Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 698
1.
Nat Commun ; 15(1): 3698, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693102

Mouse models of autosomal dominant polycystic kidney disease (ADPKD) show that intact primary cilia are required for cyst growth following the inactivation of polycystin-1. The signaling pathways underlying this process, termed cilia-dependent cyst activation (CDCA), remain unknown. Using translating ribosome affinity purification RNASeq on mouse kidneys with polycystin-1 and cilia inactivation before cyst formation, we identify the differential 'CDCA pattern' translatome specifically dysregulated in kidney tubule cells destined to form cysts. From this, Glis2 emerges as a candidate functional effector of polycystin signaling and CDCA. In vitro changes in Glis2 expression mirror the polycystin- and cilia-dependent changes observed in kidney tissue, validating Glis2 as a cell culture-based indicator of polycystin function related to cyst formation. Inactivation of Glis2 suppresses polycystic kidney disease in mouse models of ADPKD, and pharmacological targeting of Glis2 with antisense oligonucleotides slows disease progression. Glis2 transcript and protein is a functional target of CDCA and a potential therapeutic target for treating ADPKD.


Cilia , Disease Models, Animal , Polycystic Kidney, Autosomal Dominant , Signal Transduction , TRPP Cation Channels , Animals , Humans , Male , Mice , Cilia/metabolism , Kidney/metabolism , Kidney/pathology , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotides, Antisense/pharmacology , Polycystic Kidney Diseases/metabolism , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/pathology , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Polycystic Kidney, Autosomal Dominant/drug therapy , TRPP Cation Channels/metabolism , TRPP Cation Channels/genetics
2.
Int J Mol Sci ; 25(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38791330

Bone mechanotransduction is a critical process during skeletal development in embryogenesis and organogenesis. At the same time, the type and level of mechanical loading regulates bone remodeling throughout the adult life. The aberrant mechanosensing of bone cells has been implicated in the development and progression of bone loss disorders, but also in the bone-specific aspect of other clinical entities, such as the tumorigenesis of solid organs. Novel treatment options have come into sight that exploit the mechanosensitivity of osteoblasts, osteocytes, and chondrocytes to achieve efficient bone regeneration. In this regard, runt-related transcription factor 2 (Runx2) has emerged as a chief skeletal-specific molecule of differentiation, which is prominent to induction by mechanical stimuli. Polycystins represent a family of mechanosensitive proteins that interact with Runx2 in mechano-induced signaling cascades and foster the regulation of alternative effectors of mechanotransuction. In the present narrative review, we employed a PubMed search to extract the literature concerning Runx2, polycystins, and their association from 2000 to March 2024. The keywords stated below were used for the article search. We discuss recent advances regarding the implication of Runx2 and polycystins in bone remodeling and regeneration and elaborate on the targeting strategies that may potentially be applied for the treatment of patients with bone loss diseases.


Core Binding Factor Alpha 1 Subunit , Mechanotransduction, Cellular , TRPP Cation Channels , Humans , Core Binding Factor Alpha 1 Subunit/metabolism , TRPP Cation Channels/metabolism , TRPP Cation Channels/genetics , Animals , Bone and Bones/metabolism , Bone Remodeling , Bone Regeneration , Osteocytes/metabolism
3.
Physiol Rep ; 12(7): e15956, 2024 Apr.
Article En | MEDLINE | ID: mdl-38561249

Mutations in PKD1 and PKD2 cause autosomal dominant polycystic kidney disease (ADPKD), which is characterized by the formation of fluid-filled cysts in the kidney. In a subset of ADPKD patients, reduced blood calcium (Ca2+) and magnesium (Mg2+) concentrations are observed. As cystic fluid contains increased ATP concentrations and purinergic signaling reduces electrolyte reabsorption, we hypothesized that inhibiting ATP release could normalize blood Ca2+ and Mg2+ levels in ADPKD. Inducible kidney-specific Pkd1 knockout mice (iKsp-Pkd1-/-) exhibit hypocalcemia and hypomagnesemia in a precystic stage and show increased expression of the ATP-release channel pannexin-1. Therefore, we administered the pannexin-1 inhibitor brilliant blue-FCF (BB-FCF) every other day from Day 3 to 28 post-induction of Pkd1 gene inactivation. On Day 29, both serum Ca2+ and Mg2+ concentrations were reduced in iKsp-Pkd1-/- mice, while urinary Ca2+ and Mg2+ excretion was similar between the genotypes. However, serum and urinary levels of Ca2+ and Mg2+ were unaltered by BB-FCF treatment, regardless of genotype. BB-FCF did significantly decrease gene expression of the ion channels Trpm6 and Trpv5 in both control and iKsp-Pkd1-/- mice. Finally, no renoprotective effects of BB-FCF treatment were observed in iKsp-Pkd1-/- mice. Thus, administration of BB-FCF failed to normalize serum Ca2+ and Mg2+ levels.


