Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.732
1.
Sci Rep ; 14(1): 11695, 2024 05 22.
Article En | MEDLINE | ID: mdl-38778133

The agricultural fungicide cymoxanil (CMX) is commonly used in the treatment of plant pathogens, such as Phytophthora infestans. Although the use of CMX is widespread throughout the agricultural industry and internationally, the exact mechanism of action behind this fungicide remains unclear. Therefore, we sought to elucidate the biocidal mechanism underlying CMX. This was accomplished by first performing a large-scale chemical-genomic screen comprising the 4000 haploid non-essential gene deletion array of the yeast Saccharomyces cerevisiae. We found that gene families related to de novo purine biosynthesis and ribonucleoside synthesis were enriched in the presence of CMX. These results were confirmed through additional spot-test and colony counting assays. We next examined whether CMX affects RNA biosynthesis. Using qRT-PCR and expression assays, we found that CMX appears to target RNA biosynthesis possibly through the yeast dihydrofolate reductase (DHFR) enzyme Dfr1. To determine whether DHFR is a target of CMX, we performed an in-silico molecular docking assay between CMX and yeast, human, and P. infestans DHFR. The results suggest that CMX directly interacts with the active site of all tested forms of DHFR using conserved residues. Using an in vitro DHFR activity assay we observed that CMX inhibits DHFR activity in a dose-dependent relationship.


Molecular Docking Simulation , Saccharomyces cerevisiae , Tetrahydrofolate Dehydrogenase , Tetrahydrofolate Dehydrogenase/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Folic Acid Antagonists/pharmacology , RNA/metabolism , Humans , Fungicides, Industrial/pharmacology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics
2.
J Oleo Sci ; 73(5): 787-799, 2024.
Article En | MEDLINE | ID: mdl-38692900

Launaea sarmentosa, also known as Sa Sam Nam, is a widely used remedy in Vietnamese traditional medicine and cuisine. However, the chemical composition and bioactivity of its essential oil have not been elucidated yet. In this study, we identified 40 compounds (98.6% of total peak area) in the essential oil via GC-MS analysis at the first time. Among them, five main compounds including Thymohydroquinone dimethyl ether (52.4%), (E)-α-Atlantone (9.0%), Neryl isovalerate (6.6%), Davanol D2 (isomer 2) (3.9%), and trans-Sesquisabinene hydrate (3.9%) have accounted for 75.8% of total peak area. The anti-bacterial activity of the essential oil against 4 microorganisms including Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa has also investigated via agar well diffusion assay. The results showed that the essential oil exhibited a strong antibacterial activity against Bacillus subtilis with the inhibition zones ranging from 8.2 to 18.7 mm. To elucidate the anti-bacterial effect mechanism of the essential oil, docking study of five main compounds of the essential oil (Thymohydroquinone dimethyl ether, (E)-α-Atlantone, Neryl isovalerate, Davanol D2 (isomer 2), and trans-Sesquisabinene hydrate) against some key proteins for bacterial growth such as DNA gyrase B, penicillin binding protein 2A, tyrosyl-tRNA synthetase, and dihydrofolate reductase were performed. The results showed that the main constituents of essential oil were highly bound with penicillin binding protein 2A with the free energies ranging -27.7 to -44.8 kcal/mol, which suggests the relationship between the antibacterial effect of essential oil and the affinity of main compounds with penicillin binding protein. In addition, the free energies of main compounds of the essential oil with human cyclooxygenase 1, cyclooxygenase 2, and phospholipase A2, the crucial proteins related with inflammatory response were less than diclofenac, a non-steroidal antiinflammatory drug. These findings propose the essential oil as a novel and promising anti-bacterial and anti-inflammatory medicine or cosmetic products.


