Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.373
1.
Exp Cell Res ; 439(1): 114073, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38704079

Determining the appropriate source of antigens for optimal antigen presentation to T cells is a major challenge in designing dendritic cell (DC) -based therapeutic strategies against hepatocellular carcinoma (HCC). Tumor-derived exosomes (Tex) express a wide range of tumor antigens, making them a promising source of antigens for DC vaccines. As reported, the exosomes secreted by tumor cells can inhibit the antitumor function of immune cells. In this study, we transfected hepatocellular carcinoma cells with Rab27a to enhance the yield of exosomes, which were characterized using transmission electron microscopy and Western blot analysis. We found that Tex secreted by overexpressing Rab27a Hepatocellular carcinoma cell lines pulsed DC is beneficial for the differentiation and maturation of DCs but inhibits the secretion of the IL-12 cytokine. Consequently, we developed a complementary immunotherapy approach by using Tex as an antigen loaded onto DCs, in combination with the cytokine IL-12 to induce antigen-specific cytotoxic T lymphocytes (CTLs). The results indicated that the combination of DC-Tex and IL-12 was more effective in stimulating T lymphocyte proliferation, releasing IFN-γ, and enhancing cytotoxicity compared to using exosomes or IL-12 alone. Additionally, the inclusion of IL-12 also compensated for the reduced IL-2 secretion by DCs caused by Tex. Moreover, in a BALB/c nude mice model of hepatocellular carcinoma, CTLs induced by DC-Tex combined with IL-12 maximized the tumor-specific T-cell immune effect and suppressed tumor growth. Thus, Tex provides a novel and promising source of antigens, with cytokines compensating for the shortcomings of Tex as a tumor antigen. This work helps to clarify the role of exosomes in tumor immunotherapy and may offer a safe and effective prospective strategy for the clinical application of exosome-based cellular immunotherapy.


Carcinoma, Hepatocellular , Dendritic Cells , Exosomes , Interleukin-12 , Liver Neoplasms , rab27 GTP-Binding Proteins , Dendritic Cells/immunology , Dendritic Cells/metabolism , Exosomes/metabolism , Animals , Interleukin-12/metabolism , Interleukin-12/genetics , rab27 GTP-Binding Proteins/metabolism , rab27 GTP-Binding Proteins/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Mice , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Humans , Cell Line, Tumor , Cell Proliferation , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Mice, Inbred BALB C , Immunotherapy/methods
2.
Anticancer Res ; 44(5): 1877-1883, 2024 May.
Article En | MEDLINE | ID: mdl-38677758

BACKGROUND/AIM: Human gastric cancer stem-like cells (CSCs)/cancer-initiating cells can be identified as aldehyde dehydrogenase-high (ALDHhigh) cells. Cancer immunotherapy employing immune checkpoint blockade has been approved for advanced gastric cancer cases. However, the effectiveness of cancer immunotherapy against gastric CSCs/CICs remains unclear. This study aimed to investigate the susceptibility of gastric CSCs/CICs to immunotherapy. MATERIALS AND METHODS: Gastric CSCs/CICs were isolated as ALDHhigh cells using the human gastric cancer cell line, MKN-45. ALDHhigh clone cells and ALDHlow clone cells were isolated using the ALDEFLUOR assay. ALDH1A1 expression was assessed via qRT-PCR. Sphere-forming ability was evaluated to confirm the presence of CSCs/CICs. A model neoantigen, AP2S1, was over-expressed in ALDHhigh clone cells and ALDHlow clone cells, and susceptibility to AP2S1-specific TCR-T cells was assessed using IFNγ ELISPOT assay. RESULTS: Three ALDHhigh clone cells were isolated from MKN-45 cells. ALDHhigh clone cells exhibited a stable phenotype in in vitro culture for more than 2 months. The High-36 clone cells demonstrated the highest sphere-forming ability, whereas the Low-8 cells showed the lowest sphere-forming ability. High-36 cells exhibited lower expression of HLA-A24 compared to Low-8 cells. TCR-T cells specific for AP2S1 showed lower reactivity to High-36 cells compared to Low-8 cells. CONCLUSION: High-36 cells and Low-8 cells represent novel gastric CSCs/CICs and non-CSCs/CICs, respectively. ALDHhigh CSCs/CICs evade T cells due to lower expression of HLA class 1.


Aldehyde Dehydrogenase 1 Family , Neoplastic Stem Cells , Stomach Neoplasms , T-Lymphocytes, Cytotoxic , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/pathology , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Cell Line, Tumor , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Retinal Dehydrogenase/metabolism , Tumor Escape/immunology , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology
3.
Front Immunol ; 15: 1295309, 2024.
Article En | MEDLINE | ID: mdl-38426098

Background: Chronic rhinosinusitis (CRS) is a chronic inflammatory disease with an autoimmune background. Altered expression levels of T cell immunoglobulin and mucin-domain containing-3 (TIM-3), C-X-C chemokine receptor type 5 (CXCR5), and programmed cell death protein 1 (PD-1) are implicated in the progression of inflammatory and autoimmune diseases. Moreover, CXCR5+TIM-3-PD-1+ stem-like cytotoxic T cells function as memory stem cells during chronic disease processes and retain cytotoxicity-related gene networks. Objectives: To explore the expressions of CXCR5, TIM-3, and PD-1 on T cells and their correlation with clinical parameters in CRS. Methods: Flow cytometry was used to assess the expressions and co-expressions of CXCR5, TIM-3, and PD-1 on T cells in the tissues of the paranasal sinus and peripheral blood of patients with CRS as well as healthy controls. Immunofluorescence was used to assess the co-localization of TIM-3, CXCR5, and PD-1 with T cells. The disease severity of our patients with CRS was evaluated using the Lund-Mackay score. A complete blood count was also performed for the patients with CRS. Results: Expression levels of CXCR5 and PD-1 on T cells were significantly increased in the nasal tissues of patients with CRS. Compared with those in healthy controls, patients with CRS had high percentages of CXCR5+TIM-3-PD-1+ CD8+ and CD4+ T cells in nasal tissues, while no significant difference was observed in peripheral blood levels. Patients with CRS had a higher density of nasal CXCR5+TIM-3-PD-1+ T cells than that in healthy controls. CXCR5+TIM-3-PD-1+ CD8+ T cell levels in the nasal polyps of patients with CRS were negatively correlated with the patients' Lund-Mackay scores. The levels of CXCR5+TIM-3-PD-1+ T cells in nasal tissues were also negatively associated with disease duration and positively associated with the chronic inflammatory state of CRS. Conclusions: The level of CXCR5+TIM-3-PD-1+ stem cell-like T cells, especially CXCR5+TIM-3-PD-1+ CD8+ T cells, is increased in CRS. Therefore, inducing CXCR5+TIM-3-PD-1+ T cell exhaustion may be an effective immunotherapy for CRS.


Rhinosinusitis , Sinusitis , Humans , CD8-Positive T-Lymphocytes , T-Lymphocytes, Cytotoxic/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Programmed Cell Death 1 Receptor/metabolism , Chronic Disease , Patient Acuity , Receptors, CXCR5/metabolism
4.
Oncoimmunology ; 13(1): 2330194, 2024.
Article En | MEDLINE | ID: mdl-38516270

Colorectal cancer (CRC) is the third most prevalent cancer worldwide with a high mortality rate (20-30%), especially due to metastasis to adjacent organs. Clinical responses to chemotherapy, radiation, targeted and immunotherapies are limited to a subset of patients making metastatic CRC (mCRC) difficult to treat. To understand the therapeutic modulation of immune response in mCRC, we have used a genetically engineered mouse model (GEMM), "KPN", which resembles the human 'CMS4'-like subtype. We show here that transforming growth factor (TGF-ß1), secreted by KPN organoids, increases cancer cell proliferation, and inhibits splenocyte activation in vitro. TGF-ß1 also inhibits activation of naive but not pre-activated T cells, suggesting differential effects on specific immune cells. In vivo, the inhibition of TGF-ß inflames the KPN tumors, causing infiltration of T cells, monocytes and monocytic intermediates, while reducing neutrophils and epithelial cells. Co-inhibition of TGF-ß and PD-L1 signaling further enhances cytotoxic CD8+T cells and upregulates innate immune response and interferon gene signatures. However, simultaneous upregulation of cancer-related metabolic genes correlated with limited control of tumor burden and/or progression despite combination treatment. Our study illustrates the importance of using GEMMs to predict better immunotherapies for mCRC.


Colonic Neoplasms , Rectal Neoplasms , Mice , Animals , Humans , Transforming Growth Factor beta1 , Transforming Growth Factor beta/metabolism , Interferons , B7-H1 Antigen/genetics , T-Lymphocytes, Cytotoxic/metabolism
5.
Cancer Sci ; 115(4): 1114-1128, 2024 Apr.
Article En | MEDLINE | ID: mdl-38332689

