Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.220
Filter
1.
F1000Res ; 13: 1050, 2024.
Article in English | MEDLINE | ID: mdl-39301274

ABSTRACT

Background: Sudden and unexpected deaths are increasing drastically. The main cause of sudden death is cardiovascular disease, out of which coronary artery disease predominates forming 80% of the cases. Most of the time, detecting early changes in myocardial infarction during the autopsy is challenging since gross infarct changes do not appear until after 24 to 48 hours of myocardial ischemia injury. So, the aim of this study was to compare two test to detect early changes of Myocardial Infarction one by using Triphenyl Tetrazolium Chloride (TTC) staining of the myocardial tissue, during autopsy and other by histopathological examination. Methods: The sample size of 60 hearts taken from all the sudden deaths cases brought to Mortuary with suspected cause of death due to cardiac origin. The heart was obtained from the deceased by standard post-mortem technique. Serial full-thickness transverse sections of the heart were taken at 2 cm intervals from the apex to the atrioventricular groove. All the serial slices of heart are taken for histochemical staining and TTC staining. Results: In histopathological examination 34 hearts were diagnosed with myocardial infarction and 26 hearts reported non myocardial infarction. With TTC 40 hearts remained unstained suggestive of myocardial infarction and 20 hearts were stained suggestive of non-infarcted hearts. TTC staining in our study shows an accuracy of 88.33%. Conclusion: The result of this study shows that the Triphenyl Tetrazolium Chloride test, a histochemical staining technique of heart, is reliable approach for forensic pathologists to diagnose early myocardial infarction during the post-mortem examination.


Subject(s)
Autopsy , Myocardial Infarction , Tetrazolium Salts , Myocardial Infarction/pathology , Myocardial Infarction/diagnosis , Humans , Male , Female , Middle Aged , Myocardium/pathology , Staining and Labeling/methods , Adult , Aged
2.
J Appl Oral Sci ; 32: e20230462, 2024.
Article in English | MEDLINE | ID: mdl-39140577

ABSTRACT

OBJECTIVE: Several materials have been developed to preserve pulp vitality. They should have ideal cytocompatibility characteristics to promote the activity of stem cells of human exfoliated deciduous teeth (SHED) and thus heal pulp tissue. OBJECTIVE: To evaluate the cytotoxicity of different dilutions of bioceramic material extracts in SHED. METHODOLOGY: SHED were immersed in αMEM + the material extract according to the following experimental groups: Group 1 (G1) -BBio membrane, Group 2 (G2) - Bio-C Repair, Group 3 (G3) - MTA Repair HP, Group 4 (G4) - TheraCal LC, and Group 5 (G5) - Biodentine. Positive and negative control groups were maintained respectively in αMEM + 10% FBS and Milli-Q Water. The methods to analyze cell viability and proliferation involved MTT and Alamar Blue assays at 24, 48, and 72H after the contact of the SHED with bioceramic extracts at 1:1 and 1:2 dilutions. Data were analyzed by the three-way ANOVA, followed by Tukey's test (p<0.05). RESULTS: At 1:1 dilution, SHED in contact with the MTA HP Repair extract showed statistically higher cell viability than the other experimental groups and the negative control (p<0.05), except for TheraCal LC (p> 0.05). At 1:2 dilution, BBio Membrane and Bio-C showed statistically higher values in intra- and intergroup comparisons (p<0.05). BBio Membrane, Bio-C Repair, and Biodentine extracts at 1:1 dilution showed greater cytotoxicity than 1:2 dilution in all periods (p<0.05). CONCLUSION: MTA HP Repair showed the lowest cytotoxicity even at a 1:1 dilution. At a 1:2 dilution, the SHED in contact with the BBio membrane extract showed high cell viability. Thus, the BBio membrane would be a new non-cytotoxic biomaterial for SHED. Results offer possibilities of biomaterials that can be indicated for use in clinical regenerative procedures of the dentin-pulp complex.