Polycystic Kidney, Autosomal Dominant , Animals , Humans , Mice , Adenosine Triphosphate/metabolism , Kidney/metabolism , Mice, Knockout , Mutation , Polycystic Kidney, Autosomal Dominant/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , TRPP Cation Channels/pharmacology , Water-Electrolyte Balance
4.
Theranostics ; 14(6): 2544-2559, 2024.
Article En | MEDLINE | ID: mdl-38646641

Background: Mechanical forces are indispensable for bone healing, disruption of which is recognized as a contributing cause to nonunion or delayed union. However, the underlying mechanism of mechanical regulation of fracture healing is elusive. Methods: We used the lineage-tracing mouse model, conditional knockout depletion mouse model, hindlimb unloading model and single-cell RNA sequencing to analyze the crucial roles of mechanosensitive protein polycystin-1 (PC1, Pkd1) promotes periosteal stem/progenitor cells (PSPCs) osteochondral differentiation in fracture healing. Results: Our results showed that cathepsin (Ctsk)-positive PSPCs are fracture-responsive and mechanosensitive and can differentiate into osteoblasts and chondrocytes during fracture repair. We found that polycystin-1 declines markedly in PSPCs with mechanical unloading while increasing in response to mechanical stimulus. Mice with conditional depletion of Pkd1 in Ctsk+ PSPCs show impaired osteochondrogenesis, reduced cortical bone formation, delayed fracture healing, and diminished responsiveness to mechanical unloading. Mechanistically, PC1 facilitates nuclear translocation of transcriptional coactivator TAZ via PC1 C-terminal tail cleavage, enhancing osteochondral differentiation potential of PSPCs. Pharmacological intervention of the PC1-TAZ axis and promotion of TAZ nuclear translocation using Zinc01442821 enhances fracture healing and alleviates delayed union or nonunion induced by mechanical unloading. Conclusion: Our study reveals that Ctsk+ PSPCs within the callus can sense mechanical forces through the PC1-TAZ axis, targeting which represents great therapeutic potential for delayed fracture union or nonunion.


Adaptor Proteins, Signal Transducing , Cell Differentiation , Chondrocytes , Fracture Healing , Osteogenesis , Stem Cells , TRPP Cation Channels , Animals , Fracture Healing/physiology , Mice , TRPP Cation Channels/metabolism , TRPP Cation Channels/genetics , Chondrocytes/metabolism , Stem Cells/metabolism , Osteogenesis/physiology , Mice, Knockout , Chondrogenesis/physiology , Periosteum/metabolism , Osteoblasts/metabolism , Osteoblasts/physiology , Disease Models, Animal , Male
5.
Am J Physiol Renal Physiol ; 326(6): F1004-F1015, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38634129

Humans are predisposed to gout because they lack uricase that converts uric acid to allantoin. Rodents have uricase, resulting in low basal serum uric acid. A uricase inhibitor raises serum uric acid in rodents. There were two aims of the study in polycystic kidney disease (PKD): 1) to determine whether increasing serum uric acid with the uricase inhibitor, oxonic acid, resulted in faster cyst growth and 2) to determine whether treatment with the xanthine oxidase inhibitor, oxypurinol, reduced the cyst growth caused by oxonic acid. Orthologous models of human PKD were used: PCK rats, a polycystic kidney and hepatic disease 1 (Pkhd1) gene model of autosomal recessive PKD (ARPKD) and Pkd1RC/RC mice, a hypomorphic Pkd1 gene model. In PCK rats and Pkd1RC/RC mice, oxonic acid resulted in a significant increase in serum uric acid, kidney weight, and cyst index. Mechanisms of increased cyst growth that were investigated were proinflammatory cytokines, the inflammasome, and crystal deposition in the kidney. Oxonic acid resulted in an increase in proinflammatory cytokines in the serum and kidney in Pkd1RC/RC mice. Oxonic acid did not cause activation of the inflammasome or uric acid crystal deposition in the kidney. In Pkd1RC/RC male and female mice analyzed together, oxypurinol decreased the oxonic acid-induced increase in cyst index. In summary, increasing serum uric acid by inhibiting uricase with oxonic acid results in an increase in kidney weight and cyst index in PCK rats and Pkd1RC/RC mice. The effect is independent of inflammasome activation or crystal deposition in the kidney.NEW & NOTEWORTHY This is the first reported study of uric acid measurements and xanthine oxidase inhibition in polycystic kidney disease (PKD) rodents. Raising serum uric acid with a uricase inhibitor resulted in increased kidney weight and cyst index in Pkd1RC/RC mice and PCK rats, elevated levels of proinflammatory cytokines in the serum and kidney in Pkd1RC/RC mice, and no uric acid crystal deposition or activation of the caspase-1 inflammasome in the kidney.


Disease Models, Animal , Kidney , Polycystic Kidney Diseases , Urate Oxidase , Uric Acid , Animals , Uric Acid/blood , Polycystic Kidney Diseases/pathology , Polycystic Kidney Diseases/metabolism , Polycystic Kidney Diseases/drug therapy , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Male , Oxypurinol/pharmacology , Oxonic Acid/pharmacology , Enzyme Inhibitors/pharmacology , Rats , Female , Inflammasomes/metabolism , Cytokines/metabolism , Cytokines/blood , Mice , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Xanthine Oxidase/antagonists & inhibitors , Xanthine Oxidase/metabolism , Rats, Sprague-Dawley , Mice, Inbred C57BL
6.
Dev Cell ; 59(11): 1396-1409.e5, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38569547

The ability of cells to perceive and respond to mechanical cues is essential for numerous biological activities. Emerging evidence indicates important contributions of organelles to cellular mechanosensitivity and mechanotransduction. However, whether and how the endoplasmic reticulum (ER) senses and reacts to mechanical forces remains elusive. To fill the knowledge gap, after developing a light-inducible ER-specific mechanostimulator (LIMER), we identify that mechanostimulation of ER elicits a transient, rapid efflux of Ca2+ from ER in monkey kidney COS-7 cells, which is dependent on the cation channels transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and polycystin-2 (PKD2) in an additive manner. This ER Ca2+ release can be repeatedly stimulated and tuned by varying the intensity and duration of force application. Moreover, ER-specific mechanostimulation inhibits ER-to-Golgi trafficking. Sustained mechanostimuli increase the levels of binding-immunoglobulin protein (BiP) expression and phosphorylated eIF2α, two markers for ER stress. Our results provide direct evidence for ER mechanosensitivity and tight mechanoregulation of ER functions, placing ER as an important player on the intricate map of cellular mechanotransduction.


Calcium , Endoplasmic Reticulum , Mechanotransduction, Cellular , Optogenetics , TRPP Cation Channels , Animals , Endoplasmic Reticulum/metabolism , Chlorocebus aethiops , COS Cells , Optogenetics/methods , Calcium/metabolism , TRPP Cation Channels/metabolism , TRPP Cation Channels/genetics , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Golgi Apparatus/metabolism , Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum Chaperone BiP/metabolism
7.
Cell Stem Cell ; 31(4): 537-553.e5, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38579684

In polycystic kidney disease (PKD), microscopic tubules expand into macroscopic cysts. Among the world's most common genetic disorders, PKD is inherited via heterozygous loss-of-function mutations but is theorized to require additional loss of function. To test this, we establish human pluripotent stem cells in allelic series representing four common nonsense mutations, using CRISPR base editing. When differentiated into kidney organoids, homozygous mutants spontaneously form cysts, whereas heterozygous mutants (original or base corrected) express no phenotype. Using these, we identify eukaryotic ribosomal selective glycosides (ERSGs) as PKD therapeutics enabling ribosomal readthrough of these same nonsense mutations. Two different ERSGs not only prevent cyst initiation but also limit growth of pre-formed cysts by partially restoring polycystin expression. Furthermore, glycosides accumulate in cyst epithelia in organoids and mice. Our findings define the human polycystin threshold as a surmountable drug target for pharmacological or gene therapy interventions, with relevance for understanding disease mechanisms and future clinical trials.


Cysts , Polycystic Kidney Diseases , Humans , Mice , Animals , Codon, Nonsense/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/therapy , Polycystic Kidney Diseases/metabolism , Kidney/metabolism , Organoids/metabolism , Cysts/genetics , Cysts/metabolism , Glycosides/metabolism
8.
Proc Natl Acad Sci U S A ; 121(12): e2316230121, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38483987

Mutations in the PKD2 gene, which encodes the polycystin-2 (PC2, also called TRPP2) protein, lead to autosomal dominant polycystic kidney disease (ADPKD). As a member of the transient receptor potential (TRP) channel superfamily, PC2 functions as a non-selective cation channel. The activation and regulation of the PC2 channel are largely unknown, and direct binding of small-molecule ligands to this channel has not been reported. In this work, we found that most known small-molecule agonists of the mucolipin TRP (TRPML) channels inhibit the activity of the PC2_F604P, a gain-of-function mutant of the PC2 channel. However, two of them, ML-SA1 and SF-51, have dual regulatory effects, with low concentration further activating PC2_F604P, and high concentration leading to inactivation of the channel. With two cryo-electron microscopy (cryo-EM) structures, a molecular docking model, and mutagenesis results, we identified two distinct binding sites of ML-SA1 in PC2_F604P that are responsible for activation and inactivation, respectively. These results provide structural and functional insights into how ligands regulate PC2 channel function through unusual mechanisms and may help design compounds that are more efficient and specific in regulating the PC2 channel and potentially also for ADPKD treatment.