Anti-Bacterial Agents , Bacillus subtilis , Hemiterpenes , Molecular Docking Simulation , Oils, Volatile , Pentanoic Acids , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Bacillus subtilis/drug effects , Staphylococcus aureus/drug effects , Pseudomonas aeruginosa/drug effects , Escherichia coli/drug effects , Tetrahydrofolate Dehydrogenase/metabolism , DNA Gyrase/metabolism , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Microbial Sensitivity Tests , Gas Chromatography-Mass Spectrometry
3.
PLoS One ; 19(5): e0303173, 2024.
Article En | MEDLINE | ID: mdl-38739587

In this study, new series of N'-(2-(substitutedphenoxy)acetyl)-4-(1H-pyrrol-1-yl)benzohydrazides (3a-j) 4-(2,5-dimethyl-1H-pyrrol-1-yl)-N'-(2-(substitutedphenoxy)acetyl)benzohydrazides (5a-j) were synthesized, characterized and assessed as inhibitors of enoyl ACP reductase and DHFR. Most of the compounds exhibited dual inhibition against the enzymes enoyl ACP reductase and DHFR. Several synthesized substances also demonstrated significant antibacterial and antitubercular properties. A molecular docking analysis was conducted in order to determine the potential mechanism of action of the synthesized compounds. The results indicated that there were binding interactions seen with the active sites of dihydrofolate reductase and enoyl ACP reductase. Additionally, important structural details were identified that play a critical role in sustaining the dual inhibitory activity. These findings were useful for the development of future dual inhibitors. Therefore, this study provided strong evidence that several synthesized molecules could exert their antitubercular properties at the cellular level through multi-target inhibition. By shedding light on the mechanisms through which these compounds exert their inhibitory effects, this research opens up promising avenues for the future development of dual inhibitors with enhanced antibacterial and antitubercular properties. The study's findings underscore the importance of multi-target approaches in drug design, providing a strong foundation for the design and optimization of novel compounds that can effectively target bacterial infections at the cellular level.


Antitubercular Agents , Molecular Docking Simulation , Pyrroles , Tetrahydrofolate Dehydrogenase , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Tetrahydrofolate Dehydrogenase/metabolism , Tetrahydrofolate Dehydrogenase/chemistry , Pyrroles/chemistry , Pyrroles/pharmacology , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/antagonists & inhibitors , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/chemistry , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Microbial Sensitivity Tests , Folic Acid Antagonists/pharmacology , Folic Acid Antagonists/chemistry , Folic Acid Antagonists/chemical synthesis , Humans , Structure-Activity Relationship , Catalytic Domain
4.
Nat Microbiol ; 9(5): 1207-1219, 2024 May.
Article En | MEDLINE | ID: mdl-38594311

Pseudomonas aeruginosa is a leading cause of hospital-acquired infections for which the development of antibiotics is urgently needed. Unlike most enteric bacteria, P. aeruginosa lacks enzymes required to scavenge exogenous thymine. An appealing strategy to selectively target P. aeruginosa is to disrupt thymidine synthesis while providing exogenous thymine. However, known antibiotics that perturb thymidine synthesis are largely inactive against P. aeruginosa.Here we characterize fluorofolin, a dihydrofolate reductase (DHFR) inhibitor derived from Irresistin-16, that exhibits significant activity against P. aeruginosa in culture and in a mouse thigh infection model. Fluorofolin is active against a wide range of clinical P. aeruginosa isolates resistant to known antibiotics. Metabolomics and in vitro assays using purified folA confirm that fluorofolin inhibits P. aeruginosa DHFR. Importantly, in the presence of thymine supplementation, fluorofolin activity is selective for P. aeruginosa. Resistance to fluorofolin can emerge through overexpression of the efflux pumps MexCD-OprJ and MexEF-OprN, but these mutants also decrease pathogenesis. Our findings demonstrate how understanding species-specific genetic differences can enable selective targeting of important pathogens while revealing trade-offs between resistance and pathogenesis.


Anti-Bacterial Agents , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , Tetrahydrofolate Dehydrogenase , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Animals , Mice , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Tetrahydrofolate Dehydrogenase/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Folic Acid Antagonists/pharmacology , Folic Acid/metabolism , Drug Resistance, Bacterial , Disease Models, Animal , Thymine/metabolism , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Female
5.
J Phys Chem B ; 128(17): 4111-4122, 2024 May 02.
Article En | MEDLINE | ID: mdl-38651832

The observation of multiple conformations of a functional loop (termed M20) in the Escherichia coli dihydrofolate reductase (ecDHFR) enzyme triggered the proposition that large-scale motions of protein structural elements contribute to enzyme catalysis. The transition of the M20 loop from a closed conformation to an occluded conformation was thought to aid the rate-limiting release of the products. However, the influence of charged species in the solution environment on the observed M20 loop conformations, independent of charged ligands bound to the enzyme, had not been considered. Molecular dynamics simulations of ecDHFR in model CaCl2 solutions of varying molar ionic strengths IM reveal a substantial free energy barrier between occluded and closed M20 loop states at IM exceeding the E. coli threshold (∼0.24 M). This barrier may facilitate crystallization of ecDHFR in the occluded state, consistent with ecDHFR structures obtained at IM exceeding 0.3 M. At lower IM (≤0.15 M), the M20 loop can explore the occluded state, but prefers an open/partially closed conformation, again consistent with ecDHFR structures. Our findings caution against using ecDHFR structures obtained at nonphysiological ionic strengths in interpreting catalytic events or in structure-based drug design.


Escherichia coli , Molecular Dynamics Simulation , Protein Conformation , Tetrahydrofolate Dehydrogenase , Tetrahydrofolate Dehydrogenase/metabolism , Tetrahydrofolate Dehydrogenase/chemistry , Escherichia coli/enzymology , Osmolar Concentration , Solutions , Calcium Chloride/chemistry , Calcium Chloride/metabolism
6.
PLoS Genet ; 20(4): e1011252, 2024 Apr.
Article En | MEDLINE | ID: mdl-38683847

Pneumocystis jirovecii is a fungal pathogen that causes pneumocystis pneumonia, a disease that mainly affects immunocompromised individuals. This fungus has historically been hard to study because of our inability to grow it in vitro. One of the main drug targets in P. jirovecii is its dihydrofolate reductase (PjDHFR). Here, by using functional complementation of the baker's yeast ortholog, we show that PjDHFR can be inhibited by the antifolate methotrexate in a dose-dependent manner. Using deep mutational scanning of PjDHFR, we identify mutations conferring resistance to methotrexate. Thirty-one sites spanning the protein have at least one mutation that leads to resistance, for a total of 355 high-confidence resistance mutations. Most resistance-inducing mutations are found inside the active site, and many are structurally equivalent to mutations known to lead to resistance to different antifolates in other organisms. Some sites show specific resistance mutations, where only a single substitution confers resistance, whereas others are more permissive, as several substitutions at these sites confer resistance. Surprisingly, one of the permissive sites (F199) is without direct contact to either ligand or cofactor, suggesting that it acts through an allosteric mechanism. Modeling changes in binding energy between F199 mutants and drug shows that most mutations destabilize interactions between the protein and the drug. This evidence points towards a more important role of this position in resistance than previously estimated and highlights potential unknown allosteric mechanisms of resistance to antifolate in DHFRs. Our results offer unprecedented resources for the interpretation of mutation effects in the main drug target of an uncultivable fungal pathogen.


Drug Resistance, Fungal , Folic Acid Antagonists , Methotrexate , Mutation , Pneumocystis carinii , Tetrahydrofolate Dehydrogenase , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Tetrahydrofolate Dehydrogenase/chemistry , Pneumocystis carinii/genetics , Pneumocystis carinii/enzymology , Pneumocystis carinii/drug effects , Folic Acid Antagonists/pharmacology , Drug Resistance, Fungal/genetics , Methotrexate/pharmacology , Allosteric Regulation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/drug effects , Humans , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Catalytic Domain/genetics
7.
Br J Cancer ; 130(11): 1819-1827, 2024 May.
Article En | MEDLINE | ID: mdl-38594370

BACKGROUND: Although DHFR gene amplification has long been known as a major mechanism for methotrexate (MTX) resistance in cancer, the early changes and detailed development of the resistance are not yet fully understood. METHODS: We performed genomic, transcriptional and proteomic analyses of human colon cancer cells with sequentially increasing levels of MTX-resistance. RESULTS: The genomic amplification evolved in three phases (pre-amplification, homogenously staining region (HSR) and extrachromosomal DNA (ecDNA)). We confirm that genomic amplification and increased expression of DHFR, with formation of HSRs and especially ecDNAs, is the major driver of resistance. However, DHFR did not play a detectable role in the early phase. In the late phase (ecDNA), increase in FAM151B protein level may also have an important role by decreasing sensitivity to MTX. In addition, although MSH3 and ZFYVE16 may be subject to different posttranscriptional regulations and therefore protein expressions are decreased in ecDNA stages compared to HSR stages, they still play important roles in MTX resistance. CONCLUSION: The study provides a detailed evolutionary trajectory of MTX-resistance and identifies new targets, especially ecDNAs, which could help to prevent drug resistance. It also presents a proof-of-principal approach which could be applied to other cancer drug resistance studies.