Subject(s)
Aluminum Compounds , Biocompatible Materials , Calcium Compounds , Cell Proliferation , Cell Survival , Ceramics , Dental Pulp , Drug Combinations , Materials Testing , Oxides , Silicates , Stem Cells , Tooth, Deciduous , Humans , Tooth, Deciduous/drug effects , Silicates/chemistry , Silicates/toxicity , Silicates/pharmacology , Cell Survival/drug effects , Calcium Compounds/chemistry , Calcium Compounds/pharmacology , Calcium Compounds/toxicity , Stem Cells/drug effects , Time Factors , Oxides/chemistry , Oxides/toxicity , Cell Proliferation/drug effects , Dental Pulp/drug effects , Dental Pulp/cytology , Ceramics/chemistry , Ceramics/toxicity , Aluminum Compounds/chemistry , Aluminum Compounds/toxicity , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Analysis of Variance , Reproducibility of Results , Bismuth/chemistry , Bismuth/toxicity , Bismuth/pharmacology , Cells, Cultured , Reference Values , Tetrazolium Salts , Xanthenes/chemistry , Oxazines
3.
J Microbiol Methods ; 224: 107010, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39098403

ABSTRACT

The quantification of cellular metabolic activity via MTT assay has become a widespread practice in eukaryotic cell studies and is progressively extending to bacterial cell investigations. This study pioneers the application of MTT assay to evaluate the metabolic activity of biofilm-forming cells within bacterial biofilms on nanofibrous materials. The biofilm formation of Staphylococcus aureus and Escherichia coli on nanomaterials electrospun from polycaprolactone (PCL), polylactic acid (PLA), and polyamide (PA) was examined. Various parameters of the MTT assay were systematically investigated, including (i) the dissolution time of the formed formazan, (ii) the addition of glucose, and (iii) the optimal wavelength for spectrophotometric determination. Based on interim findings, a refined protocol suitable for application to nanofibrous materials was devised. We recommend 2 h of the dissolution, the application of glucose, and spectrophotometric measurement at 595 nm to obtain reliable data. Comparative analysis with the reference CFU counting protocol revealed similar trends for both tested bacteria and all tested nanomaterials. The proposed MTT protocol emerges as a suitable method for assessing the metabolic activity of bacterial biofilms on PCL, PLA, and PA nanofibrous materials.


Subject(s)
Biofilms , Escherichia coli , Nanofibers , Polyesters , Staphylococcus aureus , Tetrazolium Salts , Biofilms/growth & development , Staphylococcus aureus/physiology , Nanofibers/chemistry , Escherichia coli/physiology , Tetrazolium Salts/metabolism , Tetrazolium Salts/chemistry , Polyesters/chemistry , Thiazoles/metabolism , Glucose/metabolism , Spectrophotometry/methods , Nylons/chemistry
4.
PLoS One ; 19(6): e0303210, 2024.
Article in English | MEDLINE | ID: mdl-38843174

ABSTRACT

Cellular metabolic activity can be detected by tetrazolium-based colorimetric assays, which rely on dehydrogenase enzymes from living cells to reduce tetrazolium compounds into colored formazan products. Although these methods have been used in different fields of microbiology, their application to the detection of bacteria with plastic-degrading activity has not been well documented. Here, we report a microplate-adapted method for the detection of bacteria metabolically active on the commercial polyester polyurethane (PU) Impranil®DLN using the tetrazolium salt 2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT). Bacterial cells that are active on PU reduce XTT to a water-soluble orange dye, which can be quantitatively measured using a microplate reader. We used the Pseudomonas putida KT2440 strain as a study model. Its metabolic activity on Impranil detected by our novel method was further verified by Fourier-transform infrared spectroscopy (FTIR) analyses. Measurements of the absorbance of reduced XTT at 470 nm in microplate wells were not affected by the colloidal properties of Impranil or cell density. In summary, we provide here an easy and high-throughput method for screening bacteria active on PU that can be adapted to other plastic substrates.


Subject(s)
Polyurethanes , Pseudomonas putida , Tetrazolium Salts , Polyurethanes/chemistry , Pseudomonas putida/metabolism , Tetrazolium Salts/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Water/chemistry , Colorimetry/methods
5.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893346

ABSTRACT

Photosensitizers cause oxidative damages in various biological systems under light. In this study, the method for analyzing photosensitizing activity of various dietary and medicinal sources was developed using 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan (thiazolyl blue formazan; MTT-F) as a probe. Significant and quantitative decolorization of MTT-F was observed in the presence of photosensitizers used in this study under light but not under dark conditions. The decolorization of MTT-F occurred irradiation time-, light intensity-, and photosensitizer concentration-dependently. The decolorized MTT-F was reversibly reduced by living cells; the LC-MS/MS results indicated the formation of oxidized products with -1 m/z of base peak from MTT-F, suggesting that MTT-F decolorized by photosensitizers was its corresponding tetrazolium. The present results indicate that MTT-F is a reliable probe for the quantitative analysis of photosensitizing activities, and the MTT-F-based method can be an useful tool for screening and evaluating photosensitizing properties of various compounds used in many industrial purposes.


Subject(s)
Formazans , Photosensitizing Agents , Tetrazolium Salts , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Humans , Tetrazolium Salts/chemistry , Formazans/chemistry , Tandem Mass Spectrometry/methods , Thiazoles/chemistry , Light , Chromatography, Liquid/methods , Coloring Agents/chemistry
6.
Methods Mol Biol ; 2825: 293-308, 2024.
Article in English | MEDLINE | ID: mdl-38913317

ABSTRACT

Solid tumors and tumor-derived cell lines commonly contain highly enlarged (giant) cancer cells that enter a state of transient dormancy (active sleep) after they are formed, but retain viability, secrete growth promoting factors, and exhibit the ability to generate rapidly proliferating progeny with stem cell-like properties. Giant cells with a highly enlarged nucleus or multiple nuclei are often called polyploid giant cancer cells (PGCCs). Although PGCCs constitute only a subset of cells within a solid tumor/tumor-derived cell line, their frequency can increase markedly following exposure to ionizing radiation or chemotherapeutic drugs. In this chapter we outline a simple and yet highly sensitive cell-based assay, called single-cell MTT, that we have optimized for determining the viability and metabolic activity of PGCCs before and after exposure to anticancer agents. The assay measures the ability of individual PGCCs to convert the MTT tetrazolium salt to its water insoluble formazan metabolite. In addition to evaluating PGCCs, this assay is also a powerful tool for determining the viability and metabolic activity of cancer cells undergoing premature senescence following treatment with anticancer agents, as well as for distinguishing dead cancer cells and dying cells (e.g., exhibiting features of apoptosis, ferroptosis, etc.) that have the potential to resume proliferation through a process called anastasis.


Subject(s)
Cell Survival , Giant Cells , Polyploidy , Humans , Cell Survival/drug effects , Giant Cells/metabolism , Cell Line, Tumor , Single-Cell Analysis/methods , Tetrazolium Salts/chemistry , Neoplasms/metabolism , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Cell Proliferation
7.
Eur J Med Chem ; 275: 116542, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38875807

ABSTRACT

The potential for secondary stroke prevention, which can significantly reduce the risk of recurrent strokes by almost 90%, underscores its critical importance. N-butylphthalide (NBP) has emerged as a promising treatment for acute cerebral ischemia, yet its efficacy for secondary stroke prevention is hindered by inadequate pharmacokinetic properties. This study, driven by a comprehensive structural analysis, the iterative process of structure optimization culminated in the identification of compound B4, which demonstrated exceptional neuroprotective efficacy and remarkable oral exposure and oral bioavailability. Notably, in an in vivo transient middle cerebral artery occlusion (tMCAO) model, B4 substantially attenuated infarct volumes, surpassing the effectiveness of NBP. While oral treatment with B4 exhibited stronger prevention potency than NBP in photothrombotic (PT) model. In summary, compound B4, with its impressive oral bioavailability and potent neuroprotective effects, offers promise for both acute ischemic stroke treatment and secondary stroke prevention.


Subject(s)
Ischemic Stroke , Neuroprotective Agents , Secondary Prevention , Tetrazolium Salts , Animals , Humans , Male , Mice , Rats , Administration, Oral , Biological Availability , Dose-Response Relationship, Drug , Drug Discovery , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/prevention & control , Ischemic Stroke/prevention & control , Ischemic Stroke/drug therapy , Mice, Inbred C57BL , Molecular Structure , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Structure-Activity Relationship , Tetrazolium Salts/administration & dosage , Tetrazolium Salts/pharmacokinetics , Tetrazolium Salts/pharmacology , Rats, Sprague-Dawley , Female
8.
Acta Trop ; 257: 107288, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38901524

ABSTRACT

Soluble factors in the secretome of Acanthamoeba castellanii play crucial roles in the pathogenesis of Acanthamoeba keratitis (AK). Investigating the pathological effects of A. castellanii-derived conditioned medium (ACCM) on ocular cells can provide insights into the damage inflicted during AK. This study examined ACCM-induced cytotoxicity in primary human corneal stromal cells (CSCs) and a human SV40 immortalized corneal epithelial cell line (ihCECs) at varying ACCM concentrations (25 %, 50 %, 75 %, and 100 %). MTT, AlamarBlue, Sulforhodamine B, lactate dehydrogenase, and Caspase-3/7 activation assays were used to assess the impact of ACCM on the cell viability, proliferation and apoptosis. Additionally, fluorescent staining was used to reveal actin cytoskeleton changes. ACCM exposure significantly decreased cell viability, increased apoptosis, and disrupted the actin cytoskeleton, particularly at higher concentrations and longer exposures. Proteases were found to mediate these cytopathogenic effects, highlighting the need for characterization of A. castellanii proteases as key virulence factors in AK pathogenesis.


Subject(s)
Acanthamoeba castellanii , Cell Survival , Epithelial Cells , Humans , Acanthamoeba castellanii/drug effects , Cell Survival/drug effects , Culture Media, Conditioned/pharmacology , Epithelial Cells/drug effects , Apoptosis/drug effects , Stromal Cells/drug effects , Cell Line , L-Lactate Dehydrogenase/metabolism , Cells, Cultured , Cell Proliferation/drug effects , Epithelium, Corneal/drug effects , Caspase 3/metabolism , Thiazoles/metabolism , Tetrazolium Salts , Oxazines
9.
Bull Exp Biol Med ; 176(6): 827-829, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38890211

ABSTRACT

The severity of ischemic injury was evaluated by densitometry of brain samples stained with 2,3,5-triphenyltetrazolium chloride (TTC) on a rat model of cerebral ischemia/reperfusion (common carotid artery occlusion) and the neuroprotective activity of an extract of Astragalus membranaceus, Scutellaria baicalensis, and Phlojodicarpus sibiricus was assessed. Occlusion of the common carotid arteries led to a weakening of TTC staining of the brain tissue: densitometric indicators of the staining intensity for the cortex and striatum were lower than the corresponding indicators of sham-operated rats by 18.3 and 10.4%. The mean intensity of staining of brain samples did not differ in rats treated with the extract and sham-operated animals, which attested to its neuroprotective effect. The applied method is convenient for evaluation of the severity of ischemic brain damage at the early stages and screening potential neuroprotective agents.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Plant Extracts , Animals , Rats , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Male , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Astragalus propinquus/chemistry , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Reperfusion Injury/prevention & control , Tetrazolium Salts/chemistry , Brain/drug effects , Brain/pathology , Rats, Wistar , Disease Models, Animal , Scutellaria baicalensis
10.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928377

ABSTRACT

Bacterial contamination is a hazard in many industries, including food, pharmaceuticals, and healthcare. The availability of a rapid and simple method for detecting this type of contamination in sterile areas enables immediate intervention to avoid or reduce detrimental effects. Among these methods, colorimetric indicators are becoming increasingly popular due to their affordability, ease of use, and quick visual interpretation of the signal. In this article, a bacterial contamination indicator system was designed by incorporating MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) into an electrospun PADAS matrix, which is a biodegradable poly(ester amide) synthesized from L-alanine, 1,12-dodecanediol, and sebacic acid. Uniaxial stress testing, thermogravimetric analysis and scanning electron microscopy were used to examine the mechanical properties, thermal stability, and morphology of the mats, respectively. The capacity for bacterial detection was not only analyzed with agar and broth assays but also by replicating important environmental conditions. Among the MTT concentrations tested in this study (0.2%, 2%, and 5%), it was found that only with a 2% MTT content the designed system produced a color response visible to the naked eye with optimal intensity, a sensitivity limit of 104 CFU/mL, and 86% cell viability, which showed the great potential for its use to detect bacterial contamination. In summary, by means of the process described in this work, it was possible to obtain a simple, low-cost and fast-response bacterial contamination indicator that can be used in mask filters, air filters, or protective clothing.


Subject(s)
Colorimetry , Polyesters , Tetrazolium Salts , Tetrazolium Salts/chemistry , Polyesters/chemistry , Colorimetry/methods , Thiazoles/chemistry , Bacteria , Humans
11.
Int J Oral Maxillofac Implants ; 39(2): 320, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38457263

ABSTRACT

PURPOSE: To investigate the biocompatibility of silver nanoparticle (AgNP)-doped Ti-6Al-4V surfaces by evaluating the viability and proliferation rate of human gingival fibroblasts (HGFs)-as the dominant cells of peri-implant soft tissues-seeded on the modified surfaces. MATERIALS AND METHODS: AgNPs (sizes 8 nm and 30 nm) were incorporated onto Ti-6Al-4V specimen surfaces via electrochemical deposition, using colloid silver dispersions with increasing AgNP concentrations of 100 ppm, 200 ppm, and 300 ppm. One control and six experimental groups were included in the study: (1) control (Ti-6Al-4V), (2) 8 nm/100 ppm, (3) 8 nm/200 ppm, (4) 8 nm/300 ppm, (5) 30 nm/100 ppm, (6) 30 nm/200 ppm, and (7) 30 nm/300 ppm. HGF cell primary cultures were isolated from periodontally healthy donor patients and cultured in direct contact with the group specimens for 24 and 72 hours. The cytotoxicity of AgNP-doped Ti-6Al-4V specimens toward HGF was assessed by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) and BrdU (5-bromo-2'-deoxyuridine) assay tests. Calcein AM and ethidium homodimer (EthD-1) fluorescent stains were used to determine the live and dead cells. The morphology and attachment properties of the HGFs were determined via scanning electron microscopy (SEM). RESULTS: Energy dispersive x-ray (EDX) analysis confirmed the presence of AgNPs on the specimens. The MTT test revealed that AgNPs of both sizes and all concentrations presented a decreased cellular metabolic activity compared to the control discs. All concentrations of both sizes of AgNPs affected the cell proliferation rate compared to the control group, as revealed by the BrdU assay. Overall, cytotoxicity of the modified Ti-6Al-4V surfaces depended on cell exposure time. Observation via confocal microscopy confirmed the results of the MTT and BrdU assay tests. Specifically, most cells remained alive throughout the 72-hour culture period. SEM images revealed that adjacent cells form bonds with each other, creating confluent layers of conjugated cells. CONCLUSIONS: The findings of the present study indicate that Ti-6Al-4V surfaces modified with 8 nm and 30 nm AgNPs at concentrations of 100 ppm, 200 ppm, and 300 ppm do not produce any serious cytotoxicity toward HGFs. The initial arrest of the HGF proliferation rate recovered at 72 hours. These results on the antibacterial activity against common periodontal pathogens, in combination with the results found in a previous study by the same research group, suggest that AgNP-doped Ti-6Al-4V surfaces are potential candidates for use in implant abutments for preventing peri-implant diseases.


Subject(s)
Alloys , Cell Proliferation , Cell Survival , Fibroblasts , Gingiva , Metal Nanoparticles , Silver , Surface Properties , Thiazoles , Titanium , Humans , Fibroblasts/drug effects , Titanium/toxicity , Titanium/chemistry , Gingiva/cytology , Gingiva/drug effects , Silver/chemistry , Silver/toxicity , Cell Proliferation/drug effects , Metal Nanoparticles/toxicity , Cell Survival/drug effects , Cells, Cultured , Alloys/toxicity , Materials Testing , Dental Alloys/chemistry , Dental Alloys/toxicity , Microscopy, Electron, Scanning , Coloring Agents , Biocompatible Materials/chemistry , Tetrazolium Salts
12.
Odontology ; 112(4): 1142-1156, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38517569

ABSTRACT

Novel methods and technologies that improve mesenchymal stem cells (MSCs) proliferation and differentiation properties are required to increase their clinical efficacy. Photobiomodulation (PBM) and low-intensity pulsed ultrasound (LIPUS) are two strategies that can be used to enhance the regenerative properties of dental MSCs. This study evaluated the cytocompatibility and osteo/odontogenic differentiation of dental pulp, periodontal ligament, and gingival MSCs after stimulation by either PBM or LIPUS and their combined effect. MTT assay, cell migration assay, osteo/odontogenic differentiation by AR staining and ALP activity, and expression of osteo/odontogenic markers (OPG, OC, RUNX2, DSPP, DMP1) by RT-qPCR were evaluated. Statistical analysis was performed using ANOVA, followed by Tukey's post hoc test, with a p-value of less than 0.05 considered significant. The results showed that combined stimulation by PBM and LIPUS resulted in significantly the highest viability of MSCs, the fastest migration, the most dense AR staining, the most increased ALP activity, and the most elevated levels of osteogenic and odontogenic markers. The synergetic stimulation of PBM and LIPUS can be utilized in cell-based regenerative approaches to promote the properties of dental MSCs.


Subject(s)
Cell Differentiation , Cell Movement , Cell Survival , Dental Pulp , Low-Level Light Therapy , Mesenchymal Stem Cells , Ultrasonic Waves , Mesenchymal Stem Cells/radiation effects , Low-Level Light Therapy/methods , Humans , Dental Pulp/cytology , Periodontal Ligament/cytology , Gingiva/cytology , Cells, Cultured , Real-Time Polymerase Chain Reaction , Cell Proliferation , Tetrazolium Salts , Thiazoles , Osteogenesis/radiation effects
13.
Chem Pharm Bull (Tokyo) ; 72(3): 253-257, 2024.
Article in English | MEDLINE | ID: mdl-38432906

ABSTRACT

This study focused on the electrochemical properties of tetrazolium salts to develop a simple method for evaluating viable bacterial counts, which are indicators of drug susceptibility. Considering that the oxidized form of tetrazolium, which has excellent cell membrane permeability, changes to the insoluble reduced form formazan inside the cell, the number of viable cells was estimated based on the reduction current of the tetrazolium remaining in the bacterial suspension. Dissolved oxygen is an important component of bacterial activity. However, it interferes with the electrochemical response of tetrazolium. We estimated the number of viable bacteria in the suspension based on potential-selective current responses that were not affected by dissolved oxygen. Based on solubility, cell membrane permeability, and characteristic electrochemical properties of the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium, we developed a method for rapidly measuring viable bacteria within one-fifth of the time required by conventional colorimetric methods for drug susceptibility testing.


Subject(s)
Anti-Bacterial Agents , Mycobacterium tuberculosis , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Penicillin G , Oxygen , Tetrazolium Salts
14.
Water Res ; 246: 120737, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37857011

ABSTRACT

Reliable and cost-effective methods for monitoring microbial activity are critical for process control in wastewater treatment plants. The dehydrogenase activity (DHA) test has been recognized as an efficient measure of biological activity due to its simplicity and broad applicability. Nevertheless, the existing DHA test methods suffer from imperfections and are difficult to implement as routine monitoring techniques. In this work, an accurate and cost-effective modified DHA approach was developed and the procedure for the DHA test was critically evaluated with respect to the standard construction, sample pretreatment, incubation and extraction conditions. The feasibility of the modified DHA test was demonstrated by comparison with the oxygen uptake rate and adenosine triphosphate in a sequencing batch reactor. The sensitivities of the two typical tetrazolium salts to toxicant inhibition by heavy metals and antibiotics were compared, revealing that 2,3,5-triphenyltetrazolium chloride (TTC) exhibited a higher sensitivity. Furthermore, the sensitivity mechanism of the two DHA tests was elucidated through electrochemical experiments, theoretical analysis and molecular simulations. Both tetrazolium salts were found to be effective artificial electron acceptors due to their low redox potentials. Molecular docking simulations revealed that TTC could outperform other tetrazolium salts in accepting electrons and hydrogens from dehydrogenase. Overall, the modified DHA approach presents an accurate and cost-effective way to measure microbial activity, making it a practical tool for wastewater treatment plants.


Subject(s)
Anti-Bacterial Agents , Water Purification , Molecular Docking Simulation , Tetrazolium Salts/chemistry , Tetrazolium Salts/pharmacology , Anti-Bacterial Agents/pharmacology , Oxidoreductases
15.
J Microbiol Methods ; 214: 106830, 2023 11.
Article in English | MEDLINE | ID: mdl-37805093

ABSTRACT

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay has been employed in the analysis of bacterial growth. In comparison to experiments conducted on mammalian cells, the MTT bacterial assay encounters a greater number of interfering factors and obstacles that impact the accuracy of results. In this study, we have elucidated an improved MTT assay protocol and put forth an equation that establishes a correlation between colony-forming units (CFU) and the amount of formazan converted by the bacteria, drawing upon the fundamental principle of the MTT assay. This equation is represented as CFU=kF. Furthermore, we have explicated a methodology to determine the scale factor "k" by employing S. aureus and E. coli as illustrative examples. The findings indicate that S. aureus and E. coli reduce MTT by a cyclic process, from which the optimal reduction time at room temperature was determined to be approximately 30 mins. Furthermore, individual E. coli exhibits an MTT reduction capacity approximately four times greater than that of S. aureus. HPLC analysis proves to be the most accurate method for mitigating interferences during the dissolution and quantification of formazan. Additionally, this study has identified a new constraint related to the narrow linear range (0-125 µg/mL) of formazan concentration-absorbance and has presented strategies to circumvent this limitation.


Subject(s)
Colorimetry , Escherichia coli , Animals , Colorimetry/methods , Formazans , Staphylococcus aureus , Tetrazolium Salts , Mammals
16.
PLoS One ; 18(8): e0285566, 2023.
Article in English | MEDLINE | ID: mdl-37624819

ABSTRACT

Soy is the main product of Brazilian agriculture and the fourth most cultivated bean globally. Since soy cultivation tends to increase and due to this large market, the guarantee of product quality is an indispensable factor for enterprises to stay competitive. Industries perform vigor tests to acquire information and evaluate the quality of soy planting. The tetrazolium test, for example, provides information about moisture damage, bedbugs, or mechanical damage. However, the verification of the damage reason and its severity are done by an analyst, one by one. Since this is massive and exhausting work, it is susceptible to mistakes. Proposals involving different supervised learning approaches, including active learning strategies, have already been used, and have brought significant results. Therefore, this paper analyzes the performance of non-supervised techniques for classifying soybeans. An extensive experimental evaluation was performed, considering (9) different clustering algorithms (partitional, hierarchical, and density-based) applied to 5 image datasets of soybean seeds submitted to the tetrazolium test, including different damages and/or their levels. To describe those images, we considered 18 extractors of traditional features. We also considered four metrics (accuracy, FOWLKES, DAVIES, and CALINSKI) and two-dimensionality reduction techniques (principal component analysis and t-distributed stochastic neighbor embedding) for validation. Results show that this paper presents essential contributions since it makes it possible to identify descriptors and clustering algorithms that shall be used as preprocessing in other learning processes, accelerating and improving the classification process of key agricultural problems.


Subject(s)
Agriculture , Glycine max , Algorithms , Cluster Analysis , Seeds , Tetrazolium Salts
17.
Anal Chem ; 95(33): 12358-12364, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37605797

ABSTRACT

This study focused on the electrochemical properties of tetrazolium salts to develop a simple method for evaluating viable bacterial counts, which are indicators of hygiene control at food and pharmaceutical manufacturing sites. Given that the oxidized form of 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), which has excellent cell membrane permeability, changes to the insoluble reduced form of formazan inside the cell, the number of viable cells was estimated by focusing on the reduction current of MTT remaining in the suspension. Dissolved oxygen is an important substance for bacterial activity; however, it interferes with the electrochemical response of MTT. We investigated the electrochemical properties of MTT to obtain a potential-selective current response that was not affected by dissolved oxygen. Real-time observation of viable bacteria in suspension revealed that uptake of MTT into bacteria was completed within 10 min, including the lag period. In addition, we observed that the current response depends on viable cell density regardless of the bacterial species present. Our method enables a rapid estimation of the number of viable bacteria, making it possible to confirm the safety of food products before they are shipped from the factory and thereby prevent food poisoning.


Subject(s)
Bacteria , Bromides , Tetrazolium Salts , Biological Transport , Oxygen
18.
Molecules ; 28(16)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37630289

ABSTRACT

New hydroxy-methylenebisphosphonic derivatives were prepared with different P-functions. The outcome of the reaction of α-oxophosphonates (YC(O)P(O)(OR)2) and dialkyl phosphites or diarylphosphine oxides depended on the Y substituent of the oxo-compound, the nature of the P-reagent and the amount of the diethylamine catalyst. Starting from dimethyl α-oxoethylphosphonate, in the presence of 5% of diethylamine, the corresponding Pudovik adduct was the single product. While using 40% of the catalyst, the rearranged species with the >P(O)-O-CH-P(O)< skeleton was the exclusive component. A similar reaction of α-oxobenzylphosphonate followed the rearrangement protocol. X-ray crystallography revealed not only the spatial structures of the three products, but also an intricate pattern evolving from the interplay of slight chemical differences, solvent inclusion and disorder as well as H-bridge patterns, which invite further investigation. In vitro activity of the compounds was assessed on different tumor cell cultures using end-point-type cell tetrazolium-based measurements. These structure-activity studies revealed a cytostatic effect for four rearranged derivatives containing aromatic units. One of them had a pronounced effect on MDA-MB 231 and Ebc-1 cells, showing IC50 = 37.8 and 25.9 µM, respectively.


Subject(s)
Radiopharmaceuticals , X-Rays , Radiography , Tetrazolium Salts , Diethylamines
19.
Int J Mol Sci ; 24(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37511567

ABSTRACT

This article presents a study on the synthesis and catalytic properties of copper complex (TPhTz)2[CuBr4] (here TPhTz is 2,3,5-triphenyltetrazolium). The obtained complex was characterized by various spectroscopic methods. The catalytic properties of the complex were evaluated in the curing of an epoxy vinyl ester system and their effectiveness was compared with that of cobalt octoate (its synonyms are known as Co(Oct)2, cobalt(II) 2-ethylhexanoate, cobalt isocaprylate, etc.). The catalyst was added at an amount of 2 w.%. The results showed that a 8 w.% solution of the complex provides catalytic properties with an activation energy of 54.7 kJ/mol, which is 25.2 kJ/mol higher than a standard curing system with Co(Oct)2. Thus, the solution of (TPhTz)2[CuBr4] in THF/DMSO accelerates the initiator decay process at room temperature, but for a longer time. The authors suggest that the curing mechanism may be accelerated by the appearance of (TPhTz)2[CuIBr3] and free bromine in the system. A strength test of fiberglass-reinforced plastic revealed that the addition of this complex did not lead to a decrease in flexural strength and hardness. Thus, use of the complex allowed for the production of polymer composite products using vacuum-assisted resin transfer molding where an extended injection time was needed.


Subject(s)
Cobalt , Esters , Hardness , Tetrazolium Salts
20.
J Am Chem Soc ; 145(28): 15197-15206, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37410992

ABSTRACT

Cancer cells generally present a higher demand for iron, which plays crucial roles in tumor progression and metastasis. This iron addiction provides opportunities to develop broad spectrum anticancer drugs that target iron metabolism. In this context, prochelation approaches are investigated to release metal-binding compounds under specific conditions, thereby limiting off-target toxicity. Here, we demonstrate a prochelation strategy inspired by the bioreduction of tetrazolium cations widely employed to assess the viability of mammalian cells. We designed a series of tetrazolium-based compounds for the intracellular release of metal-binding formazan ligands. The combination of reduction potentials appropriate for intracellular reduction and an N-pyridyl donor on the formazan scaffold led to two effective prochelators. The reduced formazans bind as tridentate ligands and stabilize low-spin Fe(II) centers in complexes of 2:1 ligand-to-metal stoichiometry. The tetrazolium salts are stable in blood serum for over 24 h, and antiproliferative activities at micromolar levels were recorded in a panel of cancer cell lines. Additional assays confirmed the intracellular activation of the prochelators and their ability to affect cell cycle progression, induce apoptotic death, and interfere with iron availability. Demonstrating the role of iron in their intracellular effects, the prochelators impacted the expression levels of key iron regulators (i.e., transferrin receptor 1 and ferritin), and iron supplementation mitigated their cytotoxicity. Overall, this work introduces the tetrazolium core as a platform to build prochelators that can be tuned for activation in the reducing environment of cancer cells and produce antiproliferative formazan chelators that interfere with cellular iron homeostasis.


Subject(s)
Iron Chelating Agents , Iron , Animals , Formazans , Iron Chelating Agents/chemistry , Iron Chelating Agents/pharmacology , Ligands , Iron/chemistry , Tetrazolium Salts , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL