicular helper T cells (cTfh) has been found in the peripheral blood mononuclear cells (PBMCs) of Graves' disease (GD) patients. However, the underlying mechanism that contributes to the imbalance of cTfh cells remains unknown. Previously, studies described a GD-related circular RNAs (circRNAs)-circZNF644 that might be associated with cTfh cells. This study aimed to investigate the role of circZNF644 on cTfh cells in GD patients. Here, we found that circZNF644 was highly stable expression in the PBMCs of GD patients, which was positively correlated with the serum levels of TSH receptor autoantibodies (TRAb). Knockdown of circZNF644 caused a reduction of the proportion of cTfh cells in vitro. Mechanistically, circZNF644 served as a ceRNA for miR-29a-3p to promote ICOS expression, resulting in increased cTfh cells. In the PBMCs of GD patients, circZNF644 expression was positively correlated with ICOS expression and the percentage of cTfh cells, but negatively related to miR-29a-3p expression. Additionally, a strong relationship between circZNF644 and IL-21 was revealed in GD patients, and silencing of circZNF644 inhibited IL-21 expression. Our study elucidated that elevated expression of circZNF644 is a key feature in the development of GD and may contribute to the pathogenic role of cTfh cells in GD.


Subject(s)
Graves Disease , MicroRNAs , RNA, Circular , T Follicular Helper Cells , Humans , Graves Disease/genetics , Graves Disease/immunology , RNA, Circular/genetics , Male , Female , T Follicular Helper Cells/immunology , Adult , MicroRNAs/genetics , Middle Aged , Autoantibodies/immunology , Autoantibodies/blood , Inducible T-Cell Co-Stimulator Protein/metabolism , Inducible T-Cell Co-Stimulator Protein/genetics , Interleukins/genetics , Interleukins/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Gene Expression Regulation
16.
Phytomedicine ; 132: 155818, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38879922

ABSTRACT

BACKGROUND: The pathophysiology of Graves' disease (GD) involves imbalances between follicular helper T (Tfh) and follicular regulatory T (Tfr) cells, as well as oxidative stress (OS). Prunella vulgaris L. (Xia Ku Cao, XKC) and its primary bioactive compound, luteolin, are recognized for their potential in treating GD. Yet, the mechanism accounting for the immune-modulatory and antioxidant effects of XKC remains elusive. PURPOSE: This study aims to evaluate the pharmacological effects and elucidate the underlying mechanism of XKC and luteolin in a GD mouse model induced by recombinant adenovirus of TSH receptor A subunit (Ad-hTSHR-289). METHODS: High-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (HPLC-QTOF MS) was used to detect the constituents of XKC. The GD model was established through inducing female BALB/c mice with three intramuscular injections of Ad-TSHR-289. Thyroid function, autoantibody and OS parameters were measured by ELISA. Changes of Tfh cells and Tfr cells were detected by flow cytometry. RT-qPCR, Western Blotting, immunohistochemistry were used to explore the related molecular mechanisms. RESULTS: A total of 37 chemical components from XKC were identified by HPLC-QTOF MS, represented by flavonoids, steroids, terpenoids, and luteolin. XKC and luteolin reduced T4, TRAb levels and facilitated the recovery from thyroid damage in GD mice. Meanwhile, XKC and luteolin effectively alleviated OS by decreasing the levels of MDA, NOX2, 4-HNE, 8-OHdG, while increasing GSH level. Flow cytometry showed that XKC and luteolin restored the abnormal proportions of Tfh/Tfr and Tfh/Treg, and the mRNA levels of IL-21, Bcl-6 and Foxp3 in GD mice. In addition, XKC and luteolin inhibited PI3K, Akt, p-PI3K and p-Akt, but activated Nrf2 and HO-1. CONCLUSION: XKC and luteolin could inhibit the development of GD in vivo by rebalancing Tfh/Tfr cells and alleviating OS. This therapeutic mechanism may involve the Nrf2/HO-1 and PI3K/Akt signaling pathways. Luteolin is the main efficacy material basis of XKC in countering GD. For the first time, we revealed the mechanism of XKC and luteolin in the treatment of GD from the perspective of autoimmune and OS.


Subject(s)
Disease Models, Animal , Graves Disease , Luteolin , Mice, Inbred BALB C , Oxidative Stress , Prunella , T-Lymphocytes, Regulatory , Animals , Luteolin/pharmacology , Oxidative Stress/drug effects , Graves Disease/drug therapy , Female , T-Lymphocytes, Regulatory/drug effects , Prunella/chemistry , Mice , T Follicular Helper Cells/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Thyroid Gland/drug effects , Antioxidants/pharmacology , T-Lymphocytes, Helper-Inducer/drug effects
17.
Nat Immunol ; 25(8): 1383-1394, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38942990

ABSTRACT

The immunological mechanisms underlying chronic colitis are poorly understood. T follicular helper (TFH) cells are critical in helping B cells during germinal center reactions. In a T cell transfer colitis model, a lymphoid structure composed of mature dendritic cells (DCs) and TFH cells was found within T cell zones of colonic lymphoid follicles. TFH cells were required for mature DC accumulation, the formation of DC-T cell clusters and colitis development. Moreover, DCs promoted TFH cell differentiation, contributing to colitis development. A lineage-tracing analysis showed that, following migration to the lamina propria, TFH cells transdifferentiated into long-lived pathogenic TH1 cells, promoting colitis development. Our findings have therefore demonstrated the reciprocal regulation of TFH cells and DCs in colonic lymphoid follicles, which is critical in chronic colitis pathogenesis.


