Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.273
Filter
1.
BMC Genomics ; 25(1): 724, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060998

ABSTRACT

BACKGROUND: The obligate intracellular bacterial family Chlamydiaceae comprises a number of different species that cause disease in various vertebrate hosts including humans. Chlamydia suis, primarily found in the gastrointestinal tract of pigs, is the only species of the Chlamydiaceae family to have naturally gained tetracycline resistance (TetR), through a genomic island (Tet-island), integrated into the middle of chromosomal invasin-like gene inv. Previous studies have hypothesised that the uptake of the Tet-island from a host outside the Chlamydiaceae family was a unique event, followed by spread among C. suis through homologous recombination. In vitro recombination studies have shown that Tet-island exchange between C. suis strains is possible. Our aim in this study was to gain a deeper understanding of the interclade recombination of the Tet-island, among currently circulating C. suis field strains compared to in vitro-generated recombinants, using published whole genome sequences of C. suis field strains (n = 35) and in vitro-generated recombinants (n = 63). RESULTS: We found that the phylogeny of inv better reflected the phylogeny of the Tet-island than that of the whole genome, supporting recombination rather than site-specific insertion as the means of transfer. There were considerable differences between the distribution of recombinations within in vitro-generated strains compared to that within the field strains. These differences are likely because in vitro-generated recombinants were selected for a tetracycline and rifamycin/rifampicin resistant background, leading to the largest peak of recombination across the Tet-island. Finally, we found that interclade recombinations across the Tet-island were more variable in length downstream of the Tet-island than upstream. CONCLUSIONS: Our study supports the hypothesis that the occurrence of TetR strains in both clades of C. suis came about through interclade recombination after a single ancestral horizontal gene transfer event.


Subject(s)
Chlamydia , Genomic Islands , Phylogeny , Recombination, Genetic , Tetracycline Resistance , Chlamydia/genetics , Tetracycline Resistance/genetics , Animals , Swine , Gene Transfer, Horizontal , Genome, Bacterial
3.
J Environ Manage ; 366: 121865, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39018858

ABSTRACT

Landfill leachate is an important source of microplastics (MPs) and antibiotic-resistance genes (ARGs). Here, in the presence of polystyrene MPs (PS-MPs) and polyethylene MPs (PE-MPs), the nitrogen and phosphorus removal effect and sludge structure performance were affected in an anaerobic-anoxic-aerobic system, a typical biological leachate treatment process. The abundance of tetracycline-resistance genes (tet genes) in biofilms on the two types of MP was significantly higher than that in the leachate and sludge, and the load on PE-MPs was higher than that on PS-MPs because of the porous structure of PE-MPs. Aging of the MPs increased their surface roughness and abundance of oxygen-containing functional groups and shaped the profile of ARGs in the MP biofilms. The biofilm biomass and growth rate on the two types of MP increased with the incubation time in the first 30 days, and was affected by environmental factors. Structural equation models and co-occurrence network analysis demonstrated that the MPs indirectly affected the spectrum of ARGs by affecting biofilm formation, and, to a lesser extent, had a direct impact on the selective enrichment of ARGs. We discuss the mechanisms of the relationships between MPs and ARGs in the leachate treatment system, which will have guiding significance for future research. Our data on the colonization of microorganisms and tet genes in MPs biofilms provide new evidence concerning the accumulation and transmission of these ARGs, and are important for understanding the mechanisms of MPs in spreading pollution.


Subject(s)
Biofilms , Microplastics , Tetracycline Resistance , Microplastics/toxicity , Biofilms/drug effects , Tetracycline Resistance/genetics , Water Pollutants, Chemical/toxicity , Bacteria/genetics , Bacteria/drug effects , Sewage/microbiology , Genes, Bacterial , Tetracycline/pharmacology
4.
Environ Sci Technol ; 58(31): 13950-13960, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39051425

ABSTRACT

Phototransformation is a key process affecting the fate of many antibiotics in the environment, but little is known about whether their photoproducts exert selective pressure on bacteria by inducing antibiotic resistance genes (ARGs). Here, we examined the expression of tetracycline resistance gene tet(M) of a fluorescent Escherichia coli whole-cell bioreporter influenced by the phototransformation of tetracycline. The presence of suspended smectite clay (montmorillonite or hectorite, 1.75 g/L) or dissolved humic substance (Pahokee Peat humic acid or Pahokee peat fulvic acid, 10 mg C/L) in aqueous solutions markedly facilitated the transformation of tetracycline (initially at 400 µg/L) with half-life shortened by 1.4-2.6 times. Despite the similar phototransformation ratios (80-90%) of the total loaded tetracycline after 60 min irradiation, the decreased ratios of cell fluorescence intensity (which was proportional to the expression amount of ARG tet(M)) were much higher with the two clays (94 and 93%) than with the two humic substances (44 and 69%) when compared to the respective dark controls. As illustrated by mass spectroscopic and chemical analyses, tetracycline was proposed to be mainly transformed to amide (ineffective in inducing ARGs) with the presence of clays by reaction with self-photosensitized singlet oxygen (1O2), while the humic substances might catalyze the production of another two demethylated and/or deaminated compounds (still effective in inducing ARGs) in addition to the amide compound via reaction with triplet excited state dissolved organic matter (3DOM*). As clay minerals and humic substances are important soil constituents and ubiquitously present in surface environments, the observed clay and humic-dependent photooxidation pathways of tetracycline and the differing selective pressures of the associated products highlight the need for monitoring the transformation compounds of antibiotics and provide critical insight into the development of antibiotic treatment protocols.


Subject(s)
Clay , Escherichia coli , Humic Substances , Photolysis , Tetracycline , Tetracycline/chemistry , Clay/chemistry , Aluminum Silicates/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Tetracycline Resistance
5.
Lett Appl Microbiol ; 77(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39020263

ABSTRACT

Oral Veillonella species are among the early colonizers of the human oral cavity. We constructed a small, single-selectable-marker shuttle plasmid, examined its ability to be transformed into diverse oral Veillonella strains, and assessed its potential use for expressing a gene encoding an oxygen-independent fluorescent protein, thus generating a fluorescent Veillonella parvula strain. Because tetracycline resistance is common in Veillonella, we replaced genes encoding ampicillin- and tetracycline-resistance in a previously described shuttle plasmid (pBSJL2) with a chloramphenicol acetyltransferase gene. The resulting plasmid pCF1135 was successfully introduced into four strains representing V. parvula and V. atypica by either natural transformation or electroporation. We then modified this plasmid to express a gene encoding an oxygen-independent fluorescent protein in V. parvula SKV38. The resulting strain yielded a fluorescence signal intensity ∼16 times higher than the wild type in microplate-based fluorimetry experiments. While fluorescence microscopy demonstrated that planktonic cells, colonies, and biofilms of fluorescent V. parvula could also be imaged, photobleaching was a significant issue. In conclusion, we anticipate this genetic system and information provided here will facilitate expanded studies of oral Veillonella species' properties and behavior.


Subject(s)
Mouth , Plasmids , Veillonella , Plasmids/genetics , Veillonella/genetics , Humans , Mouth/microbiology , Fluorescence , Biofilms/growth & development , Luminescent Proteins/genetics , Genetic Vectors , Electroporation , Microscopy, Fluorescence , Tetracycline Resistance/genetics
6.
Microbiol Spectr ; 12(9): e0049624, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39041815

ABSTRACT

Omadacycline and eravacycline are gradually being used as new tetracycline antibiotics for the clinical treatment of Gram-negative pathogens. Affected by various tetracycline-inactivating enzymes, there have been reports of resistance to eravacycline and omadacycline in recent years. We isolated a strain carrying the mobile tigecycline resistance gene tet(X4) from the feces of a patient in Zhejiang Province, China. The strain belongs to the rare ST485 sequence type. The isolate was identified as Klebsiella pneumoniae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The MICs of antimicrobial agents were determined using either the agar dilution method or the micro broth dilution method. The result showed that the isolate was resistant to eravacycline (MIC = 32 mg/L), omadacycline (MIC > 64 mg/L), and tigecycline (MIC > 32 mg/L). Whole-genome sequencing revealed that the tet(X4) resistance gene is located on the IncFII(pCRY) conjugative plasmid. tet(X4) is flanked by ISVsa3, and we hypothesize that this association contributes to the spread of the resistance gene. Plasmids were analyzed by S1-nuclease pulsed-field gel electrophoresis (S1-PFGE), Southern blotting, and electrotransformation experiment. We successfully transferred the plasmid carrying tet(X4) to the recipient bacteria by electrotransformation experiment. Compared with the DH-5α, the MICs of the transformant L3995-DH5α were increased by eight-fold for eravacycline and two-fold higher for omadacycline. Overall, the emergence of plasmid-borne tet(X4) resistance gene in a clinical isolate of K. pneumoniae ST485 underscores the essential requirement for the ongoing monitoring of tet(X4) to prevent and control its further dissemination in China.IMPORTANCEThere are still limited reports on Klebsiella pneumoniae strains harboring tetracycline-resistant genes in China, and K. pneumoniae L3995hy adds a new example to those positive for the tet(X4) gene. Importantly, our study raises concerns that plasmid-mediated resistance to omadacycline and eravacycline may spread further to a variety of ecological and clinical pathogens, limiting the choice of medication for extensively drug-resistant bacterial infections. Therefore, it is important to continue to monitor the prevalence and spread of tet(X4) and other tetracyclines resistance genes in K. pneumoniae and diverse bacterial populations.


Subject(s)
Anti-Bacterial Agents , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Plasmids , Tetracyclines , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Tetracyclines/pharmacology , Plasmids/genetics , Humans , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/microbiology , China , Tigecycline/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Tetracycline Resistance/genetics , Feces/microbiology
7.
ACS Infect Dis ; 10(6): 2196-2211, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38836553

ABSTRACT

The metabolic environment is responsible for antibiotic resistance, which highlights the way in which the antibiotic resistance mechanism works. Here, GC-MS-based metabolomics with iTRAQ-based proteomics was used to characterize a metabolic state in tetracycline-resistant Escherichia coli K12 (E. coli-RTET) compared with tetracycline-sensitive E. coli K12. The repressed pyruvate cycle against the elevation of the proton motive force (PMF) and ATP constructed the most characteristic feature as a consequence of tetracycline resistance. To understand the role of the elevated PMF in tetracycline resistance, PMF inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and the pH gradient were used to investigate how the elevation influences bacterial viability and intracellular antibiotic concentration. A strong synergy was detected between CCCP and tetracycline to the viability, which was consistent with increasing intracellular drug and decreasing external pH. Furthermore, E. coli-RTET and E. coli-RGEN with high and low PMF concentrations were susceptible to gentamicin and tetracycline, respectively. The elevated PMF in E. coli-RTET was attributed to the activation of other metabolic pathways, except for the pyruvate cycle, including a malate-oxaloacetate-phosphoenolpyruvate-pyruvate-malate cycle. These results not only revealed a PMF-dependent mechanism for tetracycline resistance but also provided a solution to tetracycline-resistant pathogens by aminoglycosides and aminoglycoside-resistant bacteria by tetracyclines.


Subject(s)
Anti-Bacterial Agents , Membrane Potentials , Tetracycline Resistance , Tetracycline , Anti-Bacterial Agents/pharmacology , Tetracycline/pharmacology , Membrane Potentials/drug effects , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Escherichia coli/drug effects , Escherichia coli K12/drug effects , Proton-Motive Force/drug effects , Microbial Sensitivity Tests , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Metabolomics , Hydrogen-Ion Concentration , Proteomics
8.
Environ Int ; 187: 108732, 2024 May.
Article in English | MEDLINE | ID: mdl-38728817

ABSTRACT

The spread of antibiotic resistance genes (ARGs) in agroecosystems through the application of animal manure is a global threat to human and environmental health. However, the adaptability and colonization ability of animal manure-derived bacteria determine the spread pathways of ARG in agroecosystems, which have rarely been studied. Here, we performed an invasion experiment by creating a synthetic communities (SynCom) with ten isolates from pig manure and followed its assembly during gnotobiotic cultivation of a soil-Arabidopsis thaliana (A. thaliana) system. We found that Firmicutes in the SynCom were efficiently filtered out in the rhizosphere, thereby limiting the entry of tetracycline resistance genes (TRGs) into the plant. However, Proteobacteria and Actinobacteria in the SynCom were able to establish in all compartments of the soil-plant system thereby spreading TRGs from manure to soil and plant. The presence of native soil bacteria prevented the establishment of manure-borne bacteria and effectively reduced the spread of TRGs. Achromobacter mucicolens and Pantoea septica were the main vectors for the entry of tetA into plants. Furthermore, doxycycline stress promoted the horizontal gene transfer (HGT) of the conjugative resistance plasmid RP4 within the SynCom in A. thaliana by upregulating the expression of HGT-related mRNAs. Therefore, this study provides evidence for the dissemination pathways of ARGs in agricultural systems through the invasion of manure-derived bacteria and HGT by conjugative resistance plasmids and demonstrates that the priority establishment of soil bacteria in the rhizosphere limited the spread of TRGs from pig manure to soil-plant systems.


Subject(s)
Manure , Rhizosphere , Soil Microbiology , Tetracycline Resistance , Manure/microbiology , Animals , Swine , Tetracycline Resistance/genetics , Arabidopsis/microbiology , Arabidopsis/genetics , Bacteria/genetics , Gene Transfer, Horizontal , Anti-Bacterial Agents/pharmacology
9.
Microbiol Spectr ; 12(6): e0011124, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38651886

ABSTRACT

Drug efflux systems have recently been recognized as a significant mechanism responsible for multidrug resistance in bacteria. In this study, we described the identification and characterization of a new chromosomally encoded efflux pump (SA00565) in Staphylococcus aureus. SA00565, which belongs to the drug/metabolite transporter (DMT) superfamily, was predicted to be a 10-transmembrane segment transporter. To evaluate the role of sa00565 in resistance, we generated sa00565 gene deletion mutant (Δsa00565) and assessed its susceptibility to 35 different antibiotic treatments. Our results demonstrated that the Δsa00565 mutant exhibited reduced resistance to tetracycline and doxycycline, with 64-fold and 12-fold decreased MICs, respectively. The mechanism of SA00565-mediated tetracycline resistance was demonstrated that SA00565 possesses the capability to efficiently extrud intracellular tetracycline into the environment. The efflux activity of SA00565 was further validated using EtBr accumulation and efflux assays. In summary, our study uncovered a previously unknown function of a DMT family transporter, which serves as a tetracycline efflux pump, thereby contributing to tetracycline resistance in S. aureus.IMPORTANCEIn this study, we addressed the significance of drug efflux systems in multidrug resistance of Staphylococcus aureus, focusing on the unexplored efflux pump SA00565 in the drug/metabolite transporter (DMT) superfamily. Through phylogenetic analysis, gene knockout, and overexpression experiments, we identified the role of SA00565 in antibiotic resistance. The Δsa00565 mutant showed increased susceptibility to tetracycline and doxycycline in disk diffusion assays, with significantly lower MICs compared to the WT. Remarkably, intracellular tetracycline concentration in the mutant was two- to threefold higher, indicating SA00565 actively eliminates intracellular tetracycline. Our findings emphasize the pivotal contribution of SA00565 to tetracycline antibiotic resistance in S. aureus, shedding light on its functional attributes within the DMT superfamily and providing valuable insights for combating multidrug resistance.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Membrane Transport Proteins , Microbial Sensitivity Tests , Staphylococcus aureus , Tetracycline , Tetracycline/pharmacology , Tetracycline/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Tetracycline Resistance/genetics , Humans , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Doxycycline/pharmacology
10.
BMC Infect Dis ; 24(1): 376, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575877

ABSTRACT

There is considerable interest in the use of doxycycline post exposure prophylaxis (PEP) to reduce the incidence of bacterial sexually transmitted infections (STIs). An important concern is that this could select for tetracycline resistance in these STIs and other species. We searched PubMed and Google Scholar, (1948-2023) for randomized controlled trials comparing tetracycline PEP with non-tetracycline controls. The primary outcome was antimicrobial resistance (AMR) to tetracyclines in all bacterial species with available data. Our search yielded 140 studies, of which three met the inclusion criteria. Tetracycline PEP was associated with an increasedprevalence of tetracycline resistance in Neisseria gonorrhoeae, but this effect was not statistically significant (Pooled OR 2.3, 95% CI 0.9-3.4). PEP had a marked effect on the N. gonorrhoeae tetracycline MIC distribution in the one study where this was assessed. Prophylactic efficacy was 100% at low MICs and 0% at high MICs. In the one study where this was assessed, PEP resulted in a significant increase in tetracycline resistance in commensal Neisseria species compared to the control group (OR 2.9, 95% CI 1.5-5.5) but no significant effect on the prevalence of tetracycline resistance in Staphylococcus aureus. The available evidence suggests that PEP with tetracyclines could be associated with selecting tetracycline resistance in N. gonorrhoeae and commensal Neisseria species.


Subject(s)
Gonorrhea , Sexually Transmitted Diseases , Humans , Tetracycline/pharmacology , Tetracycline/therapeutic use , Tetracycline Resistance , Post-Exposure Prophylaxis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Neisseria gonorrhoeae , Microbial Sensitivity Tests , Tetracyclines/pharmacology , Tetracyclines/therapeutic use , Mitomycin/therapeutic use , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Gonorrhea/prevention & control
11.
Environ Pollut ; 349: 123943, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38599271

