Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.103
Filter
1.
PeerJ ; 12: e17748, 2024.
Article in English | MEDLINE | ID: mdl-39076774

ABSTRACT

Background: Tandem duplication (TD) is a common and important type of structural variation in the human genome. TDs have been shown to play an essential role in many diseases, including cancer. However, it is difficult to accurately detect TDs due to the uneven distribution of reads and the inherent complexity of next-generation sequencing (NGS) data. Methods: This article proposes a method called DTDHM (detection of tandem duplications based on hybrid methods), which utilizes NGS data to detect TDs in a single sample. DTDHM builds a pipeline that integrates read depth (RD), split read (SR), and paired-end mapping (PEM) signals. To solve the problem of uneven distribution of normal and abnormal samples, DTDHM uses the K-nearest neighbor (KNN) algorithm for multi-feature classification prediction. Then, the qualified split reads and discordant reads are extracted and analyzed to achieve accurate localization of variation sites. This article compares DTDHM with three other methods on 450 simulated datasets and five real datasets. Results: In 450 simulated data samples, DTDHM consistently maintained the highest F1-score. The average F1-score of DTDHM, SVIM, TARDIS, and TIDDIT were 80.0%, 56.2%, 43.4%, and 67.1%, respectively. The F1-score of DTDHM had a small variation range and its detection effect was the most stable and 1.2 times that of the suboptimal method. Most of the boundary biases of DTDHM fluctuated around 20 bp, and its boundary deviation detection ability was better than TARDIS and TIDDIT. In real data experiments, five real sequencing samples (NA19238, NA19239, NA19240, HG00266, and NA12891) were used to test DTDHM. The results showed that DTDHM had the highest overlap density score (ODS) and F1-score of the four methods. Conclusions: Compared with the other three methods, DTDHM achieved excellent results in terms of sensitivity, precision, F1-score, and boundary bias. These results indicate that DTDHM can be used as a reliable tool for detecting TDs from NGS data, especially in the case of low coverage depth and tumor purity samples.


Subject(s)
Algorithms , High-Throughput Nucleotide Sequencing , High-Throughput Nucleotide Sequencing/methods , Humans , Genome, Human/genetics , Tandem Repeat Sequences/genetics
3.
Fish Shellfish Immunol ; 151: 109721, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917950

ABSTRACT

C-type lectins (CTLs) are an important class of pattern recognition receptors (PRRs) that exhibit structural and functional diversity in invertebrates. Repetitive DNA sequences are ubiquitous in eukaryotic genomes, representing distinct modes of genome evolution and promoting new gene generation. Our study revealed a new CTL that is composed of two long tandem repeats, abundant threonine, and one carbohydrate recognition domain (CRD) in Exopalaemon carinicauda and has been designated EcTR-CTL. The full-length cDNA of EcTR-CTL was 1242 bp long and had an open reading frame (ORF) of 999 bp that encoded a protein of 332 amino acids. The genome structure of EcTR-CTL contains 4 exons and 3 introns. The length of each repeat unit in EcTR-CTL was 198 bp, which is different from the short tandem repeats reported previously in prawns and crayfish. EcTR-CTL was abundantly expressed in the intestine and hemocytes. After Vibrio parahaemolyticus and white spot syndrome virus (WSSV) challenge, the expression level of EcTR-CTL in the intestine was upregulated. Knockdown of EcTR-CTL downregulated the expression of anti-lipopolysaccharide factor, crustin, and lysozyme during Vibrio infection. The recombinant CRD of EcTR-CTL (rCRD) could bind to bacteria, lipopolysaccharides, and peptidoglycans. Additionally, rCRD can directly bind to WSSV. These findings indicate that 1) CTLs with tandem repeats may be ubiquitous in crustaceans, 2) EcTR-CTL may act as a PRR to participate in the innate immune defense against bacteria via nonself-recognition and antimicrobial peptide regulation, and 3) EcTR-CTL may play a positive or negative role in the process of WSSV infection by capturing virions.


Subject(s)
Amino Acid Sequence , Arthropod Proteins , Immunity, Innate , Lectins, C-Type , Palaemonidae , Phylogeny , Vibrio parahaemolyticus , White spot syndrome virus 1 , Animals , Palaemonidae/immunology , Palaemonidae/genetics , Vibrio parahaemolyticus/physiology , White spot syndrome virus 1/physiology , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Arthropod Proteins/chemistry , Immunity, Innate/genetics , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Lectins, C-Type/chemistry , Gene Expression Regulation/immunology , Gene Expression Profiling , Sequence Alignment , Base Sequence , Tandem Repeat Sequences/genetics
4.
Article in English | MEDLINE | ID: mdl-38862430

ABSTRACT

Tandem duplication (TD) is a major type of structural variations (SVs) that plays an important role in novel gene formation and human diseases. However, TDs are often missed or incorrectly classified as insertions by most modern SV detection methods due to the lack of specialized operation on TD-related mutational signals. Herein, we developed a TD detection module for the Pindel tool, referred to as Pindel-TD, based on a TD-specific pattern growth approach. Pindel-TD is capable of detecting TDs with a wide size range at single nucleotide resolution. Using simulated and real read data from HG002, we demonstrated that Pindel-TD outperforms other leading methods in terms of precision, recall, F1-score, and robustness. Furthermore, by applying Pindel-TD to data generated from the K562 cancer cell line, we identified a TD located at the seventh exon of SAGE1, providing an explanation for its high expression. Pindel-TD is available for non-commercial use at https://github.com/xjtu-omics/pindel.


Subject(s)
Software , Humans , K562 Cells , Gene Duplication , Tandem Repeat Sequences/genetics , Algorithms
5.
Gene ; 926: 148644, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38851366

ABSTRACT

The non-coding regions of the mitochondrial DNAs (mtDNAs) of hares, rabbits, and pikas (Lagomorpha) contain short (∼20 bp) and long (130-160 bp) tandem repeats, absent in related mammalian orders. In the presented study, we provide in-depth analysis for mountain hare (Lepus timidus) and brown hare (L. europaeus) mtDNA non-coding regions, together with a species- and population-level analysis of tandem repeat variation. Mountain hare short tandem repeats (SRs) as well as other analyzed hare species consist of two conserved 10 bp motifs, with only brown hares exhibiting a single, more variable motif. Long tandem repeats (LRs) also differ in sequence and copy number between species. Mountain hares have four to seven LRs, median value five, while brown hares exhibit five to nine LRs, median value six. Interestingly, introgressed mountain hare mtDNA in brown hares obtained an intermediate LR length distribution, with median copy number being the same as with conspecific brown hare mtDNA. In contrast, transfer of brown hare mtDNA into cultured mtDNA-less mountain hare cells maintained the original LR number, whereas the reciprocal transfer caused copy number instability, suggesting that cellular environment rather than the nuclear genomic background plays a role in the LR maintenance. Due to their dynamic nature and separation from other known conserved sequence elements on the non-coding region of hare mitochondrial genomes, the tandem repeat elements likely to represent signatures of ancient genetic rearrangements. clarifying the nature and dynamics of these rearrangements may shed light on the possible role of NCR repeated elements in mitochondria and in species evolution.


Subject(s)
DNA, Mitochondrial , Evolution, Molecular , Genome, Mitochondrial , Hares , Polymorphism, Genetic , Species Specificity , Tandem Repeat Sequences , Animals , Hares/genetics , Tandem Repeat Sequences/genetics , DNA, Mitochondrial/genetics , Phylogeny
6.
Virus Res ; 345: 199390, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710287

ABSTRACT

Cnaphalocrocis medinalis granulovirus (CnmeGV), belonging to Betabaculovirus cnamedinalis, can infect the rice pest, the rice leaf roller. In 1979, a CnmeGV isolate, CnmeGV-EP, was collected from Enping County, China. In 2014, we collected another CnmeGV isolate, CnmeGV-EPDH3, at the same location and obtained the complete virus genome sequence using Illumina and ONT sequencing technologies. By combining these two virus isolates, we updated the genome annotation of CnmeGV and conducted an in-depth analysis of its genome features. CnmeGV genome contains abundant tandem repeat sequences, and the repeating units in the homologous regions (hrs) exhibit overlapping and nested patterns. The genetic variations within EPDH3 population show the high stability of CnmeGV genome, and tandem repeats are the only region of high genetic variation in CnmeGV genome replication. Some defective viral genomes formed by recombination were found within the population. Comparison analysis of the two virus isolates collected from Enping showed that the proteins encoded by the CnmeGV-specific genes were less conserved relative to the baculovirus core genes. At the genomic level, there are a large number of SNPs and InDels between the two virus isolates, especially in and around the bro genes and hrs. Additionally, we discovered that CnmeGV acquired a segment of non-ORF sequence from its host, which does not provide any new proteins but rather serves as redundant genetic material integrated into the viral genome. Furthermore, we observed that the host's transposon piggyBac has inserted into some virus genes. Together, dsDNA viruses could acquire non-coding genetic material from their hosts to expand the size of their genomes. These findings provide new insights into the evolution of dsDNA viruses.


Subject(s)
Genetic Variation , Genome, Viral , Animals , Phylogeny , China , Granulovirus/genetics , Granulovirus/classification , Granulovirus/isolation & purification , Whole Genome Sequencing , Oryza/virology , Tandem Repeat Sequences/genetics , Plant Diseases/virology , Recombination, Genetic
7.
PLoS Genet ; 20(5): e1011296, 2024 May.
Article in English | MEDLINE | ID: mdl-38814980

ABSTRACT

Exceptions to Mendelian inheritance often highlight novel chromosomal behaviors. The maize Pl1-Rhoades allele conferring plant pigmentation can display inheritance patterns deviating from Mendelian expectations in a behavior known as paramutation. However, the chromosome features mediating such exceptions remain unknown. Here we show that small RNA production reflecting RNA polymerase IV function within a distal downstream set of five tandem repeats is coincident with meiotically-heritable repression of the Pl1-Rhoades transcription unit. A related pl1 haplotype with three, but not one with two, repeat units also displays the trans-homolog silencing typifying paramutations. 4C interactions, CHD3a-dependent small RNA profiles, nuclease sensitivity, and polyadenylated RNA levels highlight a repeat subregion having regulatory potential. Our comparative and mutant analyses show that transcriptional repression of Pl1-Rhoades correlates with 24-nucleotide RNA production and cytosine methylation at this subregion indicating the action of a specific DNA-dependent RNA polymerase complex. These findings support a working model in which pl1 paramutation depends on trans-chromosomal RNA-directed DNA methylation operating at a discrete cis-linked and copy-number-dependent transcriptional regulatory element.


Subject(s)
Gene Expression Regulation, Plant , Tandem Repeat Sequences , Zea mays , Alleles , DNA Methylation , Haplotypes , Mutation , Pigmentation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Tandem Repeat Sequences/genetics , Zea mays/genetics
10.
Cell ; 187(9): 2336-2341.e5, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38582080

ABSTRACT

The Genome Aggregation Database (gnomAD), widely recognized as the gold-standard reference map of human genetic variation, has largely overlooked tandem repeat (TR) expansions, despite the fact that TRs constitute ∼6% of our genome and are linked to over 50 human diseases. Here, we introduce the TR-gnomAD (https://wlcb.oit.uci.edu/TRgnomAD), a biobank-scale reference of 0.86 million TRs derived from 338,963 whole-genome sequencing (WGS) samples of diverse ancestries (39.5% non-European samples). TR-gnomAD offers critical insights into ancestry-specific disease prevalence using disparities in TR unit number frequencies among ancestries. Moreover, TR-gnomAD is able to differentiate between common, presumably benign TR expansions, which are prevalent in TR-gnomAD, from those potentially pathogenic TR expansions, which are found more frequently in disease groups than within TR-gnomAD. Together, TR-gnomAD is an invaluable resource for researchers and physicians to interpret TR expansions in individuals with genetic diseases.


Subject(s)
Genome, Human , Tandem Repeat Sequences , Humans , Tandem Repeat Sequences/genetics , Whole Genome Sequencing , Databases, Genetic , DNA Repeat Expansion/genetics , Genome-Wide Association Study
11.
Cancer Sci ; 115(6): 1851-1865, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581120

ABSTRACT

Aberrant expression of forkhead box transcription factor 1 (FOXM1) plays critical roles in a variety of human malignancies and predicts poor prognosis. However, little is known about the crosstalk between FOXM1 and long noncoding RNAs (lncRNAs) in tumorigenesis. The present study identifies a previously uncharacterized lncRNA XLOC_008672 in gastric cancer (GC), which is regulated by FOXM1 and possesses multiple copies of tandem repetitive sequences. LncRNA microarrays are used to screen differentially expressed lncRNAs in FOXM1 knockdown GC cells, and then the highest fold downregulation lncRNA XLOC_008672 is screened out. Sequence analysis reveals that the new lncRNA contains 62 copies of 37-bp tandem repeats. It is transcriptionally activated by FOXM1 and functions as a downstream effector of FOXM1 in GC cells through in vitro and in vivo functional assays. Elevated expression of XLOC_008672 is found in GC tissues and indicates worse prognosis. Mechanistically, XLOC_008672 can bind to small nuclear ribonucleoprotein polypeptide A (SNRPA), thereby enhancing mRNA stability of Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) and, consequently, facilitating GC cell proliferation and migration. Our study discovers a new uncharacterized lncRNA XLOC_008672 involved in GC carcinogenesis and progression. Targeting FOXM1/XLOC_008672/SNRPA/G3BP1 signaling axis might be a promising therapeutic strategy for GC.


Subject(s)
Carcinogenesis , Cell Proliferation , Forkhead Box Protein M1 , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding , Stomach Neoplasms , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , DNA Helicases , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Mice, Nude , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Prognosis , RNA Helicases , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Tandem Repeat Sequences/genetics
12.
Haematologica ; 109(8): 2459-2468, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38426285

ABSTRACT

Recent genomic studies in adult and pediatric acute myeloid leukemia (AML) demonstrated recurrent in-frame tandem duplications (TD) in exon 13 of upstream binding transcription factor (UBTF). These alterations, which account for approximately 4.3% of AML in childhood and about 3% in adult AML aged <60 years of age, are subtype-defining and associated with poor outcomes. Here, we provide a comprehensive investigation into the clinicopathological features of UBTF-TD myeloid neoplasms in childhood, including 89 unique pediatric AML and 6 myelodysplastic syndrome (MDS) cases harboring a tandem duplication in exon 13 of UBTF. We demonstrate that UBTF-TD myeloid tumors are associated with dysplastic features, low bone marrow blast infiltration, and low white blood cell count. Furthermore, using bulk and single-cell analyses, we confirm that UBTF-TD is an early and clonal event associated with a distinct transcriptional profile, whereas the acquisition of FLT3 or WT1 mutations is associated with more stem cell-like programs. Lastly, we report rare duplications within exon 9 of UBTF that phenocopy exon 13 duplications, expanding the spectrum of UBTF alterations in pediatric myeloid tumors. Collectively, we comprehensively characterize pediatric AML and MDS with UBTF-TD, and highlight key clinical and pathologic features that distinguish this new entity from other molecular subtypes of AML.


Subject(s)
Gene Duplication , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/pathology , Child , Male , Child, Preschool , Female , Adolescent , Tandem Repeat Sequences/genetics , Infant , Mutation , Exons/genetics , Transcription Factors/genetics
13.
EBioMedicine ; 101: 105027, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418263

ABSTRACT

BACKGROUND: Cardiomyopathy is a clinically and genetically heterogeneous heart condition that can lead to heart failure and sudden cardiac death in childhood. While it has a strong genetic basis, the genetic aetiology for over 50% of cardiomyopathy cases remains unknown. METHODS: In this study, we analyse the characteristics of tandem repeats from genome sequence data of unrelated individuals diagnosed with cardiomyopathy from Canada and the United Kingdom (n = 1216) and compare them to those found in the general population. We perform burden analysis to identify genomic and epigenomic features that are impacted by rare tandem repeat expansions (TREs), and enrichment analysis to identify functional pathways that are involved in the TRE-associated genes in cardiomyopathy. We use Oxford Nanopore targeted long-read sequencing to validate repeat size and methylation status of one of the most recurrent TREs. We also compare the TRE-associated genes to those that are dysregulated in the heart tissues of individuals with cardiomyopathy. FINDINGS: We demonstrate that tandem repeats that are rarely expanded in the general population are predominantly expanded in cardiomyopathy. We find that rare TREs are disproportionately present in constrained genes near transcriptional start sites, have high GC content, and frequently overlap active enhancer H3K27ac marks, where expansion-related DNA methylation may reduce gene expression. We demonstrate the gene silencing effect of expanded CGG tandem repeats in DIP2B through promoter hypermethylation. We show that the enhancer-associated loci are found in genes that are highly expressed in human cardiomyocytes and are differentially expressed in the left ventricle of the heart in individuals with cardiomyopathy. INTERPRETATION: Our findings highlight the underrecognized contribution of rare tandem repeat expansions to the risk of cardiomyopathy and suggest that rare TREs contribute to ∼4% of cardiomyopathy risk. FUNDING: Government of Ontario (RKCY), The Canadian Institutes of Health Research PJT 175329 (RKCY), The Azrieli Foundation (RKCY), SickKids Catalyst Scholar in Genetics (RKCY), The University of Toronto McLaughlin Centre (RKCY, SM), Ted Rogers Centre for Heart Research (SM), Data Sciences Institute at the University of Toronto (SM), The Canadian Institutes of Health Research PJT 175034 (SM), The Canadian Institutes of Health Research ENP 161429 under the frame of ERA PerMed (SM, RL), Heart and Stroke Foundation of Ontario & Robert M Freedom Chair in Cardiovascular Science (SM), Bitove Family Professorship of Adult Congenital Heart Disease (EO), Canada Foundation for Innovation (SWS, JR), Canada Research Chair (PS), Genome Canada (PS, JR), The Canadian Institutes of Health Research (PS).


Subject(s)
Cardiomyopathies , Heart Defects, Congenital , Humans , Adult , Heart Defects, Congenital/genetics , Tandem Repeat Sequences/genetics , DNA Methylation , Cardiomyopathies/genetics , Ontario , Nerve Tissue Proteins/genetics
14.
PLoS One ; 19(1): e0295595, 2024.
Article in English | MEDLINE | ID: mdl-38271341

ABSTRACT

Mitochondria are known to play an essential role in the cell. These organelles contain their own DNA, which is divided in a coding and non-coding region (NCR). While much of the NCR's function is unknown, tandem repeats have been observed in several vertebrates, with extreme intra-individual, intraspecific and interspecific variation. Taking advantage of a new complete reference for the mitochondrial genome of the Afro-European Barn Owl (Tyto alba), as well as 172 whole genome-resequencing; we (i) describe the reference mitochondrial genome with a special focus on the repeats in the NCR, (ii) quantify the variation in number of copies between individuals, and (iii) explore the possible factors associated with the variation in the number of repetitions. The reference mitochondrial genome revealed a long (256bp) and a short (80bp) tandem repeat in the NCR region. The re-sequenced genomes showed a great variation in number of copies between individuals, with 4 to 38 copies of the Long and 6 to 135 copies of the short repeat. Among the factors associated with this variation between individuals, the tissue used for extraction was the most significant. The exact mechanisms of the formations of these repeats are still to be discovered and understanding them will help explain the maintenance of the polymorphism in the number of copies, as well as their interactions with the metabolism, the aging and health of the individuals.


Subject(s)
Genome, Mitochondrial , Strigiformes , Animals , Humans , DNA Copy Number Variations , Strigiformes/genetics , Base Sequence , Tandem Repeat Sequences/genetics
15.
Biochem Biophys Res Commun ; 692: 149349, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38056160

ABSTRACT

While it is well established that a mere 2% of human DNA nucleotides are involved in protein coding, the remainder of the DNA plays a vital role in the preservation of normal cellular genetic function. A significant proportion of tandem repeats (TRs) are present in non-coding DNA. TRs - specific sequences of nucleotides that entail numerous repetitions of a given fragment. In this study, we employed our novel algorithm grounded in finite automata theory, which we refer to as Dafna, to investigate for the first time the likelihood of these nucleotide sequences forming non-canonical DNA structures (NS). Such structures include G-quadruplexes, i-motifs, hairpins, and triplexes. The tandem repeats under consideration in our research encompassed sequences containing 1 to 6 nucleotides per repeated fragment. For comparison, we employed a set of randomly generated sequences of the same length (60 nucleotides) as a benchmark. The outcomes of our research exposed a disparity between the potential for NS formation in random sequences and tandem repeats. Our findings affirm that the propensity of DNA and RNA to form NS is closely tied to various genetic disorders, including Huntington's disease, Fragile X syndrome, and Friedreich's ataxia. In the concluding discussion, we present a proposal for a new therapeutic mechanism to address these diseases. This novel approach revolves around the ability of specific nucleic acid fragments to form multiple types of NS.


Subject(s)
Clinical Relevance , Tandem Repeat Sequences , Humans , Tandem Repeat Sequences/genetics , DNA/chemistry , Base Sequence , Nucleotides
16.
Transl Psychiatry ; 13(1): 402, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38123544

ABSTRACT

Tandem repeats (TRs) are prevalent throughout the genome, constituting at least 3% of the genome, and often highly polymorphic. The high mutation rate of TRs, which can be orders of magnitude higher than single-nucleotide polymorphisms and indels, indicates that they are likely to make significant contributions to phenotypic variation, yet their contribution to schizophrenia has been largely ignored by recent genome-wide association studies (GWAS). Tandem repeat expansions are already known causative factors for over 50 disorders, while common tandem repeat variation is increasingly being identified as significantly associated with complex disease and gene regulation. The current review summarizes key background concepts of tandem repeat variation as pertains to disease risk, elucidating their potential for schizophrenia association. An overview of next-generation sequencing-based methods that may be applied for TR genome-wide identification is provided, and some key methodological challenges in TR analyses are delineated.


Subject(s)
Genome-Wide Association Study , Schizophrenia , Humans , Schizophrenia/genetics , Genome, Human , Tandem Repeat Sequences/genetics , Polymorphism, Single Nucleotide
17.
Sci Adv ; 9(47): eadj1261, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37992162

ABSTRACT

The biological role of the repetitive DNA sequences in the human genome remains an outstanding question. Recent long-read human genome assemblies have allowed us to identify a function for one of these repetitive regions. We have uncovered a tandem array of conserved primate-specific retrogenes encoding the protein Elongin A3 (ELOA3), a homolog of the RNA polymerase II (RNAPII) elongation factor Elongin A (ELOA). Our genomic analysis shows that the ELOA3 gene cluster is conserved among primates and the number of ELOA3 gene repeats is variable in the human population and across primate species. Moreover, the gene cluster has undergone concerted evolution and homogenization within primates. Our biochemical studies show that ELOA3 functions as a promoter-associated RNAPII pause-release elongation factor with distinct biochemical and functional features from its ancestral homolog, ELOA. We propose that the ELOA3 gene cluster has evolved to fulfil a transcriptional regulatory function unique to the primate lineage that can be targeted to regulate cellular hyperproliferation.


Subject(s)
Peptide Elongation Factors , RNA Polymerase II , Animals , Humans , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Peptide Elongation Factors/genetics , Primates/genetics , Elongin/genetics , Multigene Family , Tandem Repeat Sequences/genetics
18.
Emerg Top Life Sci ; 7(3): 361-381, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37905568

ABSTRACT

Long-read sequencing platforms provide unparalleled access to the structure and composition of all classes of tandemly repeated DNA from STRs to satellite arrays. This review summarizes our current understanding of their organization within the human genome, their importance with respect to disease, as well as the advances and challenges in understanding their genetic diversity and functional effects. Novel computational methods are being developed to visualize and associate these complex patterns of human variation with disease, expression, and epigenetic differences. We predict accurate characterization of this repeat-rich form of human variation will become increasingly relevant to both basic and clinical human genetics.


Subject(s)
DNA , Tandem Repeat Sequences , Humans , Tandem Repeat Sequences/genetics , Epigenesis, Genetic
19.
Nat Commun ; 14(1): 6746, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875492

ABSTRACT

De novo protein design methods can create proteins with folds not yet seen in nature. These methods largely focus on optimizing the compatibility between the designed sequence and the intended conformation, without explicit consideration of protein folding pathways. Deeply knotted proteins, whose topologies may introduce substantial barriers to folding, thus represent an interesting test case for protein design. Here we report our attempts to design proteins with trefoil (31) and pentafoil (51) knotted topologies. We extended previously described algorithms for tandem repeat protein design in order to construct deeply knotted backbones and matching designed repeat sequences (N = 3 repeats for the trefoil and N = 5 for the pentafoil). We confirmed the intended conformation for the trefoil design by X ray crystallography, and we report here on this protein's structure, stability, and folding behaviour. The pentafoil design misfolded into an asymmetric structure (despite a 5-fold symmetric sequence); two of the four repeat-repeat units matched the designed backbone while the other two diverged to form local contacts, leading to a trefoil rather than pentafoil knotted topology. Our results also provide insights into the folding of knotted proteins.


Subject(s)
Protein Folding , Proteins , Protein Conformation , Proteins/genetics , Proteins/chemistry , Protein Domains , Tandem Repeat Sequences/genetics
20.
BMC Ecol Evol ; 23(1): 55, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37749487

ABSTRACT

BACKGROUND: The sturgeon group has been economically significant worldwide due to caviar production. Sturgeons consist of 27 species in the world. Mitogenome data could be used to infer genetic diversity and investigate the evolutionary history of sturgeons. A limited number of complete mitogenomes in this family were sequenced. Here, we annotated the mitochondrial Huso huso genome, which revealed new aspects of this species. RESULTS: In this species, the mitochondrial genome consisted of 13 genes encoding proteins, 22tRNA and 2rRNA, and two non-coding regions that followed other vertebrates. In addition, H. huso had a pseudo-tRNA-Glu between ND6 and Cytb and a 52-nucleotide tandem repeat with two replications in 12S rRNA. This duplication event is probably related to the slipped strand during replication, which could remain in the strand due to mispairing during replication. Furthermore, an 82 bp repeat sequence with three replications was observed in the D-loop control region, which is usually visible in different species. Regulatory elements were also seen in the control region of the mitochondrial genome, which included termination sequences and conserved regulatory blocks. Genomic compounds showed the highest conservation in rRNA and tRNA, while protein-encoded genes and nonencoded regions had the highest divergence. The mitochondrial genome was phylogenetically assayed using 12 protein-encoding genes. CONCLUSIONS: In H. huso sequencing, we identified a distinct genome organization relative to other species that have never been reported. In recent years, along with the advancement in sequencing identified more genome rearrangements. However, it is an essential aspect of researching the evolution of the mitochondrial genome that needs to be recognized.


Subject(s)
Genome, Mitochondrial , Animals , Genome, Mitochondrial/genetics , Fishes/genetics , Tandem Repeat Sequences/genetics , RNA, Transfer/genetics
SELECTION OF CITATIONS
SEARCH DETAIL