Polycystic Kidney, Autosomal Dominant , TRPP Cation Channels , Humans , TRPP Cation Channels/metabolism , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Cryoelectron Microscopy , Molecular Docking Simulation , Ion Channels
9.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38474131

Mutations of PKD1 coding for polycystin-1 (PC1) account for most cases of autosomal-dominant polycystic kidney disease (ADPKD). The extracellular region of PC1 contains many evolutionarily conserved domains for ligand interactions. Among these are the leucine-rich repeats (LRRs) in the far N-terminus of PC1. Using zebrafish (Danio rerio) as an in vivo model system, we explored the role of LRRs in the function of PC1. Zebrafish expresses two human PKD1 paralogs, pkd1a and pkd1b. Knockdown of both genes in zebrafish by morpholino antisense oligonucleotides produced phenotypes of dorsal-axis curvature and pronephric cyst formation. We found that overexpression of LRRs suppressed both phenotypes in pkd1-morphant zebrafish. Purified recombinant LRR domain inhibited proliferation of HEK cells in culture and interacted with the heterotrimeric basement membrane protein laminin-511 (α5ß1γ1) in vitro. Mutations of amino acid residues in LRRs structurally predicted to bind laminin-511 disrupted LRR-laminin interaction in vitro and neutralized the ability of LRRs to inhibit cell proliferation and cystogenesis. Our data support the hypothesis that the extracellular region of PC1 plays a role in modulating PC1 interaction with the extracellular matrix and contributes to cystogenesis of PC1 deficiency.


Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Animals , Humans , Polycystic Kidney, Autosomal Dominant/genetics , Zebrafish/genetics , Leucine/metabolism , TRPP Cation Channels/metabolism , Polycystic Kidney Diseases/metabolism , Laminin/metabolism , Kidney/metabolism
10.
Int J Mol Sci ; 25(5)2024 Mar 02.
Article En | MEDLINE | ID: mdl-38474184

In autosomal dominant polycystic kidney disease (ADPKD) with germline mutations in a PKD1 or PKD2 gene, innumerable cysts develop from tubules, and renal function deteriorates. Second-hit somatic mutations and renal tubular epithelial (RTE) cell death are crucial features of cyst initiation and disease progression. Here, we use established RTE lines and primary ADPKD cells with disease-associated PKD1 mutations to investigate genomic instability and DNA damage responses. We found that ADPKD cells suffer severe chromosome breakage, aneuploidy, heightened susceptibility to DNA damage, and delayed checkpoint activation. Immunohistochemical analyses of human kidneys corroborated observations in cultured cells. DNA damage sensors (ATM/ATR) were activated but did not localize at nuclear sites of damaged DNA and did not properly activate downstream transducers (CHK1/CHK2). ADPKD cells also had the ability to transform, as they achieved high saturation density and formed colonies in soft agar. Our studies indicate that defective DNA damage repair pathways and the somatic mutagenesis they cause contribute fundamentally to the pathogenesis of ADPKD. Acquired mutations may alternatively confer proliferative advantages to the clonally expanded cell populations or lead to apoptosis. Further understanding of the molecular details of aberrant DNA damage responses in ADPKD is ongoing and holds promise for targeted therapies.


Cysts , Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/genetics , TRPP Cation Channels/metabolism , Mutation , Kidney/metabolism , Cysts/metabolism , Chromosomal Instability
11.
J Am Soc Nephrol ; 35(4): 466-482, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38247039

SIGNIFICANCE STATEMENT: The renal immune infiltrate observed in autosomal polycystic kidney disease contributes to the evolution of the disease. Elucidating the cellular mechanisms underlying the inflammatory response could help devise new therapeutic strategies. Here, we provide evidence for a mechanistic link between the deficiency polycystin-1 and mitochondrial homeostasis and the activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)/stimulator of the interferon genes (STING) pathway. Our data identify cGAS as an important mediator of renal cystogenesis and suggest that its inhibition may be useful to slow down the disease progression. BACKGROUND: Immune cells significantly contribute to the progression of autosomal dominant polycystic kidney disease (ADPKD), the most common genetic disorder of the kidney caused by the dysregulation of the Pkd1 or Pkd2 genes. However, the mechanisms triggering the immune cells recruitment and activation are undefined. METHODS: Immortalized murine collecting duct cell lines were used to dissect the molecular mechanism of cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) activation in the context of genotoxic stress induced by Pkd1 ablation. We used conditional Pkd1 and knockout cGas-/- genetic mouse models to confirm the role of cGAS/stimulator of the interferon genes (STING) pathway activation on the course of renal cystogenesis. RESULTS: We show that Pkd1 -deficient renal tubular cells express high levels of cGAS, the main cellular sensor of cytosolic nucleic acid and a potent stimulator of proinflammatory cytokines. Loss of Pkd1 directly affects cGAS expression and nuclear translocation, as well as activation of the cGAS/STING pathway, which is reversed by cGAS knockdown or functional pharmacological inhibition. These events are tightly linked to the loss of mitochondrial structure integrity and genotoxic stress caused by Pkd1 depletion because they can be reverted by the potent antioxidant mitoquinone or by the re-expression of the polycystin-1 carboxyl terminal tail. The genetic inactivation of cGAS in a rapidly progressing ADPKD mouse model significantly reduces cystogenesis and preserves normal organ function. CONCLUSIONS: Our findings indicate that the activation of the cGAS/STING pathway contributes to ADPKD cystogenesis through the control of the immune response associated with the loss of Pkd1 and suggest that targeting this pathway may slow disease progression.


Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Animals , Mice , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Mice, Knockout , Disease Progression , Interferons/metabolism
12.
J Am Soc Nephrol ; 35(4): 398-409, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38254271

SIGNIFICANCE STATEMENT: Autosomal dominant polycystic kidney disease (ADPKD) is a devastating disorder caused by mutations in polycystin 1 ( PKD1 ) and polycystin 2 ( PKD2 ). Currently, the mechanism for renal cyst formation remains unclear. Here, we provide convincing and conclusive data in mice demonstrating that Pkd2 deletion in embryonic Aqp2 + progenitor cells (AP), but not in neonate or adult Aqp2 + cells, is sufficient to cause severe polycystic kidney disease (PKD) with progressive loss of intercalated cells and complete elimination of α -intercalated cells, accurately recapitulating a newly identified cellular phenotype of patients with ADPKD. Hence, Pkd2 is a new potential regulator critical for balanced AP differentiation into, proliferation, and/or maintenance of various cell types, particularly α -intercalated cells. The Pkd2 conditional knockout mice developed in this study are valuable tools for further studies on collecting duct development and early steps in cyst formation. The finding that Pkd2 loss triggers the loss of intercalated cells is a suitable topic for further mechanistic studies. BACKGROUND: Most cases of autosomal dominant polycystic kidney disease (ADPKD) are caused by mutations in PKD1 or PKD2. Currently, the mechanism for renal cyst formation remains unclear. Aqp2 + progenitor cells (AP) (re)generate ≥5 cell types, including principal cells and intercalated cells in the late distal convoluted tubules (DCT2), connecting tubules, and collecting ducts. METHODS: Here, we tested whether Pkd2 deletion in AP and their derivatives at different developmental stages is sufficient to induce PKD. Aqp2Cre Pkd2f/f ( Pkd2AC ) mice were generated to disrupt Pkd2 in embryonic AP. Aqp2ECE/+Pkd2f/f ( Pkd2ECE ) mice were tamoxifen-inducted at P1 or P60 to inactivate Pkd2 in neonate or adult AP and their derivatives, respectively. All induced mice were sacrificed at P300. Immunofluorescence staining was performed to categorize and quantify cyst-lining cell types. Four other PKD mouse models and patients with ADPKD were similarly analyzed. RESULTS: Pkd2 was highly expressed in all connecting tubules/collecting duct cell types and weakly in all other tubular segments. Pkd2AC mice had obvious cysts by P6 and developed severe PKD and died by P17. The kidneys had reduced intercalated cells and increased transitional cells. Transitional cells were negative for principal cell and intercalated cell markers examined. A complete loss of α -intercalated cells occurred by P12. Cysts extended from the distal renal segments to DCT1 and possibly to the loop of Henle, but not to the proximal tubules. The induced Pkd2ECE mice developed mild PKD. Cystic α -intercalated cells were found in the other PKD models. AQP2 + cells were found in cysts of only 13/27 ADPKD samples, which had the same cellular phenotype as Pkd2AC mice. CONCLUSIONS: Hence, Pkd2 deletion in embryonic AP, but unlikely in neonate or adult Aqp2 + cells (principal cells and AP), was sufficient to cause severe PKD with progressive elimination of α -intercalated cells, recapitulating a newly identified cellular phenotype of patients with ADPKD. We proposed that Pkd2 is critical for balanced AP differentiation into, proliferation, and/or maintenance of cystic intercalated cells, particularly α -intercalated cells.


Aquaporin 2 , Polycystic Kidney, Autosomal Dominant , Adult , Animals , Humans , Mice , Aquaporin 2/deficiency , Aquaporin 2/genetics , Cysts , Kidney/metabolism , Mice, Knockout , Polycystic Kidney Diseases/genetics , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Renal Insufficiency, Chronic , Stem Cells/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism
13.
Graefes Arch Clin Exp Ophthalmol ; 262(1): 93-102, 2024 Jan.
Article En | MEDLINE | ID: mdl-37378878

PURPOSE: Mechanosensitive channels (MSCs) and primary cilium possess a possible relevance for the sensation of intraocular pressure (IOP). However, there is only limited data on their expression and localization in the ciliary body epithelium (CBE). The purpose of this study was to characterize the expression and localization of TRPP2 in a human non-pigmented ciliary epithelial cell (HNPCE) line. METHODS: The expression of the TRPP2 was studied by quantitative (q)RT-PCR and in situ hybridization in rat and human tissue. Protein expression and distribution were studied by western blot analysis, immunohistochemistry, and immunoelectron microscopy. Cellular location of TRPP2 was determined in rat and human CBE by immunofluorescence and immunoblot analysis. Electron microscopy studies were conducted to evaluate where and with substructure TRPP2 is localized in the HNPCE cell line. RESULTS: The expression of TRPP2 in rat and human non-pigmented ciliary epithelium was detected. TRPP2 was mainly located in nuclei, but also showed a punctate distribution pattern in the cytoplasm of HNPCE of the tissue and the cell line. In HNPCE cell culture, primary cilia did exhibit different length following serum starvation and hydrostatic pressure. TRPP2 was found to be colocalized with these cilia in HNPCE cells. CONCLUSION: The expression of TRPP2 and the primary cilium in the CB may indicate a possible role, such as the sensing of hydrostatic pressure, for the regulation of IOP. Functional studies via patch clamp or pharmacological intervention have yet to clarify the relevance for the physiological situation or aqueous humor regulation.


Cilia , TRPP Cation Channels , Humans , Rats , Animals , Cilia/metabolism , TRPP Cation Channels/metabolism , Epithelial Cells/metabolism , Epithelium , Intraocular Pressure , Ciliary Body
14.
J Am Soc Nephrol ; 35(1): 41-55, 2024 01 01.
Article En | MEDLINE | ID: mdl-37953472

SIGNIFICANCE STATEMENT: Long noncoding RNAs (lncRNAs) are a class of nonprotein coding RNAs with pivotal functions in development and disease. They have emerged as an exciting new drug target category for many common conditions. However, the role of lncRNAs in autosomal dominant polycystic kidney disease (ADPKD) has been understudied. This study provides evidence implicating a lncRNA in the pathogenesis of ADPKD. We report that Hoxb3os is downregulated in ADPKD and regulates mammalian target of rapamycin (mTOR)/Akt pathway in the in vivo mouse kidney. Ablating the expression of Hoxb3os in mouse polycystic kidney disease (PKD) activated mTOR complex 2 (mTORC2) signaling and exacerbated the cystic phenotype. The results from our study provide genetic proof of concept for future studies that focus on targeting lncRNAs as a treatment option in PKD. BACKGROUND: ADPKD is a monogenic disorder characterized by the formation of kidney cysts and is primarily caused by mutations in two genes, PKD1 and PKD2 . METHODS: In this study, we investigated the role of lncRNA Hoxb3os in ADPKD by ablating its expression in the mouse. RESULTS: Hoxb3os -null mice were viable and had grossly normal kidney morphology but displayed activation of mTOR/Akt signaling and subsequent increase in kidney cell proliferation. To determine the role of Hoxb3os in cystogenesis, we crossed the Hoxb3os -null mouse to two orthologous Pkd1 mouse models: Pkhd1/Cre; Pkd1F/F (rapid cyst progression) and Pkd1RC/RC (slow cyst progression). Ablation of Hoxb3os exacerbated cyst growth in both models. To gain insight into the mechanism whereby Hoxb3os inhibition promotes cystogenesis, we performed western blot analysis of mTOR/Akt pathway between Pkd1 single-knockout and Pkd1 - Hoxb3os double-knockout (DKO) mice. Compared with single-knockout, DKO mice presented with enhanced levels of total and phosphorylated Rictor. This was accompanied by increased phosphorylation of Akt at Ser 473 , a known mTORC2 effector site. Physiologically, kidneys from DKO mice displayed between 50% and 60% increase in cell proliferation and cyst number. CONCLUSIONS: The results from this study indicate that ablation of Hoxb3os in mouse PKD exacerbates cystogenesis and dysregulates mTORC2.


Cysts , Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , RNA, Long Noncoding , Mice , Animals , Polycystic Kidney, Autosomal Dominant/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Polycystic Kidney Diseases/metabolism , Kidney/pathology , TOR Serine-Threonine Kinases/metabolism , Mice, Knockout , Sirolimus/pharmacology , Mechanistic Target of Rapamycin Complex 2/metabolism , Cysts/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Disease Models, Animal , Mammals/genetics , Mammals/metabolism
15.
Am J Physiol Renal Physiol ; 325(6): F857-F869, 2023 12 01.
Article En | MEDLINE | ID: mdl-37823195

Renal cyst progression in autosomal dominant polycystic kidney disease (ADPKD) is highly dependent on agents circulating in blood. We have previously shown, using different in vitro models, that one of these agents is the hormone ouabain. By binding to Na+-K+-ATPase (NKA), ouabain triggers a cascade of signal transduction events that enhance ADPKD cyst progression by stimulating cell proliferation, fluid secretion, and dedifferentiation of the renal tubular epithelial cells. Here, we determined the effects of ouabain in vivo. We show that daily administration of ouabain to Pkd1RC/RC ADPKD mice for 1-5 mo, at physiological levels, augmented kidney cyst area and number compared with saline-injected controls. Also, ouabain favored renal fibrosis; however, renal function was not significantly altered as determined by blood urea nitrogen levels. Ouabain did not have a sex preferential effect, with male and female mice being affected equally. By contrast, ouabain had no significant effect on wild-type mice. In addition, the actions of ouabain on Pkd1RC/RC mice were exacerbated when another mutation that increased the affinity of NKA for ouabain was introduced to the mice (Pkd1RC/RCNKAα1OS/OS mice). Altogether, this work highlights the role of ouabain as a procystogenic factor in the development of ADPKD in vivo, that the ouabain affinity site on NKA is critical for this effect, and that circulating ouabain is an epigenetic factor that worsens the ADPKD phenotype.NEW & NOTEWORTHY This work shows that the hormone ouabain enhances the progression of autosomal dominant polycystic kidney disease (ADPKD) in vivo. Ouabain augments the size and number of renal cysts, the kidney weight to body weight ratio, and kidney fibrosis in an ADPKD mouse model. The Na+-K+-ATPase affinity for ouabain plays a critical role in these effects. In addition, these outcomes are independent of the sex of the mice.