The direction and magnitude of immune responses are critically affected when dead cells are disposed of. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8) promotes the engulfment of apoptotic normal and cancerous cells without inducing inflammation. We have previously reported that a certain proportion of the cancer cells express abundant MFG-E8, and that such expression is associated with the shorter survival of patients with esophageal cancer who had received chemotherapy before surgery. However, the influence of tumor-derived and systemically existing MFG-E8 on antitumor immune responses has not yet been fully investigated. Herein, we showed that CTL-dependent antitumor immune responses were observed in mice with no or decreased levels of systemic MFG-E8, and that such responses were enhanced further with the administration of anti-PD-1 antibody. In mice with decreased levels of systemic MFG-E8, the dominance of regulatory T cells in tumor-infiltrating lymphocytes was inverted to CD8+ T cell dominance. MFG-E8 expression by tumor cells appears to affect antitumor immune responses only when the level of systemic MFG-E8 is lower than the physiological status. We have also demonstrated in the clinical setting that lower levels of plasma MFG-E8, but not MFG-E8 expression in tumor cells, before the treatment was associated with objective responses to anti-PD-1 therapy in patients with non-small cell lung cancer. These results suggest that systemic MFG-E8 plays a critical role during the immunological initiation process of antigen-presenting cells to increase tumor-specific CTLs. Regulation of the systemic level of MFG-E8 might induce efficient antitumor immune responses and enhance the potency of anti-PD-1 therapy.


Carcinoma, Non-Small-Cell Lung , Esophageal Neoplasms , Lung Neoplasms , Animals , Humans , Mice , Antigens, Surface/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Esophageal Neoplasms/drug therapy , Inflammation/pathology , Lung Neoplasms/drug therapy , Milk Proteins/metabolism , T-Lymphocytes, Cytotoxic/metabolism
6.
Cell Death Dis ; 15(2): 144, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38360867

The tumor microenvironment (TME) plays a central role in the pathogenesis of chronic lymphocytic leukemia (CLL), contributing to disease progression and chemoresistance. Leukemic cells shape the TME into a pro-survival and immunosuppressive niche through contact-dependent and contact-independent interactions with the cellular components of the TME. Immune synapse (IS) formation is defective in CLL. Here we asked whether soluble factors released by CLL cells contribute to their protection from cytotoxic T cell (CTL)-mediated killing by interfering with this process. We found that healthy CTLs cultured in media conditioned by leukemic cells from CLL patients or Eµ-TCL1 mice upregulate the exhaustion marker PD-1 and become unable to form functional ISs and kill target cells. These defects were more pronounced when media were conditioned by leukemic cells lacking p66Shc, a proapoptotic adapter whose deficiency has been implicated in disease aggressiveness both in CLL and in the Eµ-TCL1 mouse model. Multiplex ELISA assays showed that leukemic cells from Eµ-TCL1 mice secrete abnormally elevated amounts of CCL22, CCL24, IL-9 and IL-10, which are further upregulated in the absence of p66Shc. Among these, IL-9 and IL-10 were also overexpressed in leukemic cells from CLL patients, where they inversely correlated with residual p66Shc. Using neutralizing antibodies or the recombinant cytokines we show that IL-9, but not IL-10, mediates both the enhancement in PD-1 expression and the suppression of effector functions in healthy CTLs. Our results demonstrate that IL-9 secreted by leukemic cells negatively modulates the anti-tumor immune abilities of CTLs, highlighting a new suppressive mechanism and a novel potential therapeutical target in CLL.


Interleukin-9 , Leukemia, Lymphocytic, Chronic, B-Cell , Animals , Humans , Mice , Immunologic Factors , Interleukin-10/metabolism , Interleukin-9/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Programmed Cell Death 1 Receptor/metabolism , Proto-Oncogene Proteins/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , T-Lymphocytes, Cytotoxic/metabolism , Tumor Microenvironment
7.
Cancer Sci ; 115(5): 1405-1416, 2024 May.
Article En | MEDLINE | ID: mdl-38413363

Hypoxia is a common feature of solid tumors. However, the impact of hypoxia on immune cells within tumor environments remains underexplored. Carbonic anhydrase 9 (CA9) is a hypoxia-responsive tumor-associated enzyme. We previously noted that regardless of human CA9 (hCA9) expression, hCA9-expressing mouse renal cell carcinoma RENCA (RENCA/hCA9) presented as a "cold" tumor in syngeneic aged mice. This study delves into the mechanisms behind this observation. Gene microarray analyses showed that RENCA/hCA9 cells exhibited elevated mouse serpinB9, an inhibitor of granzyme B, relative to RENCA cells. Corroborating this, RENCA/hCA9 cells displayed heightened resistance to antigen-specific cytotoxic T cells compared with RENCA cells. Notably, siRNA-mediated serpinB9 knockdown reclaimed this sensitivity. In vivo tests showed that serpinB9 inhibitor administration slowed RENCA tumor growth, but this effect was reduced in RENCA/hCA9 tumors, even with adjunctive immune checkpoint blockade therapy. Further, inducing hypoxia or introducing the mouse CA9 gene upregulated serpinB9 expression, and siRNA-mediated knockdown of the mouse CA9 gene inhibited the hypoxia-induced induction of serpinB9 in the original RENCA cells. Supernatants from RENCA/hCA9 cultures had lower pH than those from RENCA, suggesting acidosis. This acidity enhanced serpinB9 expression and T cell apoptosis. Moreover, coculturing with RENCA/hCA9 cells more actively prompted T cell apoptosis than with RENCA cells. Collectively, these findings suggest hypoxia-associated CA9 not only boosts serpinB9 in cancer cells but also synergistically intensifies T cell apoptosis via acidosis, characterizing RENCA/hCA9 tumors as "cold."