Drug Resistance, Neoplasm , Gene Amplification , Methotrexate , Tetrahydrofolate Dehydrogenase , Humans , Methotrexate/pharmacology , Drug Resistance, Neoplasm/genetics , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Cell Line, Tumor , Colonic Neoplasms/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Antimetabolites, Antineoplastic/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Genomics/methods
8.
Biotechnol J ; 19(4): e2300505, 2024 Apr.
Article En | MEDLINE | ID: mdl-38651269

Chinese hamster ovary (CHO) cells are the commonly used mammalian host system to manufacture recombinant proteins including monoclonal antibodies. However unfavorable non-human glycoprofile displayed on CHO-produced monoclonal antibodies have negative impacts on product quality, pharmacokinetics, and therapeutic efficiency. Glycoengineering such as genetic elimination of genes involved in glycosylation pathway in CHO cells is a viable solution but constrained due to longer timeline and laborious workflow. Here, in this proof-of-concept (PoC) study, we present a novel approach coined CellEDIT to engineer CHO cells by intranuclear delivery of the CRISPR components to single cells using the FluidFM technology. Co-injection of CRISPR system targeting BAX, DHFR, and FUT8 directly into the nucleus of single cells, enabled us to generate triple knockout CHO-K1 cell lines within a short time frame. The proposed technique assures the origin of monoclonality without the requirement of limiting dilution, cell sorting or positive selection. Furthermore, the approach is compatible to develop both single and multiple knockout clones (FUT8, BAX, and DHFR) in CHO cells. Further analyses on single and multiple knockout clones confirmed the targeted genetic disruption and altered protein expression. The knockout CHO-K1 clones showed the persistence of gene editing during the subsequent passages, compatible with serum free chemically defined media and showed equivalent transgene expression like parental clone.


CRISPR-Cas Systems , Cricetulus , Gene Editing , CHO Cells , Animals , CRISPR-Cas Systems/genetics , Gene Editing/methods , Antibodies, Monoclonal/genetics , Recombinant Proteins/genetics , Gene Knockout Techniques/methods , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Cricetinae , Genetic Engineering/methods
9.
Angew Chem Int Ed Engl ; 63(22): e202403098, 2024 May 27.
Article En | MEDLINE | ID: mdl-38545954

Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N-terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug-binding LmrR and nucleotide-binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D-proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1-benzyl-1,4-dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro-R hydride from NADPH for stereoselective reactions (e.r. up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR-based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts.


Amines , Genetic Code , Tetrahydrofolate Dehydrogenase , Amines/chemistry , Amines/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/chemistry , Tetrahydrofolate Dehydrogenase/metabolism , Biocatalysis , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/metabolism , Protein Engineering , Lysine/chemistry , Lysine/metabolism , Lysine/analogs & derivatives
10.
J Am Chem Soc ; 146(13): 8832-8838, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38507251

How mutations impact protein stability and structure dynamics is crucial for understanding the pathological process and rational drug design. Herein, we establish a time-resolved native mass spectrometry (TR-nMS) platform via a rapid-mixing capillary apparatus for monitoring the acid-initiated protein unfolding process. The molecular details in protein structure unfolding are further profiled by a 193 nm ultraviolet photodissociation (UVPD) analysis of the structure-informative photofragments. Compared with the wild-type dihydrofolate reductase (WT-DHFR), the M42T/H114R mutant (MT-DHFR) exhibits a significant stability decrease in TR-nMS characterization. UVPD comparisons of the unfolding intermediates and original DHFR forms indicate the special stabilization effect of cofactor NADPH on DHFR structure, and the M42T/H114R mutations lead to a significant decrease in NADPH-DHFR interactions, thus promoting the structure unfolding. Our study paves the way for probing the mutation-induced subtle changes in the stability and structure dynamics of drug targets.


Escherichia coli , Protein Unfolding , Escherichia coli/metabolism , NADP/metabolism , Protein Stability , Mutation , Mass Spectrometry , Tetrahydrofolate Dehydrogenase/metabolism
11.
Biochem Biophys Res Commun ; 702: 149651, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38350414

Nascent proteins are degraded during or immediately after synthesis, a process called cotranslational protein degradation (CTPD). Although CTPD was observed decades ago, it has never been fully explored mechanistically and functionally. We show here that dihydrofolate reductase (DHFR) and ubiquitin (Ub), two stable proteins widely used in protein degradation studies, are actually subject to CTPD. Unlike canonical posttranslational protein degradation, CTPD of DHFR and Ub does not require prior ubiquitylation. Our data also suggest that protein expression level and N-terminal folding pattern may be two critical determinants for CTPD. Thus, this study reveals that CTPD plays a role in regulating the homeostasis of long-lived proteins and provides insights into the mechanism of CTPD.


Tetrahydrofolate Dehydrogenase , Ubiquitin , Ubiquitin/metabolism , Tetrahydrofolate Dehydrogenase/metabolism , Ubiquitination , Proteins/metabolism , Proteolysis , Proteasome Endopeptidase Complex/metabolism
12.
Circ Res ; 134(4): 351-370, 2024 02 16.
Article En | MEDLINE | ID: mdl-38299369

BACKGROUND: Pulmonary hypertension (PH) is a progressive disorder characterized by remodeling of the pulmonary vasculature and elevated mean pulmonary arterial pressure, resulting in right heart failure. METHODS: Here, we show that direct targeting of the endothelium to uncouple eNOS (endothelial nitric oxide synthase) with DAHP (2,4-diamino 6-hydroxypyrimidine; an inhibitor of GTP cyclohydrolase 1, the rate-limiting synthetic enzyme for the critical eNOS cofactor tetrahydrobiopterin) induces human-like, time-dependent progression of PH phenotypes in mice. RESULTS: Critical phenotypic features include progressive elevation in mean pulmonary arterial pressure, right ventricular systolic blood pressure, and right ventricle (RV)/left ventricle plus septum (LV+S) weight ratio; extensive vascular remodeling of pulmonary arterioles with increased medial thickness/perivascular collagen deposition and increased expression of PCNA (proliferative cell nuclear antigen) and alpha-actin; markedly increased total and mitochondrial superoxide production, substantially reduced tetrahydrobiopterin and nitric oxide bioavailabilities; and formation of an array of human-like vascular lesions. Intriguingly, novel in-house generated endothelial-specific dihydrofolate reductase (DHFR) transgenic mice (tg-EC-DHFR) were completely protected from the pathophysiological and molecular features of PH upon DAHP treatment or hypoxia exposure. Furthermore, DHFR overexpression with a pCMV-DHFR plasmid transfection in mice after initiation of DAHP treatment completely reversed PH phenotypes. DHFR knockout mice spontaneously developed PH at baseline and had no additional deterioration in response to hypoxia, indicating an intrinsic role of DHFR deficiency in causing PH. RNA-sequencing experiments indicated great similarity in gene regulation profiles between the DAHP model and human patients with PH. CONCLUSIONS: Taken together, these results establish a novel human-like murine model of PH that has long been lacking in the field, which can be broadly used for future mechanistic and translational studies. These data also indicate that targeting endothelial DHFR deficiency represents a novel and robust therapeutic strategy for the treatment of PH.


Hypertension, Pulmonary , Tetrahydrofolate Dehydrogenase , Animals , Humans , Mice , Endothelium/metabolism , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/genetics , Hypoxia , Mice, Knockout , Mice, Transgenic , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Tetrahydrofolate Dehydrogenase/deficiency , Hypoxanthines , Disease Models, Animal
13.
J Cell Biochem ; 125(3): e30533, 2024 Mar.
Article En | MEDLINE | ID: mdl-38345373

Dihydrofolate reductase (DHFR) is a ubiquitous enzyme that regulates the biosynthesis of tetrahydrofolate among various species of Plasmodium parasite. It is a validated target of the antifolate drug pyrimethamine (Pyr) in Plasmodium falciparum (Pf), but its clinical efficacy has been hampered due to the emergence of drug resistance. This has made the attempt to screen Food & Drug Administration-approved drugs against wild- and mutant PfDHFR by employing an in-silico pipeline to identify potent candidates. The current study has followed a virtual screening approach for identifying potential DHFR inhibitors from DrugBank database, based on a structure similarity search of candidates, followed by absorption, distribution, metabolism, and excretion estimation. The screened drugs were subjected to various parameters like docking, molecular mechanics with generalized born and surface area solvation calculations, and molecular simulations. We have thus identified two potential drug candidates, duloxetine and guanethidine, which can be repurposed to be tested for their efficacy against wild type and drug resistant falciparum malaria.


Antimalarials , Folic Acid Antagonists , Malaria , Humans , Antimalarials/pharmacology , Antimalarials/chemistry , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/chemistry , Tetrahydrofolate Dehydrogenase/metabolism , Pharmaceutical Preparations , Drug Repositioning , Malaria/drug therapy , Folic Acid Antagonists/pharmacology , Folic Acid Antagonists/chemistry , Drug Resistance , Folic Acid
14.
Mol Cell Proteomics ; 23(3): 100718, 2024 Mar.
Article En | MEDLINE | ID: mdl-38224738

A functional role has been ascribed to the human dihydrofolate reductase 2 (DHFR2) gene based on the enzymatic activity of recombinant versions of the predicted translated protein. However, the in vivo function is still unclear. The high amino acid sequence identity (92%) between DHFR2 and its parental homolog, DHFR, makes analysis of the endogenous protein challenging. This paper describes a targeted mass spectrometry proteomics approach in several human cell lines and tissue types to identify DHFR2-specific peptides as evidence of its translation. We show definitive evidence that the DHFR2 activity in the mitochondria is in fact mediated by DHFR, and not DHFR2. Analysis of Ribo-seq data and an experimental assessment of ribosome association using a sucrose cushion showed that the two main Ensembl annotated mRNA isoforms of DHFR2, 201 and 202, are differentially associated with the ribosome. This indicates a functional role at both the RNA and protein level. However, we were unable to detect DHFR2 protein at a detectable level in most cell types examined despite various RNA isoforms of DHFR2 being relatively abundant. We did detect a DHFR2-specific peptide in embryonic heart, indicating that the protein may have a specific role during embryogenesis. We propose that the main functionality of the DHFR2 gene in adult cells is likely to arise at the RNA level.


RNA , Tetrahydrofolate Dehydrogenase , Humans , Cell Line , Peptides/metabolism , Protein Biosynthesis , Ribosomes/metabolism , RNA/metabolism , RNA, Messenger/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism
15.
Antimicrob Agents Chemother ; 68(1): e0071723, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38018963

The Mycobacterium abscessus drug development pipeline is poorly populated, with particularly few validated target-lead couples to initiate de novo drug discovery. Trimethoprim, an inhibitor of dihydrofolate reductase (DHFR) used for the treatment of a range of bacterial infections, is not active against M. abscessus. Thus, evidence that M. abscessus DHFR is vulnerable to pharmacological intervention with a small molecule inhibitor is lacking. Here, we show that the pyrrolo-quinazoline PQD-1, previously identified as a DHFR inhibitor active against Mycobacterium tuberculosis, exerts whole cell activity against M. abscessus. Enzyme inhibition studies showed that PQD-1, in contrast to trimethoprim, is a potent inhibitor of M. abscessus DHFR and over-expression of DHFR causes resistance to PQD-1, providing biochemical and genetic evidence that DHFR is a vulnerable target and mediates PQD-1's growth inhibitory activity in M. abscessus. As observed in M. tuberculosis, PQD-1 resistant mutations mapped to the folate pathway enzyme thymidylate synthase (TYMS) ThyA. Like trimethoprim in other bacteria, PQD-1 synergizes with the dihydropteroate synthase (DHPS) inhibitor sulfamethoxazole (SMX), offering an opportunity to exploit the successful dual inhibition of the folate pathway and develop similarly potent combinations against M. abscessus. PQD-1 is active against subspecies of M. abscessus and a panel of clinical isolates, providing epidemiological validation of the target-lead couple. Leveraging a series of PQD-1 analogs, we have demonstrated a dynamic structure-activity relationship (SAR). Collectively, the results identify M. abscessus DHFR as an attractive target and PQD-1 as a chemical starting point for the discovery of novel drugs and drug combinations that target the folate pathway in M. abscessus.


Folic Acid Antagonists , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Mycobacterium tuberculosis , Humans , Mycobacterium abscessus/genetics , Mycobacterium abscessus/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Folic Acid Antagonists/pharmacology , Trimethoprim/pharmacology , Mycobacterium tuberculosis/metabolism , Enzyme Inhibitors/pharmacology , Folic Acid , Mycobacterium Infections, Nontuberculous/drug therapy
16.
Cell Chem Biol ; 31(2): 221-233.e14, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-37875111

Methotrexate (MTX) is a tight-binding dihydrofolate reductase (DHFR) inhibitor, used as both an antineoplastic and immunosuppressant therapeutic. MTX, like folate undergoes folylpolyglutamate synthetase-mediated γ-glutamylation, which affects cellular retention and target specificity. Mechanisms of MTX resistance in cancers include a decrease in MTX poly-γ-glutamylation and an upregulation of DHFR. Here, we report a series of potent MTX-based proteolysis targeting chimeras (PROTACs) to investigate DHFR degradation pharmacology and one-carbon biochemistry. These on-target, cell-active PROTACs show proteasome- and E3 ligase-dependent activity, and selective degradation of DHFR in multiple cancer cell lines. By comparison, treatment with MTX increases cellular DHFR protein expression. Importantly, these PROTACs produced distinct, less-lethal phenotypes compared to MTX. The chemical probe set described here should complement conventional DHFR inhibitors and serve as useful tools for studying one-carbon biochemistry and dissecting complex polypharmacology of MTX and related drugs. Such compounds may also serve as leads for potential autoimmune and antineoplastic therapeutics.


Antineoplastic Agents , Folic Acid Antagonists , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carbon , Folic Acid Antagonists/chemistry , Folic Acid Antagonists/metabolism , Folic Acid Antagonists/pharmacology , Folic Acid Antagonists/therapeutic use , Methotrexate/pharmacology , Methotrexate/metabolism , Methotrexate/therapeutic use , Neoplasms/drug therapy , Proteolysis Targeting Chimera , Tetrahydrofolate Dehydrogenase/metabolism
17.
Phys Rev E ; 108(5-1): 054408, 2023 Nov.
Article En | MEDLINE | ID: mdl-38115433

Protein space is a rich analogy for genotype-phenotype maps, where amino acid sequence is organized into a high-dimensional space that highlights the connectivity between protein variants. It is a useful abstraction for understanding the process of evolution, and for efforts to engineer proteins towards desirable phenotypes. Few mentions of protein space consider how protein phenotypes can be described in terms of their biophysical components, nor do they rigorously interrogate how forces like epistasis-describing the nonlinear interaction between mutations and their phenotypic consequences-manifest across these components. In this study, we deconstruct a low-dimensional protein space of a bacterial enzyme (dihydrofolate reductase; DHFR) into "subspaces" corresponding to a set of kinetic and thermodynamic traits [k_{cat}, K_{M}, K_{i}, and T_{m} (melting temperature)]. We then examine how combinations of three mutations (eight alleles in total) display pleiotropy, or unique effects on individual subspace traits. We examine protein spaces across three orthologous DHFR enzymes (Escherichia coli, Listeria grayi, and Chlamydia muridarum), adding a genotypic context dimension through which epistasis occurs across subspaces. In doing so, we reveal that protein space is a deceptively complex notion, and that future applications to bioengineering should consider how interactions between amino acid substitutions manifest across different phenotypic subspaces.


Epistasis, Genetic , Escherichia coli , Escherichia coli/metabolism , Mutation , Phenotype , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/chemistry , Tetrahydrofolate Dehydrogenase/metabolism , Drug Resistance
18.
Mol Ther ; 31(12): 3564-3578, 2023 Dec 06.
Article En | MEDLINE | ID: mdl-37919903

Chimeric antigen receptor (CAR) T cell therapy has been successful for hematological malignancies. Still, a lack of efficacy and potential toxicities have slowed its application for other indications. Furthermore, CAR T cells undergo dynamic expansion and contraction in vivo that cannot be easily predicted or controlled. Therefore, the safety and utility of such therapies could be enhanced by engineered mechanisms that engender reversible control and quantitative monitoring. Here, we use a genetic tag based on the enzyme Escherichia coli dihydrofolate reductase (eDHFR), and derivatives of trimethoprim (TMP) to modulate and monitor CAR expression and T cell activity. We fused eDHFR to the CAR C terminus, allowing regulation with TMP-based proteolysis-targeting chimeric small molecules (PROTACs). Fusion of eDHFR to the CAR does not interfere with cell signaling or its cytotoxic function, and the addition of TMP-based PROTACs results in a reversible and dose-dependent inhibition of CAR activity via the proteosome. We show the regulation of CAR expression in vivo and demonstrate imaging of the cells with TMP radiotracers. In vitro immunogenicity assays using primary human immune cells and overlapping peptide fragments of eDHFR showed no memory immune repertoire for eDHFR. Overall, this translationally-orientied approach allows for temporal monitoring and image-guided control of cell-based therapies.


Immunotherapy, Adoptive , T-Lymphocytes , Humans , Immunotherapy, Adoptive/methods , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Receptors, Antigen, T-Cell/genetics
19.
Molecules ; 28(22)2023 Nov 10.
Article En | MEDLINE | ID: mdl-38005256

The parasites Trypanosoma brucei (Tb) and Leishmania major (Lm) cause the tropical diseases sleeping sickness, nagana, and cutaneous leishmaniasis. Every year, millions of humans, as well as animals, living in tropical to subtropical climates fall victim to these illnesses' health threats. The parasites' frequent drug resistance and widely spread natural reservoirs heavily impede disease prevention and treatment. Due to pteridine auxotrophy, trypanosomatid parasites have developed a peculiar enzyme system consisting of dihydrofolate reductase-thymidylate synthase (DHFR-TS) and pteridine reductase 1 (PTR1) to support cell survival. Extending our previous studies, we conducted a comparative study of the T. brucei (TbDHFR, TbPTR1) and L. major (LmDHFR, LmPTR1) enzymes to identify lead structures with a dual inhibitory effect. A pharmacophore-based in silico screening of three natural product databases (approximately 4880 compounds) was performed to preselect possible inhibitors. Building on the in silico results, the inhibitory potential of promising compounds was verified in vitro against the recombinant DHFR and PTR1 of both parasites using spectrophotometric enzyme assays. Twelve compounds were identified as dual inhibitors against the Tb enzymes (0.2 µM < IC50 < 85.1 µM) and ten against the respective Lm enzymes (0.6 µM < IC50 < 84.5 µM). These highly promising results may represent the starting point for the future development of new leads and drugs utilizing the trypanosomatid pteridine metabolism as a target.


Leishmania major , Trypanosoma brucei brucei , Trypanosomiasis, African , Humans , Animals , Tetrahydrofolate Dehydrogenase/metabolism , Pteridines/chemistry , Trypanosomiasis, African/drug therapy
20.
Nat Commun ; 14(1): 7071, 2023 11 03.
Article En | MEDLINE | ID: mdl-37923771

Temporal control of protein levels in cells and living animals can be used to improve our understanding of protein function. In addition, control of engineered proteins could be used in therapeutic applications. PRoteolysis-TArgeting Chimeras (PROTACs) have emerged as a small-molecule-driven strategy to achieve rapid, post-translational regulation of protein abundance via recruitment of an E3 ligase to the target protein of interest. Here, we develop several PROTAC molecules by covalently linking the antibiotic trimethoprim (TMP) to pomalidomide, a ligand for the E3 ligase, Cereblon. These molecules induce degradation of proteins of interest (POIs) genetically fused to a small protein domain, E. coli dihydrofolate reductase (eDHFR), the molecular target of TMP. We show that various eDHFR-tagged proteins can be robustly degraded to 95% of maximum expression with PROTAC molecule 7c. Moreover, TMP-based PROTACs minimally affect the expression of immunomodulatory imide drug (IMiD)-sensitive neosubstrates using proteomic and biochemical assays. Finally, we show multiplexed regulation with another known degron-PROTAC pair, as well as reversible protein regulation in a rodent model of metastatic cancer, demonstrating the formidable strength of this system. Altogether, TMP PROTACs are a robust approach for selective and reversible degradation of eDHFR-tagged proteins in vitro and in vivo.


Escherichia coli Proteins , Tetrahydrofolate Dehydrogenase , Animals , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Proteolysis Targeting Chimera , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Trimethoprim/pharmacology , Proteomics , Ubiquitin-Protein Ligases/metabolism , Proteolysis
...