Cysts , Polycystic Kidney, Autosomal Dominant , Male , Female , Mice , Animals , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Ouabain/pharmacology , Adenosine Triphosphatases , Cysts/metabolism , Hormones/metabolism , Hormones/pharmacology , Kidney/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Disease Models, Animal
16.
Nat Commun ; 14(1): 6513, 2023 10 16.
Article En | MEDLINE | ID: mdl-37845212

Fibrocystin/Polyductin (FPC), encoded by PKHD1, is associated with autosomal recessive polycystic kidney disease (ARPKD), yet its precise role in cystogenesis remains unclear. Here we show that FPC undergoes complex proteolytic processing in developing kidneys, generating three soluble C-terminal fragments (ICDs). Notably, ICD15, contains a novel mitochondrial targeting sequence at its N-terminus, facilitating its translocation into mitochondria. This enhances mitochondrial respiration in renal epithelial cells, partially restoring impaired mitochondrial function caused by FPC loss. FPC inactivation leads to abnormal ultrastructural morphology of mitochondria in kidney tubules without cyst formation. Moreover, FPC inactivation significantly exacerbates renal cystogenesis and triggers severe pancreatic cystogenesis in a Pkd1 mouse mutant Pkd1V/V in which cleavage of Pkd1-encoded Polycystin-1 at the GPCR Proteolysis Site is blocked. Deleting ICD15 enhances renal cystogenesis without inducing pancreatic cysts in Pkd1V/V mice. These findings reveal a direct link between FPC and a mitochondrial pathway through ICD15 cleavage, crucial for cystogenesis mechanisms.


Pancreatic Cyst , Polycystic Kidney, Autosomal Recessive , Mice , Animals , Receptors, Cell Surface/metabolism , Kidney/metabolism , Polycystic Kidney, Autosomal Recessive/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Kidney Tubules/metabolism
17.
Kidney Int ; 104(5): 995-1007, 2023 Nov.
Article En | MEDLINE | ID: mdl-37598857

Autosomal dominant polycystic kidney disease (ADPKD) resulting from pathogenic variants in PKD1 and PKD2 is the most common form of PKD, but other genetic causes tied to primary cilia function have been identified. Biallelic pathogenic variants in the serine/threonine kinase NEK8 cause a syndromic ciliopathy with extra-kidney manifestations. Here we identify NEK8 as a disease gene for ADPKD in 12 families. Clinical evaluation was combined with functional studies using fibroblasts and tubuloids from affected individuals. Nek8 knockout mouse kidney epithelial (IMCD3) cells transfected with wild type or variant NEK8 were further used to study ciliogenesis, ciliary trafficking, kinase function, and DNA damage responses. Twenty-one affected monoallelic individuals uniformly exhibited cystic kidney disease (mostly neonatal) without consistent extra-kidney manifestations. Recurrent de novo mutations of the NEK8 missense variant p.Arg45Trp, including mosaicism, were seen in ten families. Missense variants elsewhere within the kinase domain (p.Ile150Met and p.Lys157Gln) were also identified. Functional studies demonstrated normal localization of the NEK8 protein to the proximal cilium and no consistent cilia formation defects in patient-derived cells. NEK8-wild type protein and all variant forms of the protein expressed in Nek8 knockout IMCD3 cells were localized to cilia and supported ciliogenesis. However, Nek8 knockout IMCD3 cells expressing NEK8-p.Arg45Trp and NEK8-p.Lys157Gln showed significantly decreased polycystin-2 but normal ANKS6 localization in cilia. Moreover, p.Arg45Trp NEK8 exhibited reduced kinase activity in vitro. In patient derived tubuloids and IMCD3 cells expressing NEK8-p.Arg45Trp, DNA damage signaling was increased compared to healthy passage-matched controls. Thus, we propose a dominant-negative effect for specific heterozygous missense variants in the NEK8 kinase domain as a new cause of PKD.


Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Animals , Humans , Infant, Newborn , Mice , Carrier Proteins/metabolism , Cilia/pathology , Kidney/metabolism , Mutation , NIMA-Related Kinases/genetics , NIMA-Related Kinases/metabolism , Polycystic Kidney Diseases/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Serine/genetics , Serine/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism
18.
J Biol Chem ; 299(9): 105158, 2023 09.
Article En | MEDLINE | ID: mdl-37579949

Mutations in the gene encoding polycystin-1 (PC1) are the most common cause of autosomal dominant polycystic kidney disease (ADPKD). Cysts in ADPKD exhibit a Warburg-like metabolism characterized by dysfunctional mitochondria and aerobic glycolysis. PC1 is an integral membrane protein with a large extracellular domain, a short C-terminal cytoplasmic tail and shares structural and functional similarities with G protein-coupled receptors. Its exact function remains unclear. The C-terminal cytoplasmic tail of PC1 undergoes proteolytic cleavage, generating soluble fragments that are overexpressed in ADPKD kidneys. The regulation, localization, and function of these fragments is poorly understood. Here, we show that a ∼30 kDa cleavage fragment (PC1-p30), comprising the entire C-terminal tail, undergoes rapid proteasomal degradation by a mechanism involving the von Hippel-Lindau tumor suppressor protein. PC1-p30 is stabilized by reactive oxygen species, and the subcellular localization is regulated by reactive oxygen species in a dose-dependent manner. We found that a second, ∼15 kDa fragment (PC1-p15), is generated by caspase cleavage at a conserved site (Asp-4195) on the PC1 C-terminal tail. PC1-p15 is not subject to degradation and constitutively localizes to the mitochondrial matrix. Both cleavage fragments induce mitochondrial fragmentation, and PC1-p15 expression causes impaired fatty acid oxidation and increased lactate production, indicative of a Warburg-like phenotype. Endogenous PC1 tail fragments accumulate in renal cyst-lining cells in a mouse model of PKD. Collectively, these results identify novel mechanisms regarding the regulation and function of PC1 and suggest that C-terminal PC1 fragments may be involved in the mitochondrial and metabolic abnormalities observed in ADPKD.


Mitochondrial Diseases , Polycystic Kidney, Autosomal Dominant , TRPP Cation Channels , Animals , Mice , Oxidative Stress , Polycystic Kidney, Autosomal Dominant/metabolism , Reactive Oxygen Species/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism
19.
BMC Genomics ; 24(1): 407, 2023 Jul 19.
Article En | MEDLINE | ID: mdl-37468838

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is a common monogenic multisystem disease caused primarily by mutations in the PKD1 gene or PKD2 gene. There is increasing evidence that some of these variants, which are described as missense, synonymous or nonsense mutations in the literature or databases, may be deleterious by affecting the pre-mRNA splicing process. RESULTS: This study aimed to determine the effect of these PKD1 and PKD2 variants on exon splicing combined with predictive bioinformatics tools and minigene assay. As a result, among the 19 candidate single nucleotide alterations, 11 variants distributed in PKD1 (c.7866C > A, c.7960A > G, c.7979A > T, c.7987C > T, c.11248C > G, c.11251C > T, c.11257C > G, c.11257C > T, c.11346C > T, and c.11393C > G) and PKD2 (c.1480G > T) were identified to result in exon skipping. CONCLUSIONS: We confirmed that 11 variants in the gene of PKD1 and PKD2 affect normal splicing by interfering the recognition of classical splicing sites or by disrupting exon splicing enhancers and generating exon splicing silencers. This is the most comprehensive study to date on pre-mRNA splicing of exonic variants in ADPKD-associated disease-causing genes in consideration of the increasing number of identified variants in PKD1 and PKD2 gene in recent years. These results emphasize the significance of assessing the effect of exon single nucleotide variants in ADPKD at the mRNA level.


Polycystic Kidney, Autosomal Dominant , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , RNA Precursors , Humans , Exons , Mutation , Polycystic Kidney, Autosomal Dominant/genetics , RNA Precursors/metabolism , RNA Splicing , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics
20.
Dev Cell ; 58(16): 1447-1461.e6, 2023 08 21.
Article En | MEDLINE | ID: mdl-37413993

Left-dominant [Ca2+]i elevation on the left margin of the ventral node furnishes the initial laterality of mouse embryos. It depends on extracellular leftward fluid flow (nodal flow), fibroblast growth factor receptor (FGFR)/sonic hedgehog (Shh) signaling, and the PKD1L1 polycystin subunit, of which interrelationship is still elusive. Here, we show that leftward nodal flow directs PKD1L1-containing fibrous strands and facilitates Nodal-mediated [Ca2+]i elevation on the left margin. We generate KikGR-PKD1L1 knockin mice in order to monitor protein dynamics with a photoconvertible fluorescence protein tag. By imaging those embryos, we have identified fragile meshwork being gradually transferred leftward involving pleiomorphic extracellular events. A portion of the meshwork finally bridges over the left nodal crown cells in an FGFR/Shh-dependent manner. As PKD1L1 N-term is predominantly associated with Nodal on the left margin and that PKD1L1/PKD2 overexpression significantly augments cellular Nodal sensitivity, we propose that leftward transfer of polycystin-containing fibrous strands determines left-right asymmetry in developing embryos.


Hedgehog Proteins , TRPP Cation Channels , Mice , Animals , Hedgehog Proteins/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Cilia/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Body Patterning , Gene Expression Regulation, Developmental , Nodal Protein/metabolism
...