Subject(s)
Cell Differentiation , Colitis , Dendritic Cells , T Follicular Helper Cells , Animals , Dendritic Cells/immunology , Colitis/immunology , Colitis/pathology , T Follicular Helper Cells/immunology , Mice , Cell Differentiation/immunology , Mice, Inbred C57BL , Disease Models, Animal , Th1 Cells/immunology , Colon/immunology , Colon/pathology , Mice, Knockout , Germinal Center/immunology , Mice, Transgenic
18.
Exp Mol Med ; 56(6): 1365-1372, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825646

ABSTRACT

Inside germinal centers (GCs), antigen-specific B cells rely on precise interactions with immune cells and strategic localization between the dark and light zones to clonally expand, undergo affinity maturation, and differentiate into long-lived plasma cells or memory B cells. Follicular helper T (Tfh) cells, the key gatekeepers of GC-dependent humoral immunity, exhibit remarkable dynamic positioning within secondary lymphoid tissues and rely on intercellular interactions with antigen-presenting cells (APCs) during their differentiation and execution of B-cell-facilitating functions within GCs. In this review, we briefly cover the transcriptional regulation of Tfh cell differentiation and function and explore the molecular mechanisms governing Tfh cell motility, their interactions with B cells within GCs, and the impact of their dynamic behavior on humoral responses.


Subject(s)
Gene Expression Regulation , Germinal Center , Immunological Synapses , Humans , Animals , Immunological Synapses/metabolism , Germinal Center/immunology , Germinal Center/metabolism , Cell Differentiation , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , T Follicular Helper Cells/immunology , T Follicular Helper Cells/metabolism , Transcription, Genetic , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism
19.
Front Immunol ; 15: 1395684, 2024.
Article in English | MEDLINE | ID: mdl-38868776

ABSTRACT

Circulating follicular helper T cells (cTfh) can show phenotypic alterations in disease settings, including in the context of tissue-damaging autoimmune or anti-viral responses. Using severe COVID-19 as a paradigm of immune dysregulation, we have explored how cTfh phenotype relates to the titre and quality of antibody responses. Severe disease was associated with higher titres of neutralising S1 IgG and evidence of increased T cell activation. ICOS, CD38 and HLA-DR expressing cTfh correlated with serum S1 IgG titres and neutralising strength, and interestingly expression of TIGIT by cTfh showed a negative correlation. TIGIT+cTfh expressed increased IFNγ and decreased IL-17 compared to their TIGIT-cTfh counterparts, and showed reduced capacity to help B cells in vitro. Additionally, TIGIT+cTfh expressed lower levels of CD40L than TIGIT-cTfh, providing a potential explanation for their poor B-helper function. These data identify phenotypic changes in polyclonal cTfh that correlate with specific antibody responses and reveal TIGIT as a marker of cTfh with altered function.


Subject(s)
Antibodies, Viral , B-Lymphocytes , COVID-19 , Receptors, Immunologic , SARS-CoV-2 , T Follicular Helper Cells , Adult , Aged , Female , Humans , Male , Middle Aged , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , B-Lymphocytes/immunology , COVID-19/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lymphocyte Activation/immunology , Receptors, Immunologic/immunology , SARS-CoV-2/immunology , T Follicular Helper Cells/immunology , Aged, 80 and over
20.
Front Immunol ; 15: 1393096, 2024.
Article in English | MEDLINE | ID: mdl-38855101

ABSTRACT

Introduction: Antibody production and the generation of memory B cells are regulated by T follicular helper (Tfh) and T follicular regulatory (Tfr) cells in germinal centers. However, the precise role of Tfr cells in controlling antibody production is still unclear. We have previously shown that both Tfh and Tfr cells express the IL-1R1 agonist receptor, whereas only Tfr cells express the IL-1R2 decoy and IL-1Ra antagonist receptors. We aimed to investigate the role of IL-1 receptors in the regulation of B cell responses by Tfh and Tfr. Methods: We generated mice with IL-1 receptors inactivated in Tfh or Tfr and measured antibody production and cell activation after immunisation. Results: While IL-1ß levels are increased in the draining lymph node after immunisation, antigen-specific antibody levels and cell phenotypes indicated that IL-1ß can activate both Tfh and Tfr cells through IL-1R1 stimulation. Surprisingly, expression of IL-1R2 and IL-1Ra on Tfr cells does not block IL-1 activation of Tfh cells, but rather prevents IL-1/IL-1R1-mediated early activation of Tfr cells. IL-1Rs also regulate the antibody response to autoantigens and its associated pathophysiology in an experimental lupus model. Discussion: Collectively, our results show that IL-1 inhibitory receptors expressed by Tfr cells prevent their own activation and suppressive function, thus licensing IL-1-mediated activation of Tfh cells after immunisation. Further mechanistic studies should unravel these complex interactions between IL-1ß and follicular helper and regulatory T cells and provide new avenues for therapeutic intervention.


Subject(s)
Germinal Center , T Follicular Helper Cells , T-Lymphocytes, Regulatory , Animals , Germinal Center/immunology , Mice , T Follicular Helper Cells/immunology , T-Lymphocytes, Regulatory/immunology , Lymphocyte Activation/immunology , Receptors, Interleukin-1 Type I/genetics , Receptors, Interleukin-1 Type I/immunology , Mice, Inbred C57BL , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Interleukin-1beta/metabolism , Interleukin-1beta/immunology , Interleukin-1/metabolism , Interleukin-1/immunology , Receptors, Interleukin-1/metabolism , Receptors, Interleukin-1/immunology , Antibody Formation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL