Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.265
Filter
1.
Int J Med Sci ; 21(11): 2052-2064, 2024.
Article in English | MEDLINE | ID: mdl-39239552

ABSTRACT

This study unveils the pivotal roles of taurine metabolic reprogramming and its implications in the development and progression of Abdominal Aortic Aneurysm (AAA). Leveraging an integrated approach that combines single-cell RNA sequencing (scRNA-seq) and Weighted Gene Co-expression Network Analysis (WGCNA), our research investigates the intricate transcriptional and gene expression dynamics crucial to AAA. Our findings uniquely link metabolic shifts to the integrity of the extracellular matrix (ECM) and the functionality of smooth muscle cells (SMCs), key elements in the pathology of AAA. Utilizing scRNA-seq data from a mouse model (GSE152583 dataset), we identified critical alterations in cellular composition during AAA progression, particularly highlighting shifts in fibroblasts and inflammatory cells. Concurrently, WGCNA of human AAA tissue samples has outlined distinct gene expression patterns correlated with disease severity and progression, offering comprehensive insights into both molecular and cellular disease mechanisms. Moreover, this study introduces innovative metabolic profiling techniques to identify differential metabolites in AAA, integrating extensive metabolomic analyses with pathway enrichment strategies. This novel approach has pinpointed potential biomarkers and therapeutic targets, notably within taurine metabolism pathways, crucial for crafting non-surgical interventions. By merging state-of-the-art bioinformatics with thorough molecular analysis, our study not only enhances the understanding of AAA's complex pathophysiology but also catalyzes the development of targeted therapeutic strategies. This research represents a significant advancement in the molecular characterization of AAA, with substantial implications for its future diagnosis and treatment strategies.


Subject(s)
Aortic Aneurysm, Abdominal , Disease Progression , Taurine , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/genetics , Taurine/metabolism , Animals , Humans , Mice , Disease Models, Animal , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Male , Single-Cell Analysis , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Metabolomics/methods , Metabolic Reprogramming
2.
Sci Signal ; 17(854): eadt0770, 2024 09 17.
Article in English | MEDLINE | ID: mdl-39288217

ABSTRACT

The taurine metabolite N-acetyltaurine protects mice from diet-induced obesity by reducing food intake.


Subject(s)
Obesity , Taurine , Taurine/pharmacology , Taurine/metabolism , Animals , Obesity/metabolism , Obesity/drug therapy , Mice , Appetite/drug effects , Humans , Eating/drug effects
3.
Nature ; 633(8028): 182-188, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39112712

ABSTRACT

Taurine is a conditionally essential micronutrient and one of the most abundant amino acids in humans1-3. In endogenous taurine metabolism, dedicated enzymes are involved in the biosynthesis of taurine from cysteine and in the downstream metabolism of secondary taurine metabolites4,5. One taurine metabolite is N-acetyltaurine6. Levels of N-acetyltaurine are dynamically regulated by stimuli that alter taurine or acetate flux, including endurance exercise7, dietary taurine supplementation8 and alcohol consumption6,9. So far, the identities of the enzymes involved in N-acetyltaurine metabolism, and the potential functions of N-acetyltaurine itself, have remained unknown. Here we show that the body mass index associated orphan enzyme phosphotriesterase-related (PTER)10 is a physiological N-acetyltaurine hydrolase. In vitro, PTER catalyses the hydrolysis of N-acetyltaurine to taurine and acetate. In mice, PTER is expressed in the kidney, liver and brainstem. Genetic ablation of Pter in mice results in complete loss of tissue N-acetyltaurine hydrolysis activity and a systemic increase in N-acetyltaurine levels. After stimuli that increase taurine levels, Pter knockout mice exhibit reduced food intake, resistance to diet-induced obesity and improved glucose homeostasis. Administration of N-acetyltaurine to obese wild-type mice also reduces food intake and body weight in a GFRAL-dependent manner. These data place PTER into a central enzymatic node of secondary taurine metabolism and uncover a role for PTER and N-acetyltaurine in body weight control and energy balance.


Subject(s)
Body Weight , Eating , Hydrolases , Obesity , Taurine , Animals , Female , Humans , Male , Mice , Eating/physiology , Glucose/metabolism , Homeostasis , Hydrolases/deficiency , Hydrolases/genetics , Hydrolases/metabolism , Hydrolysis , Kidney/metabolism , Liver/metabolism , Liver/enzymology , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism , Obesity/enzymology , Taurine/metabolism , Taurine/analogs & derivatives , Carrier Proteins/genetics , Carrier Proteins/metabolism , Acetic Acid/metabolism , Exercise , Body Mass Index , Weight Loss , Secondary Metabolism , Energy Metabolism , Brain Stem/metabolism
4.
Sci Rep ; 14(1): 19546, 2024 08 22.
Article in English | MEDLINE | ID: mdl-39174711

ABSTRACT

Aging-related biochemical changes in nerve cells lead to dysfunctional synapses and disrupted neuronal circuits, ultimately affecting vital processes such as brain plasticity, learning, and memory. The imbalance between excitation and inhibition in synaptic function during aging contributes to cognitive impairment, emphasizing the importance of compensatory mechanisms. Fear conditioning-related plasticity of the somatosensory barrel cortex, relying on the proper functioning and extensive up regulation of the GABAergic system, in particular interneurons containing somatostatin, is compromised in aging (one-year-old) mice. The present research explores two potential interventions, taurine supplementation, and environmental enrichment, revealing their effectiveness in supporting learning-induced plasticity in the aging mouse brain. They do not act through a mechanism normalizing the Glutamate/GABA balance that is disrupted in aging. Still, they allow for increased somatostatin levels, an effect observed in young animals after learning. These findings highlight the potential of lifestyle interventions and diet supplementation to mitigate age-related cognitive decline by promoting experience-dependent plasticity.


Subject(s)
Aging , Dietary Supplements , Neuronal Plasticity , Taurine , Animals , Neuronal Plasticity/physiology , Aging/physiology , Taurine/metabolism , Taurine/pharmacology , Taurine/administration & dosage , Mice , Male , Somatostatin/metabolism , Mice, Inbred C57BL , Learning/physiology , Environment , Fear/physiology , gamma-Aminobutyric Acid/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/prevention & control , Brain/metabolism , Brain/physiology
5.
Brain Behav Immun ; 121: 280-290, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39032543

ABSTRACT

Converging data show that exposure to maternal immune activation (MIA) in utero alters brain development in animals and increases the risk of neurodevelopmental disorders in humans. A recently developed non-human primate MIA model affords opportunities for studies with uniquely strong translational relevance to human neurodevelopment. The current longitudinal study used 1H-MRS to investigate the developmental trajectory of prefrontal cortex metabolites in male rhesus monkey offspring of dams (n = 14) exposed to a modified form of the inflammatory viral mimic, polyinosinic:polycytidylic acid (Poly IC), in the late first trimester. Brain metabolites in these animals were compared to offspring of dams that received saline (n = 10) or no injection (n = 4). N-acetylaspartate (NAA), glutamate, creatine, choline, myo-inositol, taurine, and glutathione were estimated from PRESS and MEGA-PRESS acquisitions obtained at 6, 12, 24, 36, and 45 months of age. Prior investigations of this cohort reported reduced frontal cortical gray and white matter and subtle cognitive impairments in MIA offspring. We hypothesized that the MIA-induced neurodevelopmental changes would extend to abnormal brain metabolite levels, which would be associated with the observed cognitive impairments. Prefrontal NAA was significantly higher in the MIA offspring across all ages (p < 0.001) and was associated with better performance on the two cognitive measures most sensitive to impairment in the MIA animals (both p < 0.05). Myo-inositol was significantly lower across all ages in MIA offspring but was not associated with cognitive performance. Taurine was elevated in MIA offspring at 36 and 45 months. Glutathione did not differ between groups. MIA exposure in male non-human primates is associated with altered prefrontal cortex metabolites during childhood and adolescence. A positive association between elevated NAA and cognitive performance suggests the hypothesis that elevated NAA throughout these developmental stages reflects a protective or resilience-related process in MIA-exposed offspring. The potential relevance of these findings to human neurodevelopmental disorders is discussed.


Subject(s)
Brain , Macaca mulatta , Poly I-C , Prefrontal Cortex , Prenatal Exposure Delayed Effects , Animals , Male , Female , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/immunology , Pregnancy , Brain/metabolism , Poly I-C/pharmacology , Prefrontal Cortex/metabolism , Inositol/metabolism , Aspartic Acid/metabolism , Aspartic Acid/analogs & derivatives , Creatine/metabolism , Taurine/metabolism , Choline/metabolism , Disease Models, Animal , Glutamic Acid/metabolism , Glutathione/metabolism , Longitudinal Studies
6.
Gene ; 928: 148786, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39047959

ABSTRACT

Cysteine dioxygenase (CDO) is a rate-limiting enzyme in taurine biosynthesis. Taurine synthesis is limited in marine fish, and most taurine is provided by their diet. Although a nutritional study indicated that the transcription of ToCDO was significantly altered by treatment with 10.5 g/kg taurine in food, the regulatory mechanism of this biosynthesis has not been fully elucidated. In the present study, we identified the sequence features of Trachinotus ovatus cysteine dioxygenase (ToCDO), which consists of 201 amino acids. It is characterized by being a member of the cupin superfamily with two conserved cupin motifs located at amino acids 82-102 and 131-145 and with a glutamate residue substituted by a cysteine in its first motif. Moreover, phylogenetic analysis revealed that the similarity of the amino acid sequences between ToCDO and other species ranged from 84.58 % to 91.54 %. Furthermore, a high-performance liquid-phase assay of the activity of recombinantly purified ToCDO protein showed that ToCDO could catalyse the oxidation of cysteine to produce cysteine sulphite. Furthermore, the core promoter region of CDO was identified as -1182-+1 bp. Mutational analysis revealed that the HNF4α and NF-κB sites significantly and actively affected the transcription of CDO. To further investigate the binding of these two loci to the CDO promoter, an electrophoretic shift assay (EMSA) was performed to verify that HNF4α-1 and NF-κB-1 interact with the binding sites of the promoter and promote CDO gene expression, respectively. Additionally, cotransfection experiments showed that HNF4α or both HNF4α and NF-κB can significantly influence CDO promoter activity, and HNF4α was the dominant factor. Thus, HNF4α and NF-κB play important roles in CDO expression and may influence taurine biosynthesis within T. ovatus by regulating CDO expression.


Subject(s)
Cysteine Dioxygenase , Hepatocyte Nuclear Factor 4 , NF-kappa B , Taurine , Animals , Taurine/metabolism , Taurine/biosynthesis , Cysteine Dioxygenase/genetics , Cysteine Dioxygenase/metabolism , Hepatocyte Nuclear Factor 4/metabolism , Hepatocyte Nuclear Factor 4/genetics , NF-kappa B/metabolism , NF-kappa B/genetics , Promoter Regions, Genetic , Phylogeny , Fish Proteins/genetics , Fish Proteins/metabolism , Amino Acid Sequence , Fishes/genetics , Fishes/metabolism
7.
Infect Immun ; 92(8): e0022424, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38975764

ABSTRACT

Colonization of the human stomach with Helicobacter pylori strains producing active forms of the secreted toxin VacA is associated with an increased risk of peptic ulcer disease and gastric cancer, compared with colonization with strains producing hypoactive forms of VacA. Previous studies have shown that active s1m1 forms of VacA cause cell vacuolation and mitochondrial dysfunction. In this study, we sought to define the cellular metabolic consequences of VacA intoxication. Untargeted metabolomic analyses revealed that several hundred metabolites were significantly altered in VacA-treated gastroduodenal cells (AGS and AZ-521) compared with control cells. Pathway analysis suggested that VacA caused alterations in taurine and hypotaurine metabolism. Treatment of cells with the purified active s1m1 form of VacA, but not hypoactive s2m1 or Δ6-27 VacA-mutant proteins (defective in membrane channel formation), caused reductions in intracellular taurine and hypotaurine concentrations. Supplementation of the tissue culture medium with taurine or hypotaurine protected AZ-521 cells against VacA-induced cell death. Untargeted global metabolomics of VacA-treated AZ-521 cells or AGS cells in the presence or absence of extracellular taurine showed that taurine was the main intracellular metabolite significantly altered by extracellular taurine supplementation. These results indicate that VacA causes alterations in cellular taurine metabolism and that repletion of taurine is sufficient to attenuate VacA-induced cell death. We discuss these results in the context of previous literature showing the important role of taurine in cell physiology and the pathophysiology or treatment of multiple pathologic conditions, including gastric ulcers, cardiovascular disease, malignancy, inflammatory diseases, and other aging-related disorders.


Subject(s)
Bacterial Proteins , Helicobacter pylori , Taurine , Taurine/metabolism , Taurine/analogs & derivatives , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Helicobacter pylori/metabolism , Helicobacter Infections/microbiology , Helicobacter Infections/metabolism , Cell Line , Host-Pathogen Interactions , Metabolomics
8.
Adv Microb Physiol ; 85: 145-200, 2024.
Article in English | MEDLINE | ID: mdl-39059820

ABSTRACT

The human gut flora comprises a dynamic network of bacterial species that coexist in a finely tuned equilibrium. The interaction with intestinal bacteria profoundly influences the host's development, metabolism, immunity, and overall health. Furthermore, dysbiosis, a disruption of the gut microbiota, can induce a variety of diseases, not exclusively associated with the intestinal tract. The increased consumption of animal protein, high-fat and high-sugar diets in Western countries has been implicated in the rise of chronic and inflammatory illnesses associated with dysbiosis. In particular, this diet leads to the overgrowth of sulfide-producing bacteria, known as sulfidogenic bacteria, which has been linked to inflammatory bowel diseases and colorectal cancer, among other disorders. Sulfidogenic bacteria include sulfate-reducing bacteria (Desulfovibrio spp.) and Bilophila wadsworthia among others, which convert organic and inorganic sulfur compounds to sulfide through the dissimilatory sulfite reduction pathway. At high concentrations, sulfide is cytotoxic and disrupts the integrity of the intestinal epithelium and mucus barrier, triggering inflammation. Besides producing sulfide, B. wadsworthia has revealed significant pathogenic potential, demonstrated in the ability to cause infection, adhere to intestinal cells, promote inflammation, and compromise the integrity of the colonic mucus layer. This review delves into the mechanisms by which taurine and sulfide-driven gut dysbiosis contribute to the pathogenesis of sulfidogenic bacteria, and discusses the role of these gut microbes, particularly B. wadsworthia, in human diseases.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/physiology , Dysbiosis/microbiology , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/metabolism , Sulfides/metabolism , Desulfovibrio/metabolism , Bilophila/metabolism , Taurine/metabolism , Animals , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/metabolism , Bacteria/metabolism , Bacteria/genetics
9.
Biochem Pharmacol ; 226: 116386, 2024 08.
Article in English | MEDLINE | ID: mdl-38909788

ABSTRACT

Taurine is a sulfur-containing amino acid found in many cell organelles that plays a wide range of biological roles, including bile salt production, osmoregulation, oxidative stress reduction, and neuromodulation. Taurine treatments have also been shown to ameliorate the onset and development of many diseases, including hypertension, fatty liver, neurodegenerative diseases and ischemia-reperfusion injury, by exerting antioxidant, anti-inflammatory, and antiapoptotic effects. The endoplasmic reticulum (ER) is a dynamic organelle involved in a wide range of cellular functions, including lipid metabolism, calcium storage and protein stabilization. Under stress, the disruption of the ER environment leads to the accumulation of misfolded proteins and a characteristic stress response called the unfolded protein response (UPR). The UPR protects cells from stress and helps to restore cellular homeostasis, but its activation promotes cell death under prolonged ER stress. Recent studies have shown that ER stress is closely related to the onset and development of many diseases. This article reviews the beneficial effects and related mechanisms of taurine by regulating the ER in different physiological and pathological states, with the aim of providing a reference for further research and clinical applications.


Subject(s)
Endoplasmic Reticulum Stress , Endoplasmic Reticulum , Taurine , Taurine/metabolism , Taurine/pharmacology , Humans , Animals , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/physiology , Unfolded Protein Response/drug effects , Unfolded Protein Response/physiology
10.
Brain Res ; 1838: 148998, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38754802

ABSTRACT

Altered extracellular amino acid concentrations following concussion or mild traumatic brain injury can result in delayed neuronal damage through overactivation of NMDA glutamatergic receptors. However, the consequences of repeated concussions prior to complete recovery are not well understood. In this study, we utilized in vivo cerebral microdialysis and a weight-drop model to investigate the acute neurochemical response to single and repeated concussions in adult rats that were fully conscious. A microdialysis probe was inserted into the hippocampus and remained in place during impact. Primary outcomes included concentrations of glutamate, GABA, taurine, glycine, glutamine, and serine, while secondary outcomes were righting times and excitotoxic indices. Compared to sham injury, the first concussion resulted in significant increases in glutamate, GABA, taurine, and glycine levels, longer righting times, and higher excitotoxic indices. Following the second concussion, righting times were significantly longer, suggesting cumulative effects of repeated concussion while only partial increases were observed in glutamate and taurine levels. GABA and glycine levels, and excitotoxic indices were comparable to sham injury. These findings suggest that single and repeated concussions may induce acute increases in several amino acids, while repeated concussions could exacerbate neurological symptoms despite less pronounced neurochemical changes.


Subject(s)
Brain Concussion , Disease Models, Animal , Microdialysis , Rats, Sprague-Dawley , Animals , Brain Concussion/metabolism , Microdialysis/methods , Male , Rats , Hippocampus/metabolism , gamma-Aminobutyric Acid/metabolism , Taurine/metabolism , Glutamic Acid/metabolism , Glycine/metabolism
11.
Article in English | MEDLINE | ID: mdl-38642610

ABSTRACT

The Pacific oyster Crassostrea gigas is rich in taurine, which is crucial for its adaptation to the fluctuating intertidal environment and presents significant potential in improving taurine nutrition and boosting immunity in humans. Cysteine dioxygenase (CDO) is a key enzyme involved in the initial step of taurine biosynthesis and plays a crucial role in regulating taurine content in the body. In the present study, polymorphisms of CDO gene in C. gigas (CgCDO) and their association with taurine content were evaluated in 198 individuals. A total of 24 single nucleotide polymorphism (SNP) loci were identified in the exonic region of CgCDO gene by direct sequencing. Among these SNPs, c.279G>A and c.287C>A were found to be significantly associated with taurine content, with the GG and AA genotype at the two loci exhibiting enhanced taurine accumulation (p < 0.05). Haplotype analysis revealed that the 279GG/287AA haplotype had the highest taurine content of 29.24 mg/g, while the 279AA/287CC haplotype showed the lowest taurine content of 21.19 mg/g. These results indicated that the SNPs of CgCDO gene could influence the taurine content in C. gigas and have potential applications in the selective breeding of high-taurine varieties.


Subject(s)
Crassostrea , Cysteine Dioxygenase , Polymorphism, Single Nucleotide , Taurine , Taurine/metabolism , Crassostrea/genetics , Crassostrea/metabolism , Crassostrea/enzymology , Animals , Cysteine Dioxygenase/genetics , Cysteine Dioxygenase/metabolism , Haplotypes
12.
Cell ; 187(9): 2288-2304.e27, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38565142

ABSTRACT

Taurine is used to bolster immunity, but its effects on antitumor immunity are unclear. Here, we report that cancer-related taurine consumption causes T cell exhaustion and tumor progression. The taurine transporter SLC6A6 is correlated with aggressiveness and poor outcomes in multiple cancers. SLC6A6-mediated taurine uptake promotes the malignant behaviors of tumor cells but also increases the survival and effector function of CD8+ T cells. Tumor cells outcompete CD8+ T cells for taurine by overexpressing SLC6A6, which induces T cell death and malfunction, thereby fueling tumor progression. Mechanistically, taurine deficiency in CD8+ T cells increases ER stress, promoting ATF4 transcription in a PERK-JAK1-STAT3 signaling-dependent manner. Increased ATF4 transactivates multiple immune checkpoint genes and induces T cell exhaustion. In gastric cancer, we identify a chemotherapy-induced SP1-SLC6A6 regulatory axis. Our findings suggest that tumoral-SLC6A6-mediated taurine deficiency promotes immune evasion and that taurine supplementation reinvigorates exhausted CD8+ T cells and increases the efficacy of cancer therapies.


Subject(s)
CD8-Positive T-Lymphocytes , Membrane Glycoproteins , Taurine , Taurine/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Humans , Mice , Cell Line, Tumor , Mice, Inbred C57BL , Endoplasmic Reticulum Stress , Activating Transcription Factor 4/metabolism , Signal Transduction , Female , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , STAT3 Transcription Factor/metabolism
13.
Amino Acids ; 56(1): 32, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637413

ABSTRACT

Diabetic neuropathy (DN) is a common neurological complication caused by diabetes mellitus (DM). Axonal degeneration is generally accepted to be the major pathological change in peripheral DN. Taurine has been evidenced to be neuroprotective in various aspects, but its effect on spinal cord axon injury (SCAI) in DN remains barely reported. This study showed that taurine significantly ameliorated axonal damage of spinal cord (SC), based on morphological and functional analyses, in a rat model of DN induced by streptozotocin (STZ). Taurine was also found to induce neurite outgrowth in cultured cerebral cortex neurons with high glucose exposure. Moreover, taurine up-regulated the expression of nerve growth factor (NGF) and neurite outgrowth relative protein GAP-43 in rat DN model and cultured cortical neurons/VSC4.1 cells. Besides, taurine increased the activating phosphorylation signals of TrkA, Akt, and mTOR. Mechanistically, the neuroprotection by taurine was related to the NGF-pAKT-mTOR axis, because either NGF-neutralizing antibody or Akt or mTOR inhibitors was found to attenuate its beneficial effects. Together, our results demonstrated that taurine promotes spinal cord axon repair in a model of SCAI in STZ-induced diabetic rats, mechanistically associating with the NGF-dependent activation of Akt/mTOR pathway.


Subject(s)
Diabetes Mellitus, Experimental , Proto-Oncogene Proteins c-akt , Animals , Rats , Axons/metabolism , Axons/pathology , Diabetes Mellitus, Experimental/metabolism , Nerve Growth Factor/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Taurine/pharmacology , Taurine/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
14.
J Cell Mol Med ; 28(8): e18257, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526033

ABSTRACT

This study aims to investigate the mechanism of the anti-atherosclerosis effect of Huayu Qutan Recipe (HYQT) on the inhibition of foam cell formation. In vivo, the mice were randomly divided into three groups: CTRL group, MOD group and HYQT group. The HYQT group received HYQT oral administration twice a day (20.54 g/kg/d), and the plaque formation in ApoE-/- mice was observed using haematoxylin-eosin (HE) staining and oil red O (ORO) staining. The co-localization of aortic macrophages and lipid droplets (LDs) was examined using fluorescent labelling of CD11b and BODIPY fluorescence probe. In vitro, RAW 264.7 cells were exposed to 50 µg/mL ox-LDL for 48 h and then treated with HYQT for 24 h. The accumulation of LDs was evaluated using ORO and BODIPY. Cell viability was assessed using the CCK-8 assay. The co-localization of LC3b and BODIPY was detected via immunofluorescence and fluorescence probe. LysoTracker Red and BODIPY 493/503 were used as markers for lysosomes and LDs, respectively. Autophagosome formation were observed via transmission electron microscopy. The levels of LC3A/B II/LC3A/B I, p-mTOR/mTOR, p-4EBP1/4EBP1, p-P70S6K/P70S6K and TFEB protein level were examined via western blotting, while SQSTM1/p62, Beclin1, ABCA1, ABCG1 and SCARB1 were examined via qRT-PCR and western blotting. The nuclear translocation of TFEB was detected using immunofluorescence. The components of HYQT medicated serum were determined using Q-Orbitrap high-resolution MS analysis. Molecular docking was employed to identify the components of HYQT medicated serum responsible for the mTOR signalling pathway. The mechanism of taurine was illustrated. HYQT has a remarkable effect on atherosclerotic plaque formation and blood lipid level in ApoE-/- mice. HYQT decreased the co-localization of CD11b and BODIPY. HYQT (10% medicated serum) reduced the LDs accumulation in RAW 264.7 cells. HYQT and RAPA (rapamycin, a mTOR inhibitor) could promote cholesterol efflux, while chloroquine (CQ, an autophagy inhibitor) weakened the effect of HYQT. Moreover, MHY1485 (a mTOR agonist) also mitigated the effects of HYQT by reduced cholesterol efflux. qRT-PCR and WB results suggested that HYQT improved the expression of the proteins ABCA1, ABCG1 and SCARB1.HYQT regulates ABCA1 and SCARB1 protein depending on the mTORC1/TFEB signalling pathway. However, the activation of ABCG1 does not depend on this pathway. Q-Orbitrap high-resolution MS analysis results demonstrated that seven core compounds have good binding ability to the mTOR protein. Taurine may play an important role in the mechanism regulation. HYQT may reduce cardiovascular risk by promoting cholesterol efflux and degrading macrophage-derived foam cell formation. It has been observed that HYQT and ox-LDL regulate lipophagy through the mTOR/TFEB signalling pathway, rather than the mTOR/4EBP1/P70S6K pathway. Additionally, HYQT is found to regulate cholesterol efflux through the mTORC1/TFEB/ABCA1-SCARB1 signal axis, while taurine plays a significant role in lipophagy.


Subject(s)
Atherosclerosis , Boron Compounds , Ribosomal Protein S6 Kinases, 70-kDa , Animals , Mice , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Cholesterol/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Molecular Docking Simulation , Foam Cells/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , TOR Serine-Threonine Kinases/metabolism , Autophagy , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Taurine/metabolism
15.
Biochem Pharmacol ; 222: 116103, 2024 04.
Article in English | MEDLINE | ID: mdl-38428825

ABSTRACT

Liver is a major organ that metabolizes sulfur amino acids cysteine, which is the substrate for the synthesis of many essential cellular molecules including GSH, taurine, and coenzyme A. Bile acid-activated farnesoid x receptor (FXR) inhibits cysteine dioxygenase type 1 (CDO1), which mediates hepatic cysteine catabolism and taurine synthesis. To define the impact of bile acid inhibition of CDO1 on hepatic sulfur amino acid metabolism and antioxidant capacity, we developed hepatocyte-specific CDO1 knockout mice (Hep-CDO1 KO) and hepatocyte specific CDO1 transgenic mice (Hep-CDO1 Tg). Liver metabolomics revealed that genetic deletion of hepatic CDO1 reduced de novo taurine synthesis but had no impact on hepatic taurine abundance or bile acid conjugation. Consistent with reduced cysteine catabolism, Hep-CDO1 KO mice showed increased hepatic cysteine abundance but unaltered methionine cycle intermediates and coenzyme A synthesis. Upon acetaminophen overdose, Hep-CDO1 KO mice showed increased GSH synthesis capacity and alleviated liver injury. In contrast, hepatic CDO1 overexpression in Hep-CDO1 Tg mice stimulated hepatic cysteine to taurine conversion, resulting in reduced hepatic cysteine abundance. However, Hep-CDO1 Tg mice and WT showed similar susceptibility to acetaminophen-induced liver injury. Hep-CDO1 Tg mice showed similar hepatic taurine and coenzyme A compared to WT mice. In summary, these findings suggest that bile acid and FXR signaling inhibition of CDO1-mediated hepatic cysteine catabolism preferentially modulates hepatic GSH synthesis capacity and antioxidant defense, but has minimal effect on hepatic taurine and coenzyme A abundance. Repression of hepatic CDO1 may contribute to the hepatoprotective effects of FXR activation under certain pathologic conditions.


Subject(s)
Chemical and Drug Induced Liver Injury , Cysteine Dioxygenase , Drug-Related Side Effects and Adverse Reactions , Glutathione , Animals , Mice , Acetaminophen/metabolism , Acetaminophen/toxicity , Antioxidants/pharmacology , Bile Acids and Salts/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Coenzyme A/metabolism , Cysteine/metabolism , Cysteine Dioxygenase/genetics , Cysteine Dioxygenase/metabolism , Glutathione/metabolism , Hepatocytes/metabolism , Liver/metabolism , Mice, Inbred C57BL , Mice, Knockout , Taurine/pharmacology , Taurine/metabolism
16.
Psychopharmacology (Berl) ; 241(7): 1387-1398, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38480557

ABSTRACT

RATIONALE: Chronic amphetamine (AMPH) use leading to addiction results in adaptive changes within the central nervous system that persist well beyond the drug's elimination from the body and can precipitate relapse. Notably, alterations in glutamatergic neurotransmission play a crucial role in drug-associated behaviours. OBJECTIVES: This study aimed to identify changes induced by amphetamine in glutamate levels and the neuromodulators of glutamatergic neurotransmission (taurine and kynurenic acid) observable after 14 and 28 days of abstinence in key brain regions implicated in addiction: the cortex (Cx), nucleus accumbens (Acb), and dorsolateral striatum (CPu-L). METHODS: The rats were administered 12 doses of amphetamine (AMPH) intraperitoneally (i.p.) at 1.5 mg/kg. The behavioural response was evaluated through ultrasonic vocalizations (USV). High-performance liquid chromatography (HPLC) was used to measure the levels of glutamate, taurine, and kynurenic acid in the Cx, Acb, and CPu-L after 14 and 28 days of abstinence. RESULTS: AMPH administration led to sensitisation towards AMPH's rewarding effects, as evidenced by changes in USV. There was a noticeable decrease in kynurenic acid levels and an increase in both taurine and glutamate in the CPu-L, along with an increase in glutamate levels in the Cx, 28 days following the final AMPH injection. CONCLUSIONS: The most significant changes in the tissue levels of glutamate, taurine, and kynurenic acid were seen in the CPu-L 28 days after the last dose of AMPH. The emergence of these changes exclusively after 28 days suggests that the processes initiated by AMPH use and subsequent abstinence take time to become apparent and may be enduring. This could contribute to the incubation of craving and the risk of relapse. Developing pharmacological strategies to counteract the reduction in kynurenic acid induced by psychostimulants may provide new avenues for therapy development.


Subject(s)
Amphetamine , Central Nervous System Stimulants , Glutamic Acid , Kynurenic Acid , Synaptic Transmission , Taurine , Kynurenic Acid/metabolism , Animals , Male , Amphetamine/pharmacology , Glutamic Acid/metabolism , Rats , Taurine/metabolism , Taurine/pharmacology , Synaptic Transmission/drug effects , Central Nervous System Stimulants/pharmacology , Central Nervous System Stimulants/administration & dosage , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Rats, Wistar , Time Factors , Amphetamine-Related Disorders/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Reward
17.
Sci Rep ; 14(1): 7427, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548872

ABSTRACT

Alzheimer's disease (AD), a chronic neurodegenerative disorder, is the leading cause of dementia. Over-activated microglia is related to amyloid-beta (Aß) and phosphorylated tau (phospho-tau) accumulation in the AD brain. Taurine is an amino acid with multiple physiological functions including anti-inflammatory effects, and has been reported to be neuroprotective in AD. However, the role of taurine in microglia-mediated AD remains unclear. Here, we examined the effects of taurine on the brains of senescence-accelerated mouse prone 8 (SAMP8) mice by comparing those administered 1% taurine water with those administered distilled water (DW). We observed increased levels of taurine and taurine transporter (TAUT) in the brains of the taurine-treated mice compared with those of control mice. Immunohistochemical and Western blot analyses revealed that taurine significantly reduced the number of activated microglia, levels of phospho-tau and Aß deposit in the hippocampus and cortex. Triggering receptors expressed on myeloid cells-2 (TREM2) are known to protect against AD pathogenesis. Taurine upregulated TREM2 expression in the hippocampus and cortex. In conclusion, the present study suggests that taurine treatment may upregulate TREM2 to protect against microglia over-activation by decreasing the accumulation of phospho-tau and Aß; providing an insight into a novel preventive strategy in AD.


Subject(s)
Alzheimer Disease , Microglia , Mice , Animals , Microglia/metabolism , Taurine/pharmacology , Taurine/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Water/metabolism , Disease Models, Animal
18.
Sci Rep ; 14(1): 2686, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38302509

ABSTRACT

Doxorubicin (DOX) is an effective anticancer drug with potent antitumour activity. However, the application of DOX is limited by its adverse reactions, such as depression. Taurine can alleviate depression induced by multiple factors. However, it is still unclear whether and how taurine improves DOX-induced depression. To address this question, the aim of this study was to explore the potential mechanism by which taurine protects against DOX-induced depression. Mice were randomly divided into three groups (n = 8): (1) the control group, (2) the DOX group, and (3) the DOX + taurine group. The open field test (OFT), elevated plus maze test, and forced swim test (FST) were first performed to assess the effects of DOX and taurine on the behaviour of mice. Next, a combined transcriptomic and metabolomic analysis was performed to analyse the possible antidepressive effect of taurine. Taurine pretreatment increased the total distance travelled and speed of mice in the OFT, increased the number of entries into the open arm and the time spent in the open arm, and reduced the immobility time in the FST. In addition, 179 differential genes and 51 differentially abundant metabolites were detected in the DOX + taurine group compared to the DOX group. Furthermore, differential genes and differentially abundant metabolites were found to be jointly involved in 21 pathways, which may be closely related to the antidepressant effect of taurine. Taurine alleviated DOX-induced depressive behaviour. The various pathways identified in this study, such as the serotonergic synapse and the inflammatory mediator regulation of TRP channels, may be key regulatory pathways related to depression and antidepressant effects.


Subject(s)
Depression , Taurine , Mice , Animals , Depression/chemically induced , Depression/drug therapy , Depression/genetics , Taurine/metabolism , Doxorubicin/toxicity , Antidepressive Agents/pharmacology , Gene Expression Profiling
19.
J Pharmacol Sci ; 154(3): 175-181, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395518

ABSTRACT

Taurine (2-aminoethanesulfonic acid) is a free amino acid found ubiquitously and abundantly in mammalian tissues. Taurine content in the heart is approximately 20 mM, which is approximately 100 times higher than plasma concentration. The high intracellular concentration of taurine is maintained by the taurine transporter (TauT; Slc6a6). Taurine plays various roles, including the regulation of intracellular ion dynamics, calcium handling, and acting as an antioxidant in the heart. Some species, such as cats and foxes, have low taurine biosynthetic capacity, and dietary taurine deficiency can lead to disorders such as dilated cardiomyopathy and blindness. In humans, the relationship between dietary taurine deficiency and cardiomyopathy is not yet clear, but a genetic mutation related to the taurine transporter has been reported to be associated with dilated cardiomyopathy. On the other hand, many studies have shown an association between dietary taurine intake and age-related diseases. Notably, it has recently been reported that taurine declines with age and is associated with lifespan in worms and mice, as well as healthspan in mice and monkeys. In this review, we summarize the role of dietary and genetic taurine deficiency in the development of cardiomyopathy and aging.


Subject(s)
Cardiomyopathy, Dilated , Humans , Mice , Animals , Cardiomyopathy, Dilated/genetics , Heart , Aging/genetics , Taurine/metabolism , Mammals/metabolism
20.
Placenta ; 147: 59-67, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38325050

ABSTRACT

INTRODUCTION: Hypotaurine, a precursor to taurine, is known for its antioxidant properties and is prominently present in fetal plasma and the placenta. Our previous research revealed that ezrin-knockout mice experience fetal growth retardation, coinciding with reduced hypotaurine levels in fetal plasma. This study aims to elucidate the expression and role of hypotaurine transporters within the placenta. METHODS: We employed quantitative RT-PCR to measure mRNA expression of GAT transporter family members in the placenta during mid-to-late gestation. LC/MS/MS was used to analyze the distribution of hypotaurine in different placental subregions. Immunohistochemistry was utilized to examine the localization of GAT2 in mice. Placental hypotaurine uptake from fetal circulation was studied via umbilical perfusion in rats. RESULTS: Among hypotaurine transporters, GAT2 exhibited increased mRNA and protein expression in murine placenta during mid-to-late gestation. Notably, GAT2/Slc6a13 mRNA and hypotaurine were most concentrated in the labyrinth of murine placenta. In contrast, enzymes responsible for hypotaurine synthesis, such as cysteine dioxygenase, cysteine sulfinic acid decarboxylase, and 2-aminoethanethiol dioxygenase, showed minimal expression in the labyrinth. These findings suggest that GAT2 is a key determinant of hypotaurine levels in the placental labyrinth. Immunohistochemical examination unveiled that GAT2 was predominantly localized on the fetal-facing plasma membrane within syncytiotrophoblasts, which co-localized with ezrin. In rat umbilical perfusion experiments, the GAT2/3 and TauT inhibitor, SNAP-5114, significantly reduced hypotaurine extraction from fetal circulation to the placenta. DISCUSSION: The results suggest that GAT2 plays a pivotal role in the concentrative uptake of hypotaurine from fetal plasma within syncytiotrophoblasts of the placenta.


Subject(s)
Placenta , Tandem Mass Spectrometry , Taurine/analogs & derivatives , Rats , Mice , Pregnancy , Female , Animals , Placenta/metabolism , Trophoblasts/metabolism , Membrane Transport Proteins/metabolism , Cell Membrane/metabolism , Taurine/metabolism , Taurine/pharmacology , Mice, Knockout , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL