Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 14.626
1.
Front Immunol ; 15: 1400550, 2024.
Article En | MEDLINE | ID: mdl-38835756

The dog is an important companion animal and also serves as model species for human diseases. Given the central role of T cells in immune responses, a basic understanding of canine conventional T cell receptor (TCR)αß+ T cells, comprising CD4+ single-positive (sp) T helper (Th) and CD8α+ sp cytotoxic T cell subsets, is available. However, characterization of canine non-conventional TCRαß+ CD4+CD8α+ double-positive (dp) and TCRαß+ CD4-CD8α- double-negative (dn) T cells is limited. In this study, we performed a comprehensive analysis of canine dp and dn T cells in comparison with their conventional counterparts. TCRαß+ T cells from peripheral blood of healthy dogs were sorted according to their CD4/CD8α phenotype into four populations (i.e. CD4+ sp, CD8α+ sp, dp, and dn) and selected surface markers, transcription factors and effector molecules were analyzed ex vivo and after in vitro stimulation by RT-qPCR. Novel characteristics of canine dp T cells were identified, expanding the previously characterized Th1-like phenotype to Th17-like and Th2-like properties. Overall, mRNA expression of various Th cell-associated cytokines (i.e. IFNG, IL17A, IL4, IL13) in dp T cells upon stimulation highlights their versatile immunological potential. Furthermore, we demonstrated that the CD4-CD8α- dn phenotype is stable during in vitro stimulation. Strikingly, dn T cells were found to express highest mRNA levels of type 2 effector cytokines (IL4, IL5, and IL13) upon stimulation. Their strong ability to produce IL-4 was confirmed at the protein level. Upon stimulation, the percentage of IL-4-producing cells was even higher in the non-conventional dn than in the conventional CD4+ sp population. Constitutive transcription of IL1RL1 (encoding IL-33Rα) further supports Th2-like properties within the dn T cell population. These data point to a role of dn T cells in type 2 immunity. In addition, the high potential of dn T cells to transcribe the gene encoding the co-inhibitory receptor CTLA-4 and to produce the inhibitory cytokine IL-10 indicates putative immunosuppressive capacity of this population. In summary, this study reveals important novel aspects of canine non-conventional T cells providing the basis for further studies on their effector and/or regulatory functions to elucidate their role in health and disease.


Receptors, Antigen, T-Cell, alpha-beta , Th2 Cells , Animals , Dogs , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Th2 Cells/immunology , CD8 Antigens/metabolism , CD8 Antigens/immunology , Cytokines/metabolism , CD4 Antigens/metabolism , CD4 Antigens/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Immunophenotyping , Male
2.
Sci Adv ; 10(23): eadk2693, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38838155

T helper 1 (TH1) cell identity is defined by the expression of the lineage-specifying transcription factor T-bet. Here, we examine the influence of T-bet expression heterogeneity on subset plasticity by leveraging cell sorting of distinct in vivo-differentiated TH1 cells based on their quantitative expression of T-bet and interferon-γ. Heterogeneous T-bet expression states were regulated by virus-induced type I interferons and were stably maintained even after secondary viral infection. Exposed to alternative differentiation signals, the sorted subpopulations exhibited graded levels of plasticity, particularly toward the TH2 lineage: T-bet quantities were inversely correlated with the ability to express the TH2 lineage-specifying transcription factor GATA-3 and TH2 cytokines. Reprogramed TH1 cells acquired graded mixed TH1 + TH2 phenotypes with a hybrid epigenetic landscape. Continuous presence of T-bet in differentiated TH1 cells was essential to ensure TH1 cell stability. Thus, innate cytokine signals regulate TH1 cell plasticity via an individual cell-intrinsic rheostat to enable T cell subset adaptation to subsequent challenges.


Cell Differentiation , Cell Lineage , Cell Plasticity , T-Box Domain Proteins , Th1 Cells , Th2 Cells , Th1 Cells/immunology , Th1 Cells/metabolism , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Animals , Cell Lineage/genetics , Th2 Cells/immunology , Th2 Cells/metabolism , Mice , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Interferon-gamma/metabolism , Gene Expression Regulation , Cytokines/metabolism
3.
Cells ; 13(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38727273

Bovine Th2 cells have usually been characterized by IL4 mRNA expression, but it is unclear whether their IL4 protein expression corresponds to transcription. We found that grass-fed healthy beef cattle, which had been regularly exposed to parasites on the grass, had a low frequency of IL4+ Th2 cells during flow cytometry, similar to animals grown in feedlots. To assess the distribution of IL4+ CD4+ T cells across tissues, samples from the blood, spleen, abomasal (draining), and inguinal lymph nodes were examined, which revealed limited IL4 protein detection in the CD4+ T cells across the examined tissues. To determine if bovine CD4+ T cells may develop into Th2 cells, naïve cells were stimulated with anti-bovine CD3 under a Th2 differentiation kit in vitro. The cells produced primarily IFNγ proteins, with only a small fraction (<10%) co-expressing IL4 proteins. Quantitative PCR confirmed elevated IFNγ transcription but no significant change in IL4 transcription. Surprisingly, GATA3, the master regulator of IL4, was highest in naïve CD4+ T cells but was considerably reduced following differentiation. To determine if the differentiated cells were true Th2 cells, an unbiased proteomic assay was carried out. The assay identified 4212 proteins, 422 of which were differently expressed compared to those in naïve cells. Based on these differential proteins, Th2-related upstream components were predicted, including CD3, CD28, IL4, and IL33, demonstrating typical Th2 differentiation. To boost IL4 expression, T cell receptor (TCR) stimulation strength was reduced by lowering anti-CD3 concentrations. Consequently, weak TCR stimulation essentially abolished Th2 expansion and survival. In addition, extra recombinant bovine IL4 (rbIL4) was added during Th2 differentiation, but, despite enhanced expansion, the IL4 level remained unaltered. These findings suggest that, while bovine CD4+ T cells can respond to Th2 differentiation stimuli, the bovine IL4 pathway is not regulated in the same way as in mice and humans. Furthermore, Ostertagia ostertagi (OO) extract, a gastrointestinal nematode in cattle, inhibited signaling via CD3, CD28, IL4, and TLRs/MYD88, indicating that external pathogens can influence bovine Th2 differentiation. In conclusion, though bovine CD4+ T cells can respond to IL4-driven differentiation, IL4 expression is not a defining feature of differentiated bovine Th2 cells.


Cell Differentiation , Th2 Cells , Animals , Cattle , Th2 Cells/immunology , Th2 Cells/metabolism , Interleukin-4/metabolism , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Interferon-gamma/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism
4.
Front Immunol ; 15: 1342497, 2024.
Article En | MEDLINE | ID: mdl-38694499

Myeloid-derived suppressor cells (MDSCs) are a phenotypically heterogenous group of cells that potently suppress the immune response. A growing body of evidence supports the important role of MDSCs in a variety of lung diseases, such as asthma. However, the role of MDSCs in asthma exacerbation has so far not been investigated. Here, we studied the role of MDSCs in a murine model of influenza virus-induced asthma exacerbation. BALB/c mice were exposed to house dust mite (HDM) three times a week for a total of five weeks to induce a chronic asthmatic phenotype, which was exacerbated by additional exposure to the A/Hamburg/5/2009 hemagglutinin 1 neuraminidase 1 (H1N1) influenza virus. Induction of lung inflammatory features, production of T helper (Th) 1- and Th2- associated inflammatory cytokines in the lavage fluid and an increased airway hyper-responsiveness were observed, establishing the asthma exacerbation model. The number and activity of pulmonary M-MDSCs increased in exacerbated asthmatic mice compared to non-exacerbated asthmatic mice. Furthermore, depletion of MDSCs aggravated airway hyper-responsiveness in exacerbated asthmatic mice. These findings further denote the role of MDSCs in asthma and provide some of the first evidence supporting a potential important role of MDSCs in asthma exacerbation.


Asthma , Cytokines , Disease Models, Animal , Influenza A Virus, H1N1 Subtype , Mice, Inbred BALB C , Myeloid-Derived Suppressor Cells , Orthomyxoviridae Infections , Animals , Asthma/immunology , Myeloid-Derived Suppressor Cells/immunology , Mice , Orthomyxoviridae Infections/immunology , Cytokines/metabolism , Influenza A Virus, H1N1 Subtype/immunology , Female , Pyroglyphidae/immunology , Disease Progression , Lung/immunology , Lung/pathology , Lung/virology , Th2 Cells/immunology
5.
Front Immunol ; 15: 1372927, 2024.
Article En | MEDLINE | ID: mdl-38742105

The parasitic helminth Schistosoma mansoni is a potent inducer of type 2 immune responses by stimulating dendritic cells (DCs) to prime T helper 2 (Th2) responses. We previously found that S. mansoni soluble egg antigens (SEA) promote the synthesis of Prostaglandin E2 (PGE2) by DCs through ERK-dependent signaling via Dectin-1 and Dectin-2 that subsequently induces OX40L expression, licensing them for Th2 priming, yet the ligands present in SEA involved in driving this response and whether specific targeting of PGE2 synthesis by DCs could affect Th2 polarization are unknown. We here show that the ability of SEA to bind Dectin-2 and drive ERK phosphorylation, PGE2 synthesis, OX40L expression, and Th2 polarization is impaired upon cleavage of high-mannose glycans by Endoglycosidase H treatment. This identifies high-mannose glycans present on glycoproteins in SEA as important drivers of this signaling axis. Moreover, we find that OX40L expression and Th2 induction are abrogated when microsomal prostaglandin E synthase-1 (mPGES) is selectively inhibited, but not when a general COX-1/2 inhibitor is used. This shows that the de novo synthesis of PGE2 is vital for the Th2 priming function of SEA-stimulated DCs as well as points to the potential existence of other COX-dependent lipid mediators that antagonize PGE2-driven Th2 polarization. Lastly, specific PGE2 inhibition following immunization with S. mansoni eggs dampened the egg-specific Th cell response. In summary, our findings provide new insights in the molecular mechanisms underpinning Th2 induction by S. mansoni and identify druggable targets for potential control of helminth driven-Th2 responses.


Antigens, Helminth , Dendritic Cells , Dinoprostone , Lectins, C-Type , Mannose , Polysaccharides , Schistosoma mansoni , Th2 Cells , Animals , Schistosoma mansoni/immunology , Dinoprostone/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Lectins, C-Type/metabolism , Lectins, C-Type/immunology , Mannose/metabolism , Mannose/immunology , Mice , Polysaccharides/immunology , Polysaccharides/metabolism , Antigens, Helminth/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/metabolism , Schistosomiasis mansoni/parasitology , Ovum/immunology , Ovum/metabolism , Mice, Inbred C57BL , OX40 Ligand/metabolism
6.
Front Immunol ; 15: 1367053, 2024.
Article En | MEDLINE | ID: mdl-38756775

Background: With the worsening of the greenhouse effect, the correlation between the damp-heat environment (DH) and the incidence of various diseases has gained increasing attention. Previous studies have demonstrated that DH can lead to intestinal disorders, enteritis, and an up-regulation of NOD-like receptor protein 3 (NLRP3). However, the mechanism of NLRP3 in this process remains unclear. Methods: We established a DH animal model to observe the impact of a high temperature and humidity environment on the mice. We sequenced the 16S rRNA of mouse feces, and the RNA transcriptome of intestinal tissue, as well as the levels of cytokines including interferon (IFN)-γ and interleukin (IL)-4 in serum. Results: Our results indicate that the intestinal macrophage infiltration and the expression of inflammatory genes were increased in mice challenged with DH for 14 days, while the M2 macrophages were decreased in Nlrp3 -/- mice. The alpha diversity of intestinal bacteria in Nlrp3 -/- mice was significantly higher than that in control mice, including an up-regulation of the Firmicutes/Bacteroidetes ratio. Transcriptomic analysis revealed 307 differentially expressed genes were decreased in Nlrp3 -/- mice compared with control mice, which was related to humoral immune response, complement activation, phagocytic recognition, malaria and inflammatory bowel disease. The ratio of IFN-γ/IL-4 was decreased in control mice but increased in Nlrp3 -/- mice. Conclusions: Our study found that the inflammation induced by DH promotes Th2-mediated immunity via NLRP3, which is closely related to the disruption of intestinal flora.


Gastrointestinal Microbiome , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Th2 Cells , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Mice , Gastrointestinal Microbiome/immunology , Th2 Cells/immunology , Hot Temperature , Alarmins/immunology , Alarmins/metabolism , Mice, Inbred C57BL , Macrophages/immunology , Cytokines/metabolism , Disease Models, Animal
7.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(5): 460-464, 2024 May.
Article Zh | MEDLINE | ID: mdl-38790103

Allergic rhinitis (AR), a common disease in otolaryngology, is a key risk factor for poorly controlled asthma and many complications, although it is not life-threatening. The negative impact of AR on social productive forces and human health is no less than that of asthma. Dendritic cells (DCs) play an important role in AR. In addition to sharing some of DC's biological characteristics, DCs-derived exosomes (DEXs) can promote the priming and activation of T cells and the maturation and differentiation of T helper type 2 (Th2) cells. Multiple signaling pathways in AR can be modulated by DEXs, which present allergens and participate in allergic immune responses. Anti-allergic drugs can be carried by DEXs to alleviate allergic airway inflammation and treat Th2-mediated AR effectively. Therefore, DEXs are crucial in the pathogenesis and treatment of AR.


Dendritic Cells , Exosomes , Rhinitis, Allergic , Exosomes/immunology , Exosomes/metabolism , Dendritic Cells/immunology , Humans , Rhinitis, Allergic/immunology , Rhinitis, Allergic/therapy , Animals , Th2 Cells/immunology
8.
Allergy ; 79(6): 1584-1597, 2024 Jun.
Article En | MEDLINE | ID: mdl-38817208

BACKGROUND: Efforts to profile atopic dermatitis (AD) tissues have intensified, yet comprehensive analysis of systemic immune landscapes in severe AD remains crucial. METHODS: Employing single-cell RNA sequencing, we analyzed over 300,000 peripheral blood mononuclear cells from 12 severe AD patients (Eczema area and severity index (EASI) > 21) and six healthy controls. RESULTS: Results revealed significant immune cell shifts in AD patients, including increased Th2 cell abundance, reduced NK cell clusters with compromised cytotoxicity, and correlated Type 2 innate lymphoid cell proportions with disease severity. Moreover, unique monocyte clusters reflecting activated innate immunity emerged in very severe AD (EASI > 30). While overall dendritic cells (DCs) counts decreased, a distinct Th2-priming subset termed "Th2_DC" correlated strongly with disease severity, validated across skin tissue data, and flow cytometry with additional independent severe AD samples. Beyond the recognized role of Th2 adaptive immunity, our findings highlight significant innate immune cell alterations in severe AD, implicating their roles in disease pathogenesis and therapeutic potentials. CONCLUSION: Apart from the widely recognized role of Th2 adaptive immunity in AD pathogenesis, alterations in innate immune cells and impaired cytotoxic cells have also been observed in severe AD. The impact of these alterations on disease pathogenesis and the effectiveness of potential therapeutic targets requires further investigation.


Dermatitis, Atopic , RNA-Seq , Severity of Illness Index , Single-Cell Analysis , Dermatitis, Atopic/immunology , Humans , Immunity, Innate , Male , Th2 Cells/immunology , Th2 Cells/metabolism , Female , Adult , Dendritic Cells/immunology , Dendritic Cells/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Case-Control Studies , Single-Cell Gene Expression Analysis
9.
Front Immunol ; 15: 1384697, 2024.
Article En | MEDLINE | ID: mdl-38807596

Background: Asthma is a common obstructive airway disease with an inflammatory etiology. The main unmet need in the management of asthma is inadequate adherence to pharmacotherapy, leading to a poorly-controlled disease state, necessitating the development of novel therapies. Bronchom is a calcio-herbal formulation, which is purported to treat chronic asthma. The objective of the current study was to examine the in-vivo efficacy of Bronchom in mouse model of allergic asthma. Methods: Ultra high performance liquid chromatography was utilized to analyze the phytocompounds in Bronchom. Further, the in-vivo efficacy of Bronchom was evaluated in House dust mite (HDM)-induced allergic asthma in mice. Mice were challenged with aerosolized methacholine to assess airway hyperresponsiveness. Subsequently, inflammatory cell influx was evaluated in bronchoalveolar lavage fluid (BALF) followed by lung histology, wherein airway remodeling features were studied. Simultaneously, the levels of Th2 cytokines and chemokines in the BALF was also evaluated. Additionally, the mRNA expression of pro-inflammatory and Th2 cytokines was also assessed in the lung along with the oxidative stress markers. Results: Phytocompounds present in Bronchom included, gallic acid, protocatechuic acid, methyl gallate, rosmarinic acid, glycyrrhizin, eugenol, 6-gingerol and piperine. Bronchom effectively suppressed HDM-induced airway hyperresponsiveness along with the influx of leukocytes in the BALF. Additionally, Bronchom reduced the infiltration of inflammatory cells in the lung and it also ameliorated goblet cell metaplasia, sub-epithelial fibrosis and increase in α-smooth muscle actin. Bronchom decreased Th2 cytokines (IL-4 and IL-5) and chemokines (Eotaxin and IP-10) in the BALF. Likewise, it could also suppress the mRNA expression of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-6 and IL-33), and IL-13. Moreover, Bronchom restored the HDM-induced diminution of endogenous anti-oxidants (GSH and SOD) and the increase in pro-oxidants (GSSG and MDA). Furthermore, Bronchom could also decrease the nitrosative stress by lowering the observed increase in nitrite levels. Conclusion: Taken together, the results of the present study data convincingly demonstrate that Bronchom exhibits pharmacological effects in an animal model of allergic asthma. Bronchom mitigated airway hyperresponsiveness, inflammation and airway remodeling evoked by a clinically relevant allergen and accordingly it possesses therapeutic potential for the treatment of asthma.


Asthma , Chemokines , Cytokines , Disease Models, Animal , Goblet Cells , Metaplasia , Pyroglyphidae , Th2 Cells , Animals , Asthma/drug therapy , Asthma/immunology , Mice , Cytokines/metabolism , Goblet Cells/pathology , Goblet Cells/immunology , Goblet Cells/drug effects , Pyroglyphidae/immunology , Th2 Cells/immunology , Chemokines/metabolism , Fibrosis , Mice, Inbred BALB C , Airway Remodeling/drug effects , Female , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Lung/pathology , Lung/immunology , Lung/drug effects
11.
Int J Med Sci ; 21(6): 1003-1015, 2024.
Article En | MEDLINE | ID: mdl-38774754

Objective: Asthma is a chronic heterogeneous airway disease, and imbalanced T-helper type 1 (Th1) and Th2 cell-mediated inflammation contribute to its pathogenesis. Although it has been suggested that androgen and estrogen were involved in development of asthma, the underlying mechanisms remained largely unclear. Studies have demonstrated that Runx3 could promote naive CD4+ T cells to differentiate into Th1 cells. Hence, our study aimed to explore the potential regulatory mechanism of androgen and estrogen on asthma via modulating Runx3. Methods: First, clinical assessments and pulmonary function tests were conducted on 35 asthma patients and 24 healthy controls. The concentrations of androgen, estrogen, and androgen estrogen ratios were assessed in peripheral blood samples of asthma patients and healthy controls. Then, a murine asthma model was established to explore the effects of estrogen and androgen (alone or in combination) on asthma. Third, an in vitro assay was used to explore the mechanism of combination of androgen and estrogen in asthma. Results: We observed decreased androgen and increased estrogen levels in asthma patients compared with healthy controls. In mice with experimental asthma, there were increased serum concentrations of estrogen and decreased serum concentrations of androgen, intervention with combination of androgen and estrogen alleviated airway inflammations, increased Runx3 expressions and elevated Th1 differentiation. In CD4+ T cells co-cultured with bronchial epithelial cells (BECs), treatment with androgen plus estrogen combination promoted Th1 differentiation, which was mitigated by Runx3 knockdown in BECs and enhanced by Runx3 overexpression. Conclusion: These findings suggest that androgen estrogen combination modulate the Th1/Th2 balance via regulating the expression of Runx3 in BECs, thereby providing experimental evidence supporting androgen and estrogen combination as a novel therapy for asthma.


Androgens , Asthma , Core Binding Factor Alpha 3 Subunit , Estrogens , Asthma/drug therapy , Asthma/immunology , Asthma/blood , Humans , Core Binding Factor Alpha 3 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/metabolism , Animals , Mice , Female , Androgens/blood , Male , Adult , Th1 Cells/immunology , Th1 Cells/drug effects , Disease Models, Animal , Middle Aged , Cell Differentiation/drug effects , Th2 Cells/immunology , Th2 Cells/drug effects , Case-Control Studies
12.
Int Immunopharmacol ; 134: 111825, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38723368

In recent decades, allergic diseases subsequent from an IgE-mediated response to specific allergens have become a progressively public chronic disease worldwide. They have shaped an important medical and socio-economic burden. A significant proportion of allergic disorders are branded via a form 2 immune response relating Th2 cells, type 2 natural lymphoid cells, mast cells and eosinophils. Interleukin-21 (IL-21) is a participant of the type-I cytokine family manufactured through numerous subsets of stimulated CD4+ T cells and uses controlling properties on a diversity of immune cells. Increasingly, experimental sign suggests a character for IL-21 in the pathogenesis of numerous allergic disorders. The purpose of this review is to discuss the biological properties of IL-21 and to summaries current developments in its role in the regulation of allergic disorders.


Hypersensitivity , Interleukins , Humans , Interleukins/immunology , Interleukins/metabolism , Animals , Hypersensitivity/immunology , Th2 Cells/immunology , Mast Cells/immunology
13.
Int Immunopharmacol ; 134: 112234, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38739976

Ulcerative colitis, a chronic inflammatory condition affecting the rectum and colon to varying degrees, is linked to a dysregulated immune response and the microbiota. Sodium (aS,9R)-3-hydroxy-16,17-dimethoxy-15-oxidotricyclo[12.3.1.12,6]nonadeca-1(18),2,4,6(19),14,16-hexene-9-yl sulfate hydrate (SDH) emerges as a novel diarylheptane compound aimed at treating inflammatory bowel diseases. However, the mechanisms by which SDH modulates these conditions remain largely unknown. In this study, we assessed SDH's impact on the clinical progression of dextran sodium sulfate (DSS)-induced ulcerative colitis. Our results demonstrated that SDH significantly mitigated the symptoms of DSS-induced colitis, reflected in reduced disease activity index scores, alleviation of weight loss, shortening of the colorectum, and reduction in spleen swelling. Notably, SDH decreased the proportion of Th1/Th2/Th17 cells and normalized inflammatory cytokine levels in the colon. Furthermore, SDH treatment modified the gut microbial composition in mice with colitis, notably decreasing Bacteroidetes and Proteobacteria populations while substantially increasing Firmicutes, Actinobacteria, and Patescibacteria. In conclusion, our findings suggest that SDH may protect the colon from DSS-induced colitis through the regulation of Th1/Th2/Th17 cells and gut microbiota, offering novel insights into SDH's therapeutic potential.


Colitis, Ulcerative , Dextran Sulfate , Diarylheptanoids , Gastrointestinal Microbiome , Mice, Inbred C57BL , Animals , Gastrointestinal Microbiome/drug effects , Mice , Diarylheptanoids/pharmacology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/immunology , Colitis, Ulcerative/microbiology , Colon/drug effects , Colon/immunology , Colon/pathology , Colon/microbiology , Cytokines/metabolism , Disease Models, Animal , Colitis/chemically induced , Colitis/drug therapy , Colitis/immunology , Colitis/microbiology , Male , Th1 Cells/immunology , Th1 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/drug effects , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Th2 Cells/immunology , Th2 Cells/drug effects , Humans
14.
Int J Biol Macromol ; 269(Pt 2): 132215, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729482

Food allergy has a significant impact on the health and well-being of individuals, affecting both their physical and mental states. Research on natural bioactive compounds, such as polysaccharides extracted from seaweeds, holds great promise in the treatment of food allergies. In this study, fermented Gracilaria lemaneiformis polysaccharides (F-GLSP) were prepared using probiotic fermentation. Probiotic fermentation of Gracilaria lemaneiformis reduces the particle size of polysaccharides. To compare the anti-allergic activity of F-GLSP with unfermented Gracilaria lemaneiformis polysaccharides (UF-GLSP), an OVA-induced mouse food allergy model was established. F-GLSP exhibited a significant reduction in OVA-specific IgE and mMCP levels in allergic mice. Moreover, it significantly inhibited Th2 differentiation and IL-4 production and significantly promoted Treg differentiation and IL-10 production in allergic mice. In contrast, UF-GLSP only reduced OVA-specific IgE and mMCP in the serum of allergic mice. Furthermore, F-GLSP demonstrated a more pronounced regulation of intestinal flora abundance compared to UF-GLSP, significantly influencing the populations of Firmicutes, Bacteroidetes, Lactobacillus, and Clostridiales in the intestines of mice with food allergy. These findings suggest that F-GLSP may regulate food allergies in mice through multiple pathways. In summary, this study has promoted further development of functional foods with anti-allergic properties based on red algae polysaccharides.


Fermentation , Food Hypersensitivity , Gastrointestinal Microbiome , Gracilaria , Polysaccharides , T-Lymphocytes, Regulatory , Animals , Gracilaria/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Gastrointestinal Microbiome/drug effects , Mice , Food Hypersensitivity/drug therapy , Food Hypersensitivity/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Immunoglobulin E/blood , Immunoglobulin E/immunology , Mice, Inbred BALB C , Female , Disease Models, Animal , Th2 Cells/immunology , Th2 Cells/drug effects , Th2 Cells/metabolism , Ovalbumin/immunology
15.
JCI Insight ; 9(9)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38716729

Atopic dermatitis (AD) is an inflammatory skin condition with a childhood prevalence of up to 25%. Microbial dysbiosis is characteristic of AD, with Staphylococcus aureus the most frequent pathogen associated with disease flares and increasingly implicated in disease pathogenesis. Therapeutics to mitigate the effects of S. aureus have had limited efficacy and S. aureus-associated temporal disease flares are synonymous with AD. An alternative approach is an anti-S. aureus vaccine, tailored to AD. Experimental vaccines have highlighted the importance of T cells in conferring protective anti-S. aureus responses; however, correlates of T cell immunity against S. aureus in AD have not been identified. We identify a systemic and cutaneous immunological signature associated with S. aureus skin infection (ADS.aureus) in a pediatric AD cohort, using a combined Bayesian multinomial analysis. ADS.aureus was most highly associated with elevated cutaneous chemokines IP10 and TARC, which preferentially direct Th1 and Th2 cells to skin. Systemic CD4+ and CD8+ T cells, except for Th2 cells, were suppressed in ADS.aureus, particularly circulating Th1, memory IL-10+ T cells, and skin-homing memory Th17 cells. Systemic γδ T cell expansion in ADS.aureus was also observed. This study suggests that augmentation of protective T cell subsets is a potential therapeutic strategy in the management of S. aureus in AD.


Dermatitis, Atopic , Staphylococcal Skin Infections , Staphylococcus aureus , Dermatitis, Atopic/immunology , Dermatitis, Atopic/microbiology , Humans , Staphylococcus aureus/immunology , Child , Female , Staphylococcal Skin Infections/immunology , Staphylococcal Skin Infections/microbiology , Male , Child, Preschool , Skin/microbiology , Skin/immunology , Skin/pathology , Chemokine CXCL10/immunology , Chemokine CXCL10/metabolism , Th1 Cells/immunology , Th2 Cells/immunology , Th17 Cells/immunology , Bayes Theorem , CD8-Positive T-Lymphocytes/immunology , Interleukin-10/metabolism , Interleukin-10/immunology , Intraepithelial Lymphocytes/immunology , Antigens, Differentiation, T-Lymphocyte , Membrane Glycoproteins
16.
Front Immunol ; 15: 1396446, 2024.
Article En | MEDLINE | ID: mdl-38799456

Ascaris spp. undergo extensive migration within the body before establishing patent infections in the small intestinal tract of humans and pigs. However, whether larval migration is critical for inducing efficient type 2 responses remains poorly understood. Therefore, we investigated systemic versus local adaptive immune responses along the hepato-tracheal migration of Ascaris suum during primary, single infections in conventionally raised pigs. Neither the initial invasion of gut tissue nor migration through the liver resulted in discernable Th2 cell responses. In contrast, lung-stage larvae elicited a Th2-biased pulmonary response, which declined after the larvae had left the lungs. In the small intestine, we observed an accumulation of Th2 cells upon the arrival of fourth-stage larvae (L4) to the small intestinal lumen. In parallel, we noticed robust and increasing Th1 responses in circulation, migration-affected organs, and draining lymph nodes. Phenotypic analysis of CD4+ T cells specifically recognizing A. suum antigens in the circulation and lung tissue of infected pigs confirmed that the majority of Ascaris-specific T cells produced IL-4 (Th2) and, to a much lesser extent, IL-4/IFN-g (Th2/1 hybrids) or IFN-g alone (Th1). These data demonstrate that lung-stage but not the early liver-stage larvae lead to a locally restricted Th2 response. Significant Th2 cell accumulation in the small intestine occurs only when L4 complete the body migration. In addition, Th2 immunity seems to be hampered by the concurrent, nonspecific Th1 bias in growing pigs. Together, the late onset of Th2 immunity at the site of infection and the Th1-biased systemic immunity likely enable the establishment of intestinal infections by sufficiently large L4 stages and pre-adult worms, some of which resist expulsion mechanisms.


Ascariasis , Ascaris suum , Th1 Cells , Th2 Cells , Animals , Ascaris suum/immunology , Ascariasis/immunology , Ascariasis/parasitology , Th2 Cells/immunology , Swine , Th1 Cells/immunology , Swine Diseases/immunology , Swine Diseases/parasitology , Lung/immunology , Lung/parasitology , Larva/immunology , Cytokines/metabolism
17.
Innate Immun ; 30(2-4): 55-65, 2024 Feb.
Article En | MEDLINE | ID: mdl-38725177

Th2 polarization is essential for the pathogenesis of allergic rhinitis (AR). Th2 polarization's mechanism requires further understanding. IL-4 is the primary cytokine involved in Th2 response. Fibroblasts play a role in immune regulation. This study aims to elucidate the role of nasal mucosal fibroblast-derived IL-4 in the induction of Th2 responses. Nasal mucosal tissues were obtained from surgically removed samples from patients with nasal polyps, whether with or without AR. Fibroblasts were isolated from the tissues by flow cytometry cell sorting, and analyzed by RNA sequencing (RNAseq). The data from RNAseq showed that nasal fibroblasts expressed genes of GATA3, CD80, CD83, CD86, STAT6, IL2, IL4, IL5, IL6, IL13 and costimulatory factor. The data were verified by RT-qPCR. The level of gene activity was positively correlated with those of AR-related cytokines present in nasal secretions. Nasal fibroblasts release IL-4 upon activation. Nasal fibroblasts had the ability to transform naive CD4+ T cells into Th2 cells, which can be eliminated by inhibiting IL-4 receptor or CD28 in CD4+ T cells. To sum up, nasal mucosal fibroblasts produce IL-4, which can induce Th2 cell development. The data implicate that nasal fibroblasts are involved in the pathogenesis of nasal allergy.


Fibroblasts , Interleukin-4 , Nasal Mucosa , Rhinitis, Allergic , Th2 Cells , Humans , Th2 Cells/immunology , Fibroblasts/immunology , Fibroblasts/metabolism , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Interleukin-4/metabolism , Rhinitis, Allergic/immunology , Rhinitis, Allergic/metabolism , Cells, Cultured , Female , Male , Adult , Middle Aged , Nasal Polyps/immunology , Lymphocyte Activation , Cell Differentiation
18.
Folia Med (Plovdiv) ; 66(2): 227-234, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38690818

INTRODUCTION: Specific bacterial plaque and environmental factors cannot be considered the only cause of periodontitis. Still, several genetic factors affect the host response to the bacteria, like gene polymorphisms in anti-inflammatory cytokines. Several studies have reported that clones of T-helper 2 lymphocytes (TH2) are generated in response to dental plaque in periodontitis patients, while in healthy individuals, they are regulated by T-helper 1 (TH1) lymphocytes. Accordingly, such patients consistently produce more IL-4 (TH2) in response to bacterial stimulation, whereas healthy controls with intact periodontal tissues produce a significantly higher level of TH1.


Interleukin-4 , Periodontitis , Polymorphism, Genetic , Humans , Interleukin-4/genetics , Male , Periodontitis/genetics , Periodontitis/immunology , Adult , Female , Iraq , Middle Aged , Case-Control Studies , Th2 Cells/immunology
19.
Front Immunol ; 15: 1382318, 2024.
Article En | MEDLINE | ID: mdl-38646538

The respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections associated with numerous hospitalizations. Recently, intramuscular (i.m.) vaccines against RSV have been approved for elderly and pregnant women. Noninvasive mucosal vaccination, e.g., by inhalation, offers an alternative against respiratory pathogens like RSV. Effective mucosal vaccines induce local immune responses, potentially resulting in the efficient and fast elimination of respiratory viruses after natural infection. To investigate this immune response to an RSV challenge, low-energy electron inactivated RSV (LEEI-RSV) was formulated with phosphatidylcholine-liposomes (PC-LEEI-RSV) or 1,2-dioleoyl-3-trimethylammonium-propane and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DD-LEEI-RSV) for vaccination of mice intranasally. As controls, LEEI-RSV and formalin-inactivated-RSV (FI-RSV) were used via i.m. vaccination. The RSV-specific immunogenicity of the different vaccines and their protective efficacy were analyzed. RSV-specific IgA antibodies and a statistically significant reduction in viral load upon challenge were detected in mucosal DD-LEEI-RSV-vaccinated animals. Alhydrogel-adjuvanted LEEI-RSV i.m. showed a Th2-bias with enhanced IgE, eosinophils, and lung histopathology comparable to FI-RSV. These effects were absent when applying the mucosal vaccines highlighting the potential of DD-LEEI-RSV as an RSV vaccine candidate and the improved performance of this mucosal vaccine candidate.


Antibodies, Viral , Immunity, Mucosal , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Th2 Cells , Vaccines, Inactivated , Animals , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/immunology , Mice , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Female , Th2 Cells/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Immunization , Respiratory Syncytial Virus, Human/immunology , Vaccination/methods , Respiratory Syncytial Viruses/immunology , Viral Load , Immunoglobulin A/immunology
20.
Front Immunol ; 15: 1285598, 2024.
Article En | MEDLINE | ID: mdl-38680486

Significant advancements have been achieved in understanding the roles of different immune cells, as well as cytokines and chemokines, in the pathogenesis of eosinophilic airway conditions. This review examines the pathogenesis of Chronic Rhinosinusitis with Nasal Polyps (CRSwNP), marked by complex immune dysregulation, with major contributions from type 2 inflammation and dysfunctional airway epithelium. The presence of eosinophils and the role of T-cell subsets, particularly an imbalance between Treg and Th17 cells, are crucial to the disease's pathogenesis. The review also investigates the pathogenesis of eosinophilic asthma, a unique asthma subtype. It is characterized by inflammation and high eosinophil levels, with eosinophils playing a pivotal role in triggering type 2 inflammation. The immune response involves Th2 cells, eosinophils, and IgE, among others, all activated by genetic and environmental factors. The intricate interplay among these elements, chemokines, and innate lymphoid cells results in airway inflammation and hyper-responsiveness, contributing to the pathogenesis of eosinophilic asthma. Another scope of this review is the pathogenesis of Eosinophilic Granulomatosis with Polyangiitis (EGPA); a complex inflammatory disease that commonly affects the respiratory tract and small to medium-sized blood vessels. It is characterized by elevated eosinophil levels in blood and tissues. The pathogenesis involves the activation of adaptive immune responses by antigens leading to T and B cell activation and eosinophil stimulation, which causes tissue and vessel damage. On the other hand, Allergic Bronchopulmonary Aspergillosis (ABPA) is a hypersensitive response that occurs when the airways become colonized by aspergillus fungus, with the pathogenesis involving activation of Th2 immune responses, production of IgE antibodies, and eosinophilic action leading to bronchial inflammation and subsequent lung damage. This analysis scrutinizes how an imbalanced immune system contributes to these eosinophilic diseases. The understanding derived from this assessment can steer researchers toward designing new potential therapeutic targets for efficient control of these disorders.


Asthma , Eosinophils , Humans , Eosinophils/immunology , Asthma/immunology , Asthma/pathology , Nasal Polyps/immunology , Nasal Polyps/pathology , Sinusitis/immunology , Sinusitis/pathology , Animals , Inflammation/immunology , Inflammation/pathology , Th2 Cells/immunology , Rhinitis/immunology , Rhinitis/pathology , Cytokines/metabolism , Cytokines/immunology , Chronic Disease
...