Acidosis , Apoptosis , Carbonic Anhydrase IX , Carcinoma, Renal Cell , Kidney Neoplasms , Serpins , Animals , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase IX/genetics , Mice , Serpins/metabolism , Serpins/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/immunology , Cell Line, Tumor , Humans , Acidosis/metabolism , Acidosis/pathology , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism
8.
Open Biol ; 14(2): 230456, 2024 Feb.
Article En | MEDLINE | ID: mdl-38412963

Cytotoxic T lymphocytes (CTLs) are key effectors of the adaptive immune system that recognize and eliminate virally infected and cancerous cells. In naive CD8+ T cells, T-cell receptor (TCR) engagement drives a number of transcriptional, translational and proliferation changes over the course of hours and days leading to differentiation into CTLs. To gain a better insight into this mechanism, we compared the transcriptional profiles of naive CD8+ T cells to those of activated CTLs. To find new regulators of CTL function, we performed a selective clustered regularly interspaced short palindromic repeats (CRISPR) screen on upregulated genes and identified nuclear factor IL-3 (NFIL3) as a potential regulator of cytotoxicity. Although NFIL3 has established roles in several immune cells including natural killer, Treg, dendritic and CD4+ T cells, its function in CD8+ CTLs is less well understood. Using CRISPR/Cas9 editing, we found that removing NFIL3 in CTLs resulted in a marked decrease in cytotoxicity. We found that in CTLs lacking NFIL3 TCR-induced extracellular signal-regulated kinase phosphorylation, immune synapse formation and granule release were all intact while cytotoxicity was functionally impaired in vitro. Strikingly, NFIL3 controls the production of cytolytic proteins as well as effector cytokines. Thus, NFIL3 plays a cell intrinsic role in modulating cytolytic mechanisms in CTLs.


CD8-Positive T-Lymphocytes , T-Lymphocytes, Cytotoxic , T-Lymphocytes, Cytotoxic/metabolism , Interleukin-3/metabolism , Perforin/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
9.
Nat Commun ; 15(1): 9, 2024 01 02.
Article En | MEDLINE | ID: mdl-38167274

PD-1 is a co-inhibitory receptor expressed by CD8+ T cells which limits their cytotoxicity. PD-L1 expression on cancer cells contributes to immune evasion by cancers, thus, understanding the mechanisms that regulate PD-L1 protein levels in cancers is important. Here we identify tumor-cell-expressed otubain-2 (OTUB2) as a negative regulator of antitumor immunity, acting through the PD-1/PD-L1 axis in various human cancers. Mechanistically, OTUB2 directly interacts with PD-L1 to disrupt the ubiquitination and degradation of PD-L1 in the endoplasmic reticulum. Genetic deletion of OTUB2 markedly decreases the expression of PD-L1 proteins on the tumor cell surface, resulting in increased tumor cell sensitivity to CD8+ T-cell-mediated cytotoxicity. To underscore relevance in human patients, we observe a significant correlation between OTUB2 expression and PD-L1 abundance in human non-small cell lung cancer. An inhibitor of OTUB2, interfering with its deubiquitinase activity without disrupting the OTUB2-PD-L1 interaction, successfully reduces PD-L1 expression in tumor cells and suppressed tumor growth. Together, these results reveal the roles of OTUB2 in PD-L1 regulation and tumor evasion and lays down the proof of principle for OTUB2 targeting as therapeutic strategy for cancer treatment.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , T-Lymphocytes, Cytotoxic/metabolism , CD8-Positive T-Lymphocytes , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , B7-H1 Antigen/metabolism , Cell Line, Tumor , Programmed Cell Death 1 Receptor/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Pharmaceutical Preparations/metabolism , Thiolester Hydrolases/metabolism
10.
J Surg Oncol ; 129(5): 885-892, 2024 Apr.
Article En | MEDLINE | ID: mdl-38196111

BACKGROUND AND OBJECTIVES: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor response to systemic therapies, including immunotherapy. Given the immunotherapeutic potential of natural killer (NK) cells, we evaluated intratumoral NK cell infiltrates along with cytotoxic T cells in PDAC to determine their association with patient outcomes. METHODS: We analyzed tumors from 93 PDAC patients treated from 2012 to 2020. Predictor variables included tumor-infiltrating lymphocytes (TILs), T-cell markers (CD3, CD8, CD45RO), NK marker (NKp46), and NK inhibitory marker (major histocompatibility complex class I [MHC-I]) by immunohistochemistry. Primary outcome variables were recurrence-free survival (RFS) and overall survival (OS). RESULTS: Mean TILs, CD3, and NKp46 scores were 1.3 ± 0.63, 20.6 ± 17.5, and 3.1 ± 3.9, respectively. Higher expression of CD3 and CD8 was associated with higher OS, whereas NK cell infiltration was not associated with either RFS or OS. There was a tight positive correlation between MHC-I expression and all T-cell markers, but not with NKp46. CONCLUSIONS: Overall NK cell infiltrates were low in PDAC and did not predict clinical outcomes, whereas T-cell infiltrates did. Further characterization of the immune infiltrate in PDAC, including inhibitory signals and suppressive cell types, may yield better biomarkers of prognosis and immune targeting in this refractory disease.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Cytotoxic/pathology , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Lymphocytes, Tumor-Infiltrating , Killer Cells, Natural , Prognosis , CD8-Positive T-Lymphocytes
11.
Cancer Immunol Immunother ; 73(2): 29, 2024 Jan 27.
Article En | MEDLINE | ID: mdl-38280007

EBV+ diffuse large B cell lymphoma (DLBCL) not otherwise specified (NOS) is a new entity confirmed by the World Health Organization (WHO) in 2017. In this new entity, the virus may contribute to a tolerogenic microenvironment. Traces of the virus have been described in DLBCL with more sensitive methods, in cases that were originally diagnosed as negative. The aim of this study was to analyze the expression of immune response genes in the tumor microenvironment to disclose the role of the virus and its traces in DLBCL. In 48 DLBCL cases, the expression of immune response genes and the presence of molecules that induce tolerance, such as TIM3, LAG3 and PDL1 by immunohistochemistry (IHC), were studied. To broaden the study of the microenvironment, tumor-associated macrophages (TMAs) were also explored. No significant differences were observed in the expression of immune response genes in the EBV+ DLBCL and those cases that were EBV- DLBCL but that exhibited viral traces, assessed by ViewRNA assay. Only the EBV+ DLBCL cases displayed a significantly higher increase in the expression of CD8 and cytotoxic T cells detected by gene expression analysis, and of PDL1 in tumor cells and in the expression of CD68 in the tumor microenvironment detected by IHC, not observed in those cases with viral traces. The increase in CD8 and cytotoxic T cells, PDL1 and CD68 markers only in EBV+ DLBCL may indicate that traces of viral infection might not have influence in immune response markers.


Epstein-Barr Virus Infections , Lymphoma, Large B-Cell, Diffuse , Humans , Herpesvirus 4, Human , Lymphoma, Large B-Cell, Diffuse/pathology , T-Lymphocytes, Cytotoxic/metabolism , Immune Tolerance , Tumor Microenvironment
12.
J Gene Med ; 26(1): e3587, 2024 Jan.
Article En | MEDLINE | ID: mdl-37697474

BACKGROUND: Cytotoxic T-lymphocyte (CTL)-mediated therapy has become the central theme of cancer immunotherapy. The present study emphasized the role of CTLs in acute myeloid leukemia (AML) and aimed to understand the role of CTLs cytogenetic markers in monitoring AML prognostic outcomes and clinical treatment responses. METHODS: Seurat was employed to analyze single-cell RNA sequencing data in GSE116256. CellChat was used to detect cell-cell interactions to determine the central role of CTLs. The marker genes of CTLs were extracted and randomForestSRC was employed to construct a random forest model. The prognosis, immune checkpoint expression, immune cell infiltration, immunotherapy response and drug sensitivity of AML patients were evaluated according to the model. RESULTS: Seven types of cellular components of AML were identified in GSE116256, and CTLs radiated the most interactions with other cell types. Random forest analysis screened out six marker genes for construction of the model. The risk score calculated according to the model was positively correlated with immune score, immune cell infiltration, expression of multiple immune checkpoints and immune effect pathway. The response rate of immunotherapy was significantly higher and more sensitive to 14 drugs in high-risk samples than in low-risk samples, whereas low-risk patients showed a higher sensitivity to six drugs. CONCLUSIONS: The present study emphasized the central role of CTLs in cell communication and established a random forest regression model based on its cytogenetic markers, which helps to stratify the prognosis of AML, promotes the understanding of the phenotype of AML and may also guide the treatment choice of AML patients, which contributed to stratification of AML prognosis, promoted understanding of the phenotype of AML and may guide treatment selection in patients with AML.


Leukemia, Myeloid, Acute , T-Lymphocytes, Cytotoxic , Humans , T-Lymphocytes, Cytotoxic/metabolism , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Immunotherapy
13.
J Fluoresc ; 34(2): 691-711, 2024 Mar.
Article En | MEDLINE | ID: mdl-37347422

Granzyme B, mostly expressed by cytotoxic T lymphocytes in the fight against cancer and infection, is known to induce cell death based on its active enzymatic activity as a serine protease. Recent studies showed cytotoxicity of a non-enzymatic granzyme B-like peptide (also referred to as granzyme B-associated peptide or GP1 in this report) in tumor cells and presence of binding targets for GP1R (i.e., GP1 conjugated with rhodamine fluorochrome) in tumor cells, bacteria, and circulating platelets/neutrophils of healthy hosts. But there were no data on "sick" hosts to help substantiate any potential GP1 based medical applications. Thus, we adopted similar GP1R binding protocols to further study binding of GP1 in different biological samples (including different blood samples of hosts in sickness and in health, cancer cell lines, and trigeminal ganglia culture of infected hosts treated with and without GP1) and determine if any binding patterns might have any associations with different health conditions. The overall preliminary results appear to show certain GP1R + binding patterns in certain blood components (especially neutrophils) have potential correlations with certain health conditions of hosts at sampling times, indicating potential GP1R applications for diagnostic purposes. Findings of different GP1R binding patterns in different cancer cell lines, whole blood samples and trigeminal ganglia culture of experimental mice infected with HSV-1 virus (might cause neuropathy) within a week post-infection, and blood samples of GP1-treated mouse survivors on day 21 post-infection provided preliminary evidence of potential GP1-led tumor cell-specific cell death and treatment efficacy for greater survival.


Neoplasms , Peptides , Mice , Animals , Granzymes/metabolism , Peptides/metabolism , T-Lymphocytes, Cytotoxic/metabolism , Cell Line , Neoplasms/metabolism
14.
J Cell Sci ; 137(5)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38084966

Elimination of virally infected or tumoral cells is mediated by cytotoxic T cells (CTL). Upon antigen recognition, CTLs assemble a specialized signaling and secretory domain at the interface with their target, the immune synapse (IS). During IS formation, CTLs acquire a transient polarity, marked by re-orientation of the centrosome and microtubule cytoskeleton toward the IS, thus directing the transport and delivery of the lytic granules to the target cell. Based on the implication that the kinase Aurora A has a role in CTL function, we hypothesized that its substrate, the mitotic regulator Polo-like kinase 1 (PLK1), might participate in CTL IS assembly. We demonstrate that PLK1 is phosphorylated upon TCR triggering and polarizes to the IS. PLK1 silencing or inhibition results in impaired IS assembly and function, as witnessed by defective synaptic accumulation of T cell receptors (TCRs), as well as compromised centrosome and lytic granule polarization to the IS, resulting in impaired target cell killing. This function is achieved by coupling early signaling to microtubule dynamics, a function pivotal for CTL-mediated cytotoxicity. These results identify PLK1 as a new player in CTL IS assembly and function.


Polo-Like Kinase 1 , T-Lymphocytes, Cytotoxic , T-Lymphocytes, Cytotoxic/metabolism , Centrosome/metabolism , Signal Transduction , Microtubules/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism
15.
Int Immunopharmacol ; 126: 111135, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-37977065

The limited efficacy of immune checkpoint inhibitors (ICIs) in the treatment of advanced Esophageal Squamous Cell Carcinoma (ESCC) poses a challenge. Recent evidence suggests that tumor cells' insensitivity to cytotoxic T lymphocytes (CTLs) contributes to drug resistance against ICIs. Here, a particular tRNA-derived fragment called tRF-3024b has been identified as playing a significant role in tumor cell resistance to CTLs. Through tRF sequencing (tRF-seq), we observed a high expression of tRF-3024b in ESCC cells that survived co-culture with CTLs. Further in vitro studies demonstrated that tRF-3024b reduced the apoptosis of tumor cells when co-cultured with CTLs. The mechanism behind this resistance involves tRF-3024b promoting the expression of B-cell lymphoma-2 (BCL-2) by sequestering miR-192-5p, a microRNA that would normally inhibit BCL-2 expression. This means that tRF-3024b indirectly enhances the protective effects of BCL-2, reducing apoptosis in tumor cells. Rescue assays confirmed that the suppressive function of tRF-3024b relies on BCL-2. In summary, the tRF-3024b/miR-192-5p/BCL-2 axis sheds light on the crucial role of tRF-3024b in regulating BCL-2 expression. These findings offer valuable insights into strategies to enhance the response of ESCC to CTLs and improve the effectiveness of immunotherapy approaches in treating ESCC.


Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , MicroRNAs , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , T-Lymphocytes, Cytotoxic/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Movement
16.
Clin Cancer Res ; 30(3): 542-553, 2024 02 01.
Article En | MEDLINE | ID: mdl-37733830

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) trials have evaluated CTLA-4 and/or PD-(L)1 blockade in patients with advanced disease in which bulky tumor burden and limited time to develop antitumor T cells may have contributed to poor clinical efficacy. Here, we evaluated peripheral blood and tumor T cells from patients with PDAC receiving neoadjuvant chemoradiation plus anti-PD-1 (pembrolizumab) versus chemoradiation alone. We analyzed whether PD-1 blockade successfully reactivated T cells in the blood and/or tumor to determine whether lack of clinical benefit could be explained by lack of reactivated T cells versus other factors. EXPERIMENTAL DESIGN: We used single-cell transcriptional profiling and TCR clonotype tracking to identify TCR clonotypes from blood that match clonotypes in the tumor. RESULTS: PD-1 blockade increases the flux of TCR clonotypes entering cell cycle and induces an IFNγ signature like that seen in patients with other GI malignancies who respond to PD-1 blockade. However, these reactivated T cells have a robust signature of NF-κB signaling not seen in cases of PD-1 antibody response. Among paired samples between blood and tumor, several of the newly cycling clonotypes matched activated T-cell clonotypes observed in the tumor. CONCLUSIONS: Cytotoxic T cells in the blood of patients with PDAC remain sensitive to reinvigoration by PD-1 blockade, and some have tumor-recognizing potential. Although these T cells proliferate and have a signature of IFN exposure, they also upregulate NF-κB signaling, which potentially counteracts the beneficial effects of anti-PD-1 reinvigoration and marks these T cells as non-productive contributors to antitumor immunity. See related commentary by Lander and DeNardo, p. 474.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , NF-kappa B , Programmed Cell Death 1 Receptor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , T-Lymphocytes, Cytotoxic/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Receptors, Antigen, T-Cell/genetics , CD8-Positive T-Lymphocytes
17.
Adv Mater ; 36(5): e2310078, 2024 Feb.
Article En | MEDLINE | ID: mdl-37947048

Chimeric antigen receptor (CAR)-T cell immunotherapy is approved in the treatment of hematological malignancies, but remains far from satisfactory in solid tumor treatment due to inadequate intra-tumor CAR-T cell infiltration. Herein, an injectable supramolecular hydrogel system, based on self-assembly between cationic polymer mPEG-PCL-PEI (PPP) conjugated with T cell targeting anti-CD3e f(ab')2 fragment and α-cyclodextrin (α-CD), is designed to load plasmid CAR (pCAR) with a T cell specific CD2 promoter, which successfully achieves in situ fabrication and effective accumulation of CAR-T cells at the tumor site in humanized mice models. More importantly, due to this tumor microenvironment reprogramming, secretion of cellular inflammatory cytokines (interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ)) or tumor killer protein granzyme B is significantly promoted, which reverses the immunosuppressive microenvironment and significantly enhances the intra-tumor CAR-T cells and cytotoxic T cells infiltration. To the best of the current knowledge, this is a pioneer report of using injectable supramolecular hydrogel for in situ reprogramming CAR-T cells, which might be beneficial for solid tumor CAR-T immunotherapy.


Hydrogels , Neoplasms , Animals , Mice , Cytokines/metabolism , Immunotherapy , Neoplasms/pathology , T-Lymphocytes, Cytotoxic/metabolism , Tumor Microenvironment , Humans
18.
Cancer Sci ; 115(1): 59-69, 2024 Jan.
Article En | MEDLINE | ID: mdl-37923388

Sinus macrophages in draining lymph nodes (DLNs) are involved in anti-tumor immune reactions. CD169 (Sialoadhesin, Siglec-1) is expressed on sinus macrophages and is considered a surrogate marker for the immunostimulatory phenotype of macrophages. In this study, the significance of sinus macrophages in immunotherapy was evaluated using mouse models. Treatment with anti-programmed death-ligand 1 (PD-L1) antibody suppressed the subcutaneous tumor growth of MC38 and E0771 cells but was not effective against MB49 and LLC tumors. Decreased cytotoxic T-lymphocyte (CTL) infiltration in tumor tissues and CD169 expression in sinus macrophages were observed in MB49 and LLC cells compared to corresponding parameters in MC38 and E0771 cells. The anti-tumor effects of the anti-PD-L1 antibody on MC38 and E0771 cells were abolished when sinus macrophages in DLNs were depleted, suggesting that sinus macrophages are involved in the therapeutic effect of the anti-PD-L1 antibody. Naringin activated sinus macrophages. Naringin inhibited tumor growth in MB49- and LLC-bearing mice but did not affect that in MC38- and E0771-bearing mice. The infiltration of CTLs in tumor tissues and their activation were increased by naringin, and this effect was impaired when sinus macrophages were depleted. Combination therapy with naringin and anti-PD-L1 antibody suppressed MB49 tumor growth. In conclusion, CD169-positive sinus macrophages in DLNs are critical for anti-tumor immune responses, and naringin suppresses tumor growth by activating CD169-positive sinus macrophages and anti-tumor CTL responses. The activation status of sinus macrophages has been suggested to differ among tumor models, and this should be investigated in future studies.


Antineoplastic Agents , Neoplasms , Animals , Mice , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , T-Lymphocytes, Cytotoxic/metabolism , Antibodies/therapeutic use , Immunotherapy , Macrophages/metabolism , B7-H1 Antigen/metabolism , Cell Line, Tumor
19.
Cancer Discov ; 14(2): 326-347, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-37824278

Pancreatic ductal adenocarcinoma (PDAC) remains a highly lethal malignancy because of its aggressive nature and the paucity of effective treatment options. Almost all registered drugs have proven ineffective in addressing the needs of patients with PDAC. This is the result of a poor understanding of the unique tumor-immune microenvironment (TME) in PDAC. To identify druggable regulators of immunosuppressive TME, we performed a kinome- and membranome-focused CRISPR screening using orthotopic PDAC models. Our data showed that receptor-interacting protein kinase 2 (RIPK2) is a crucial driver of immune evasion of cytotoxic T-cell killing and that genetic or pharmacologic targeting of RIPK2 sensitizes PDAC to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy, leading to prolonged survival or complete regression. Mechanistic studies revealed that tumor-intrinsic RIPK2 ablation disrupts desmoplastic TME and restores MHC class I (MHC-I) surface levels through eliminating NBR1-mediated autophagy-lysosomal degradation. Our results provide a rationale for a novel combination therapy consisting of RIPK2 inhibition and anti-PD-1 immunotherapy for PDAC. SIGNIFICANCE: PDAC is resistant to almost all available therapies, including immune checkpoint blockade. Through in vivo CRISPR screen, we identified that RIPK2 plays a crucial role in facilitating immune evasion by impeding antigen presentation and cytotoxic T-cell killing. Targeting tumor-intrinsic RIPK2 either genetically or pharmacologically improves PDAC to anti-PD-1 immunotherapy. See related commentary by Liu et al., p. 208 . This article is featured in Selected Articles from This Issue, p. 201.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Immunotherapy , T-Lymphocytes, Cytotoxic/metabolism , Protein Kinases , Tumor Microenvironment
20.
J Immunother Cancer ; 11(12)2023 12 06.
Article En | MEDLINE | ID: mdl-38056899

BACKGROUND: Although the anti-PD-1+LAG-3 and the anti-PD-1+CTLA-4 combinations are effective in advanced melanoma, it remains unclear whether their mechanisms of action overlap. METHODS: We used single cell (sc) RNA-seq, flow cytometry and IHC analysis of responding SM1, D4M-UV2 and B16 melanoma flank tumors and SM1 brain metastases to explore the mechanism of action of the anti-PD-1+LAG-3 and the anti-PD-1+CTLA-4 combination. CD4+ and CD8+ T cell depletion, tetramer binding assays and ELISPOT assays were used to demonstrate the unique role of CD4+T cell help in the antitumor effects of the anti-PD-1+LAG-3 combination. RESULTS: The anti-PD-1+CTLA-4 combination was associated with the infiltration of FOXP3+regulatory CD4+ cells (Tregs), fewer activated CD4+T cells and the accumulation of a subset of IFNγ secreting cytotoxic CD8+T cells, whereas the anti-PD-1+LAG-3 combination led to the accumulation of CD4+T helper cells that expressed CXCR4, TNFSF8, IL21R and a subset of CD8+T cells with reduced expression of cytotoxic markers. T cell depletion studies showed a requirement for CD4+T cells for the anti-PD-1+LAG-3 combination, but not the PD-1-CTLA-4 combination at both flank and brain tumor sites. In anti-PD-1+LAG-3 treated tumors, CD4+T cell depletion was associated with fewer activated (CD69+) CD8+T cells and impaired IFNγ release but, conversely, increased numbers of activated CD8+T cells and IFNγ release in anti-PD-1+CTLA-4 treated tumors. CONCLUSIONS: Together these studies suggest that these two clinically relevant immune checkpoint inhibitor (ICI) combinations have differential effects on CD4+T cell polarization, which in turn, impacted cytotoxic CD8+T cell function. Further insights into the mechanisms of action/resistance of these clinically-relevant ICI combinations will allow therapy to be further personalized.


Brain Neoplasms , Melanoma, Experimental , Animals , Humans , CD4-Positive T-Lymphocytes , CTLA-4 Antigen , T-Lymphocytes, Cytotoxic/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism
...