ABSTRACT

Aeromonas hydrophila has ability to spread tetracycline resistance (tetR) under stresses of oxytetracycline (OTC), one of the most important antibiotics in aquaculture industry. Even though environmental reservoir of Aeromonas allows it to be at interfaces across One Health components, a robust modelling framework for rigorously assessing health risks is currently lacking. We proposed a One Health-based approach and leveraged recent advances in quantitative microbial risk assessment appraised by available dataset to interpret interactions at the human-animal-environment interfaces in various exposure scenarios. The dose-response models were constructed considering the effects on mortality for aquaculture species and tetR genes transfer for humans. A scenario-specific risk assessment on pond species-associated A. hydrophila infection and human gut-associated tetR genes transfer was examined. Risk-based control strategies were involved to test their effectiveness. We showed that farmed shrimp exposed to tetracycline-resistant A. hydrophila in OTC-contaminated water experienced higher infection risk (relative risk: 1.25-1.34). The tetR genes transfer risk for farmers in shrimp ponds (∼2 × 10-4) and swimmers in coastal areas (∼4 × 10-6) during autumn exceeded acceptable risk (10-6). This cautionary finding underscores the importance of accounting for monitoring, assessing, and mitigating occupational health hazards among workers in shrimp farming sectors within future One Health-based strategies for managing water infection risks. We recommend that OTC emission rate together with A. hydrophila concentration should be reduced by up to 70-99% to protect human, farmed shrimp, and environmental health. Our predictive framework can be adopted for other systems and be used as a "risk detector" for assessing tetR-related health risks that invoke potential risk management on addressing sustainable mitigation on offsetting residual OTC emission and tetR genes spread in a species-human-environmental health system.


Subject(s)
Aeromonas hydrophila , Aquaculture , One Health , Tetracycline Resistance , Aeromonas hydrophila/drug effects , Humans , Animals , Tetracycline Resistance/genetics , Anti-Bacterial Agents/pharmacology , Risk Assessment , Oxytetracycline/pharmacology , Gram-Negative Bacterial Infections
12.
Microbiol Res ; 284: 127734, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38670037

ABSTRACT

The spread of livestock manure-borne antibiotic resistance genes (ARGs) into agroecosystems through manure application poses a potential threat to human health. However, there is still a knowledge gap concerning ARG dissemination in coalescing manure, soil and plant microbiomes. Here, we examined the fate of tetracycline resistance genes (TRGs) originating from pig manure microbiomes and spread in the soil-A thaliana system and explored the effects of microbial functions on TRGs spread at different interfaces. Our results indicate that the TRGs abundances in all microbiome continuum of the soil-A. thaliana system were significantly increased with the application of a living manure microbiome, although the addition of manure with both an active and inactive microbiome caused a shift in the microbial community composition. This was attributed to the increasing relative abundances of tetA, tetL, tetM, tetO, tetW and tolC in the system. The application of living manure with DOX residues resulted in the highest relative abundance of total TRGs (3.30×10-3 copies/16S rRNA gene copies) in the rhizosphere soil samples. Community coalescence of the manure and soil microbiomes increased the abundance of Firmicutes in the soil and root microbiome, which directly explains the increase in TRG abundance observed in these interfaces. In contrast, the leaf microbiome differed markedly from that of the remaining samples, indicating strong plant host filtering effects on Firmicutes and TRGs from pig manure. The random forest machine learning model revealed microbial functions and their significant positive correlation with TRG abundance in the microbiome continuum of the system. Our findings revealed that community coalescence is the main driver of TRG spread from manure to the soil and root microbiomes. Plant host filtering effects play a crucial role in allowing certain microbial groups to occupy ecological niches in the leaves, thereby limiting the establishment of manure-borne TRGs in aboveground plant tissues.


Subject(s)
Manure , Microbiota , RNA, Ribosomal, 16S , Soil Microbiology , Tetracycline Resistance , Manure/microbiology , Animals , Microbiota/genetics , Swine , Tetracycline Resistance/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Arabidopsis/microbiology , Genes, Bacterial/genetics , Rhizosphere , Plant Roots/microbiology , Soil/chemistry , Tetracycline/pharmacology , Anti-Bacterial Agents/pharmacology , Plant Leaves/microbiology
13.
J Antimicrob Chemother ; 79(5): 1023-1029, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38497972

ABSTRACT

BACKGROUND: Corynebacterium (C.) sp. 22KM0430 related to C. oculi and isolated from a dog exhibited resistance to tetracycline, and its WGS analysis revealed a putative resistance gene on a 35 562-bp plasmid also harbouring the MLSB resistance gene erm(X). OBJECTIVES: To characterize the novel tetracycline resistance gene tet(65) and demonstrate its functionality by expression in C. glutamicum and Escherichia coli and plasmid curing of the host strain. METHODS: tet(65) was cloned with and without its repressor tetR(65) and expressed in C. glutamicum DSM20300 and E. coli DH5α. Plasmid was cured by non-selective passages. Minimal inhibitory concentrations (MICs) of tetracyclines were determined according to CLSI guidelines. Association of tet(65) with efflux was shown by the addition of reserpine to MIC assays. Phylogenetic position and transmembrane structure of Tet(65) were analysed using MEGA11 and DeepTMHMM. RESULTS: Tet(65) shows 73% amino acid identity with the closest related Tet(Z), contains 12 transmembrane domains and is structurally related to the Major Facilitator Superfamily. The tetracycline MICs decreased in the plasmid-cured strain and increased when tet(65) was expressed in C. glutamicum and in E. coli. The MICs of tetracycline decreased in the presence of reserpine indicating that tet(65) functions as an efflux pump. A GenBank search also identified tet(65) in C. diphtheriae and Brevibacterium (B.) casei and B. luteolum. CONCLUSIONS: A novel tetracycline efflux gene tet(65) was identified in a C. oculi related species and was also present in the human pathogen C. diphtheriae and in Brevibacterium species indicating broader potential for dissemination.


Subject(s)
Anti-Bacterial Agents , Corynebacterium , Escherichia coli , Microbial Sensitivity Tests , Plasmids , Tetracycline Resistance , Plasmids/genetics , Tetracycline Resistance/genetics , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Corynebacterium/genetics , Corynebacterium/drug effects , Animals , Drug Resistance, Multiple, Bacterial/genetics , Phylogeny , Dogs , Tetracycline/pharmacology , Cloning, Molecular , Corynebacterium Infections/microbiology , Dog Diseases/microbiology
14.
J Antimicrob Chemother ; 79(5): 1060-1068, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38517444

ABSTRACT

BACKGROUND: Antimicrobial resistance in Neisseria gonorrhoeae is a global public health concern. Tetracycline resistance (TetR) increased from 39.4% to 75.2% between 2016 and 2021 in N. gonorrhoeae isolates collected through national surveillance in England, despite the absence of use of tetracyclines for the treatment of gonorrhoea. OBJECTIVES: We investigated whether there was correlation between bacterial sexually transmitted infection (STI) tests performed and treatment with antimicrobials, with increased TetR in N. gonorrhoeae. METHODS: We examined correlations between bacterial STI tests, antimicrobial treatment and TetR in N. gonorrhoeae, using national surveillance data from three large sexual health services (SHS) in London during 2016-20. Doxycycline prescribing data and antibiograms of a non-STI pathogen from distinct patient groups (sexual health, obstetric and paediatric), at a large London hospital, were analysed to identify if doxycycline use in SHS was associated with resistance in a non-STI organism. RESULTS: A substantial increase in TetR was observed, particularly in isolates from gay, bisexual and other MSM (GBMSM). Strong positive correlations were observed exclusively in GBMSM between N. gonorrhoeae TetR and both bacterial STI tests (r = 0.97, P = 0.01) and antimicrobial treatment (r = 0.87, P = 0.05). Doxycycline prescribing increased dramatically during the study period in SHS. Prevalence of TetR in Staphylococcus aureus was higher in isolates sourced from SHS attendees than those from other settings. CONCLUSIONS: Frequent screening of GBMSM at higher risk of STIs, such as those on pre-exposure prophylaxis (PrEP) leading to/and increased use of doxycycline for the treatment of diagnosed infections, may account for the increase in TetR in N. gonorrhoeae.


Subject(s)
Anti-Bacterial Agents , Doxycycline , Gonorrhea , Microbial Sensitivity Tests , Neisseria gonorrhoeae , Tetracycline Resistance , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/isolation & purification , Humans , Gonorrhea/microbiology , Gonorrhea/epidemiology , Gonorrhea/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , England/epidemiology , Male , Female , Doxycycline/therapeutic use , Doxycycline/pharmacology , Adult , London/epidemiology , Tetracycline/pharmacology , Tetracycline/therapeutic use
15.
Food Microbiol ; 120: 104481, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38431327

ABSTRACT

In this study, the tetracycline resistance of Enterococcus faecalis strains isolated from food was determined and molecular analyses of the resistance background were performed by determining the frequency of selected tetracycline resistance genes. In addition, the effect of high-pressure stress (400 and 500 MPa) on the expression of selected genes encoding tetracycline resistance was determined, as well as changes in the frequency of transfer of these genes in isolates showing sensitivity to tetracyclines. In our study, we observed an increase in the expression of genes encoding tetracyclines, especially the tet(L) gene, mainly under 400 MPa pressure. The study confirmed the possibility of transferring genes encoding tetracyclines such as tet(M), tet(L), tet(K), tet(W) and tet(O) by horizontal gene transfer in both control strains and exposed to high-pressure. Exposure of the strains to 400 MPa pressure had a greater effect on the possibility of gene transfer and expression than the application of a higher-pressure. To our knowledge, this study for the first time determined the effect of high-pressure stress on the expression of selected genes encoding tetracycline resistance, as well as the possibility and changes in the frequency of transfer of these genes in Enterococcus faecalis isolates showing sensitivity to tetracyclines and possessing silent genes. Due to the observed possibility of increased expression of some of the genes encoding tetracycline resistance and the possibility of their spread by horizontal gene transfer to other microorganisms in the food environment, under the influence of high-pressure processing in strains phenotypically susceptible to this antibiotic, it becomes necessary to monitor this ability in isolates derived from foods.


Subject(s)
Enterococcus faecalis , Tetracycline Resistance , Enterococcus faecalis/genetics , Tetracycline Resistance/genetics , Anti-Bacterial Agents/pharmacology , Tetracycline/pharmacology , Tetracyclines/pharmacology , Microbial Sensitivity Tests
16.
Vet Microbiol ; 290: 109995, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301451

ABSTRACT

Gallibacterium anatis is a Gram-negative bacterium found in the respiratory and genital tracts of various animals, primarily poultry. Its association with septicemia and high mortality in poultry, along with the rise in multidrug-resistant strains, has amplified concerns. Recent research uncovered significant variability in antibiotic resistance profiles among G. anatis isolates from different Austrian flocks, and even between different organs within the same bird. In response, in the present study 60 of these isolates were sequenced and a combination of comparative genomics and genome-wide association study (GWAS) analysis was applied to understand the genetic variability of G. anatis across flocks and organs and to identify genes related to antibiotic resistance. The results showed that each flock harbored one or two strains of G. anatis with only a few strains shared between flocks, demonstrating a great variability among flocks. We identified genes associated with resistance to nalidixic acid, trimethoprim, cefoxitin, tetracycline, ampicillin and sulfamethoxazole. Our findings revealed that G. anatis may develop antibiotic resistance through two mechanisms: single-nucleotide mutations and the presence of specific genes that confer resistance. Unexpectedly, some tetracycline-resistant isolates lacked all known tetracycline-associated genes, suggesting the involvement of novel mechanisms of tetracycline resistance that require additional exploration. Furthermore, our functional annotation of resistance genes highlighted the citric acid cycle pathway as a potential key modulator of antibiotic resistance in G. anatis. In summary, this study describes the first application of GWAS analysis to G. anatis and provides new insights into the acquisition of multidrug resistance in this important avian pathogen.


Subject(s)
Pasteurellaceae , Poultry Diseases , Animals , Anti-Bacterial Agents/pharmacology , Genome-Wide Association Study/veterinary , Chickens/microbiology , Tetracycline , Poultry/genetics , Tetracycline Resistance/genetics , Genomics , Poultry Diseases/microbiology
17.
Ecotoxicol Environ Saf ; 271: 115918, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38232521

ABSTRACT

Tetracycline antibiotics play a vital role in animal husbandry, primarily employed to uphold the health of livestock and poultry. Consequently, when manure is reintegrated into farmland, tetracycline antibiotics can persist in the soil. Simultaneously, to ensure optimal crop production, organochlorine pesticides (OCPs) are frequently applied to farmland. The coexistence of tetracycline antibiotics and OCPs in soil may lead to an increased risk of transmission of tetracycline resistance genes (TRGs). Nevertheless, the precise mechanism underlying the effects of OCPs on tetracycline antibiotics and TRGs remains elusive. In this study, we aimed to investigate the effects of OCPs on soil tetracycline antibiotics and TRGs using different concentrations of doxycycline (DOX) and pentachlorophenol (PCP). The findings indicate that PCP and DOX mutually impede their degradation in soil. Furthermore, our investigation identifies Sphingomonas and Bacillus as potential pivotal microorganisms influencing the reciprocal inhibition of PCP and DOX. Additionally, it is observed that the concurrent presence of PCP and DOX could impede each other's degradation by elevating soil conductivity. Furthermore, we observed that a high concentration of PCP (10.7 mg/kg) reduced the content of efflux pump tetA, ribosome protective protein tetM, tetQ, and passivating enzyme tetX. In contrast, a low PCP concentration (6.4 mg/kg) only reduced the content of ribosome protective protein tetQ. This suggests that PCP may reduce the relative abundance of TRGs by altering the soil microbial community structure and inhibiting the potential host bacteria of TRGs. These findings have significant implications in understanding the combined pollution of veterinary antibiotics and OCPs. By shedding light on the interactions between these compounds and their impact on microbial communities, this study provides a theoretical basis for developing strategies to manage and mitigate their environmental impact, and may give some information regarding the sustainable use of antibiotics and pesticides to ensure the long-term health and productivity of agricultural systems.


Subject(s)
Pentachlorophenol , Pesticides , Animals , Doxycycline/pharmacology , Pentachlorophenol/toxicity , Soil/chemistry , Tetracycline Resistance/genetics , Soil Microbiology , Anti-Bacterial Agents/pharmacology , Tetracycline/pharmacology , Genes, Bacterial , Pesticides/pharmacology , Animal Husbandry
18.
Microb Biotechnol ; 17(1): e14379, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38085112

ABSTRACT

Tetracycline is a commonly used human and veterinary antibiotic that is mostly discharged into environment and thereby tetracycline-resistant bacteria are widely isolated. To combat these resistant bacteria, further understanding for tetracycline resistance mechanisms is needed. Here, GC-MS based untargeted metabolomics with biochemistry and molecular biology techniques was used to explore tetracycline resistance mechanisms of Edwardsiella tarda. Tetracycline-resistant E. tarda (LTB4-RTET ) exhibited a globally repressed metabolism against elevated proton motive force (PMF) as the most characteristic feature. The elevated PMF contributed to the resistance, which was supported by the three results: (i) viability was decreased with increasing PMF inhibitor carbonylcyanide-3-chlorophenylhydrazone; (ii) survival is related to PMF regulated by pH; (iii) LTB4-RTET were sensitive to gentamicin, an antibiotic that is dependent upon PMF to kill bacteria. Meanwhile, gentamicin-resistant E. tarda with low PMF are sensitive to tetracycline is also demonstrated. These results together indicate that the combination of tetracycline with gentamycin will effectively kill both gentamycin and tetracycline resistant bacteria. Therefore, the present study reveals a PMF-enhanced tetracycline resistance mechanism in LTB4-RTET and provides an effective approach to combat resistant bacteria.


Subject(s)
Edwardsiella tarda , Tetracycline Resistance , Humans , Edwardsiella tarda/metabolism , Gentamicins/pharmacology , Gentamicins/metabolism , Proton-Motive Force , Leukotriene B4/metabolism , Leukotriene B4/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Tetracycline/pharmacology , Tetracycline/metabolism , Bacteria/metabolism
19.
Microb Drug Resist ; 30(4): 164-167, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38060816

ABSTRACT

Resistance in Helicobacter pylori to tetracycline is rare. We describe the case of an H. pylori strain with a high level of resistance to tetracycline (minimum inhibitory concentration = 12 mg/L). However, despite tetracycline resistance, bismuth quadritherapy was effective. Analysis of the patient's antibiotic treatment history over the previous 25 years revealed repeated 3-month courses of tetracycline for the treatment of acne, suggesting in vivo selection pressure responsible for the emergence of the triple mutation (AGA→TTC) in 16S rDNA associated with tetracycline resistance. This is a rare event but one worth monitoring, especially in view of the widespread use of bismuth quadritherapy for probabilistic treatment in countries where it is available.


Subject(s)
Anti-Bacterial Agents , Helicobacter Infections , Helicobacter pylori , Humans , Anti-Bacterial Agents/pharmacology , Helicobacter Infections/drug therapy , Helicobacter pylori/genetics , Bismuth/pharmacology , Bismuth/therapeutic use , Microbial Sensitivity Tests , Tetracycline/pharmacology , Tetracycline/therapeutic use , Tetracycline Resistance/genetics , Drug Therapy, Combination , Metronidazole/pharmacology
20.
Appl Environ Microbiol ; 89(11): e0120523, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37888979

ABSTRACT

IMPORTANCE: Listeria monocytogenes causes severe foodborne illness and is the only human pathogen in the genus Listeria. Previous surveys of AMR in Listeria focused on clinical sources and food or food processing environments, with AMR in strains from wildlife and other natural ecosystems remaining under-explored. We analyzed 185 sequenced strains from wild black bears (Ursus americanus) from the United States, including 158 and 27 L. monocytogenes and L. innocua, respectively. Tetracycline resistance was the most prevalent resistance trait. In L. monocytogenes, it was encountered exclusively in serotype 4b strains with the novel Tn916-like element Tn916.1039. In contrast, three distinct, novel tetracycline resistance elements (Tn5801.UAM, Tn5801.551, and Tn6000.205) were identified in L. innocua. Interestingly, Tn5801.551 was identical to elements in L. monocytogenes from a major foodborne outbreak in the United States in 2011. The findings suggest the importance of wildlife and non-pathogenic Listeria species as reservoir for resistance elements in Listeria.


Subject(s)
Listeria monocytogenes , Listeria , Ursidae , Animals , Humans , United States , Listeria monocytogenes/genetics , DNA Transposable Elements , Tetracycline Resistance/genetics , Animals, Wild , Ecosystem , Listeria/genetics , Food Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL