Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.653
Filter
1.
BMC Vet Res ; 20(1): 251, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849822

ABSTRACT

AIM OF THE WORK: The study was conducted to evaluate the influence of theophylline pre-treatment on serum pharmacokinetics and milk elimination of tylosin following single intramuscular (IM) administrations in lactating goats. METHODS AND RESULTS: In a cross-over study, tylosin was injected via intramuscular (IM) at a single dose of 15 mg/kg b.wt. After a one-month washout period goats received theophylline at a daily IM dose of 2 mg/kg b.wt. for seven consecutive days then tylosin was injected IM dose of 15 mg/kg b.wt. two hours after the last theophylline dosing. Blood samples were collected before and at 0.25, 0.5, 0.75, 1, 2, 4, 6, 8, 10, 12, and 24 h post-injection. Samples were left to clot and then centrifuged to yield serum. Milk samples were collected before and at 0.5, 1, 2, 4, 6, 8, 10, 12, 24, 48, and 72 h post-injection from each goat by hand milking. Tylosin serum concentrations were determined by high-performance liquid chromatography (HPLC). Tylosin concentrations versus time were analyzed by a noncompartmental method. Tylosin Cmax significantly declined from 1.73 ± 0.10 to 1.01 ± 0.11 µg/ml, and attained Tmax values of 2 and 1 h, respectively in theophylline-pretreated goats. Moreover, theophylline pretreatment significantly shortened the elimination half-life (t1/2el) from 6.94 to 1.98 h, t1/2ka from 0.62 to 0.36 h and the mean residence time (MRT) from 8.02 to 4.31 h, also Vz/F and AUCs decreased from 11.91 to 7.70 L/kg and from 12.64 to 4.57 µg*h/ml, respectively, consequently, theophylline enhanced the clearance (Cl/F) of tylosin from the body. Similarly, tylosin milk concentrations were significantly lower in theophylline-pretreated goats than in goats that received tylosin alone and were detected up to 24 and 72 h in both groups, respectively. Moreover, the t1/2el and AUCs were significantly decreased from 14.68 ± 1.97 to 4.72 ± 0.48 h, and from 181 to 67.20 µg*h/ml, respectively. CONCLUSIONS: The withdrawal period for tylosin in goat milk is at least 72 h. Theophylline pretreatment significantly decreases serum and milk tylosin concentrations to subtherapeutic levels, which could have serious clinical consequences such as failure of therapy. This means that after administering tylosin to goats, milk from these animals should not be consumed for at least 96 h to ensure that the milk is free from residues of the antibiotic.


Subject(s)
Anti-Bacterial Agents , Cross-Over Studies , Goats , Lactation , Milk , Theophylline , Tylosin , Animals , Goats/metabolism , Theophylline/pharmacokinetics , Theophylline/administration & dosage , Theophylline/blood , Tylosin/pharmacokinetics , Tylosin/administration & dosage , Tylosin/blood , Injections, Intramuscular/veterinary , Milk/chemistry , Female , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/blood , Half-Life , Area Under Curve
2.
Intern Med ; 63(15): 2157-2161, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38171861

ABSTRACT

A 51-year-old man presented with sudden-onset palpitations and dyspnea that had started 8 h earlier. The patient was restless and tachypneic and had persistent vomiting upon arrival. His sensorium and oxygen saturation levels rapidly declined three hours after arrival, and he was placed on a ventilator. On hospitalization day 2, he was removed from the ventilator and claimed that he had consumed a large amount of energy drinks (oral caffeine intake, approximately 1 g). The theophylline level on arrival had been elevated (9.0 µg/mL). Caffeine intoxication should be considered in patients presenting with restlessness, tachypnea, frequent vomiting, lactic acidosis, and electrolyte abnormalities.


Subject(s)
Caffeine , Theophylline , Humans , Male , Caffeine/adverse effects , Caffeine/poisoning , Caffeine/blood , Middle Aged , Theophylline/blood , Theophylline/adverse effects , Energy Drinks/adverse effects
3.
Am J Clin Nutr ; 115(2): 482-491, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34669932

ABSTRACT

BACKGROUND: Epigenetic mechanisms may underlie associations between maternal caffeine consumption and adverse childhood metabolic outcomes. However, limited studies have examined neonate DNA methylation (DNAm) patterns in the context of preconception or prenatal exposure to caffeine metabolites. OBJECTIVES: We examined preconception and pregnancy caffeine exposure with DNAm alterations in neonate cord blood (n = 378). METHODS: In a secondary analysis of the Effects of Aspirin in Gestation and Reproduction Trial (EAGeR), we measured maternal caffeine, paraxanthine, and theobromine concentrations from stored serum collected preconception (on average 2 months before pregnancy) and at 8 weeks of gestation. In parallel, self-reported caffeinated beverage intake was captured via administration of questionnaires and daily diaries. We profiled DNAm from the cord blood buffy coat of singletons using the MethylationEPIC BeadChip. We assessed associations of maternal caffeine exposure and methylation ß values using multivariable robust linear regression. A false discovery rate (FDR) correction was applied using the Benjamini-Hochberg method. RESULTS: In preconception, the majority of women reported consuming 1 or fewer servings/day of caffeine on average, and caffeine and paraxanthine metabolite levels were 88 and 36 µmol/L, respectively. Preconception serum caffeine metabolites were not associated with individual cytosine-guanine (CpG) sites (FDR >5%), though pregnancy theobromine was associated with DNAm at cg09460369 near RAB2A (ß = 0.028; SE = 0.005; FDR P = 0.012). Preconception self-reported caffeinated beverage intake compared to no intake was associated with DNAm at cg09002832 near GLIS3 (ß = -0.013; SE = 0.002; FDR P = 0.036). No associations with self-reported intake during pregnancy were found. CONCLUSIONS: Few effects of maternal caffeine exposure on neonate methylation differences in leukocytes were identified in this population with relatively low caffeine consumption.


Subject(s)
Caffeine/blood , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Fetal Blood/chemistry , Maternal Exposure/adverse effects , Adult , Caffeine/adverse effects , Female , Gestational Age , Humans , Infant, Newborn , Male , Middle Aged , Pregnancy , Theobromine/blood , Theophylline/blood
4.
J Sep Sci ; 44(23): 4274-4283, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34626085

ABSTRACT

Caffeine is a widely consumed psychostimulant with several mechanisms of action and various positive and negative effects on organisms. Caffeine undergoes extensive hepatic metabolism to form main metabolites such as theobromine, theophylline, paraxanthine, and 1,3,7-trimethyluric acid. However, interspecies diversities have been observed in caffeine metabolism. In the present study, we developed a sensitive and straightforward ultra-high-performance liquid chromatography-tandem mass spectrometry method to quantify caffeine and its primary metabolites, namely theobromine, theophylline, paraxanthine, and 1,3,7-trimethyluric acid in rat plasma. After extraction of analytes using micro solid-phase extraction plate, analytes were separated by elution gradient on the Acquity UPLC HSS T3 (50 × 2.1 mm, 1.8 µm) column over 4 min. The detection was done on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring modes using a positive electrospray ionization interface. The method was successfully validated according to the European Medicine Agency guideline over a concentration range of 5-1500 ng/ml for caffeine, 5-1200 ng/mL for theobromine, and 2.5-1200 ng/mL for theophylline, paraxanthine, and 1,3,7-trimethyluric acid. The developed method was applied to analyze samples from animal experiments focusing on the metabolism and effects of caffeine and caffeine-containing beverages.


Subject(s)
Caffeine/blood , Theobromine/blood , Theophylline/blood , Animals , Caffeine/metabolism , Chromatography, High Pressure Liquid , Male , Rats , Rats, Wistar , Tandem Mass Spectrometry , Theobromine/metabolism , Theophylline/metabolism , Uric Acid/analogs & derivatives
5.
Mayo Clin Proc ; 96(12): 3071-3085, 2021 12.
Article in English | MEDLINE | ID: mdl-34579945

ABSTRACT

OBJECTIVE: To investigate the relations between caffeine-derived metabolites (methylxanthines) and plasma lipids by use of population-based data from 2 European countries. METHODS: Families were randomly selected from the general population of northern Belgium (FLEMENGHO), from August 12, 1985, until November 22, 1990, and 3 Swiss cities (SKIPOGH), from November 25, 2009, through April 4, 2013. We measured plasma concentrations (FLEMENGHO, SKIPOGH) and 24-hour urinary excretions (SKIPOGH) of 4 methylxanthines-caffeine, paraxanthine, theobromine, and theophylline-using ultra-high-performance liquid chromatography-tandem mass spectrometry. We used enzymatic methods to estimate total cholesterol, high-density lipoprotein cholesterol, and triglyceride levels and the Friedewald equation for low-density lipoprotein cholesterol levels in plasma. We applied sex-specific mixed models to investigate associations between methylxanthines and plasma lipids, adjusting for major confounders. RESULTS: In both FLEMENGHO (N=1987; 1055 [53%] female participants) and SKIPOGH (N=990; 523 [53%] female participants), total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels increased across quartiles of plasma caffeine, paraxanthine, and theophylline (total cholesterol levels by caffeine quartiles in FLEMENGHO, male participants: 5.01±0.06 mmol/L, 5.05±0.06 mmol/L, 5.27±0.06 mmol/L, 5.62±0.06 mmol/L; female participants: 5.24±0.06 mmol/L, 5.15±0.05 mmol/L, 5.25±0.05 mmol/L, 5.42±0.05 mmol/L). Similar results were observed using urinary methylxanthines in SKIPOGH (total cholesterol levels by caffeine quartiles, male participants: 4.54±0.08 mmol/L, 4.94±0.08 mmol/L, 4.87±0.08 mmol/L, 5.27±0.09 mmol/L; female participants: 5.12±0.07 mmol/L, 5.21±0.07 mmol/L, 5.28±0.05 mmol/L, 5.28±0.07 mmol/L). Furthermore, urinary caffeine and theophylline were positively associated with high-density lipoprotein cholesterol in SKIPOGH male participants. CONCLUSION: Plasma and urinary caffeine, paraxanthine, and theophylline were positively associated with plasma lipids, whereas the associations involving theobromine were less clear. We postulate that the positive association between caffeine intake and plasma lipids may be related to the sympathomimetic function of methylxanthines, mitigating the overall health-beneficial effect of caffeine intake.


Subject(s)
Caffeine/adverse effects , Lipids/blood , Adult , Belgium , Caffeine/blood , Caffeine/metabolism , Caffeine/urine , Cholesterol/blood , Cholesterol, HDL/blood , Chromatography, High Pressure Liquid , Female , Humans , Male , Middle Aged , Switzerland , Tandem Mass Spectrometry , Theobromine/adverse effects , Theobromine/blood , Theobromine/urine , Theophylline/adverse effects , Theophylline/blood , Theophylline/urine , Triglycerides/blood , Xanthines/adverse effects , Xanthines/blood , Xanthines/urine
6.
J Clin Pharmacol ; 61 Suppl 1: S94-S107, 2021 06.
Article in English | MEDLINE | ID: mdl-34185902

ABSTRACT

Age-related changes in many parameters affecting drug absorption remain poorly characterized. The objective of this study was to apply physiologically based pharmacokinetic (PBPK) models in pediatric patients to investigate the absorption and pharmacokinetics of 4 drugs belonging to the Biopharmaceutics Classification System (BCS) class I administered as oral liquid formulations. Pediatric PBPK models built with PK-Sim/MoBi were used to predict the pharmacokinetics of acetaminophen, emtricitabine, theophylline, and zolpidem in different pediatric populations. The model performance for predicting drug absorption and pharmacokinetics was assessed by comparing the predicted absorption profile with the deconvoluted dose fraction absorbed over time and predicted with observed plasma concentration-time profiles. Sensitivity analyses were performed to analyze the effects of changes in relevant input parameters on the model output. Overall, most pharmacokinetic parameters were predicted within a 2-fold error range. The absorption profiles were generally reasonably predicted, but relatively large differences were observed for acetaminophen. Sensitivity analyses showed that the predicted absorption profile was most sensitive to changes in the gastric emptying time (GET) and the specific intestinal permeability. The drug's solubility played only a minor role. These findings confirm that gastric emptying time, more than intestinal permeability or solubility, is a key factor affecting BCS class I drug absorption in children. As gastric emptying time is prolonged in the fed state, a better understanding of the interplay between food intake and gastric emptying time in children is needed, especially in the very young in whom the (semi)fed condition is the prevailing prandial state, and hence prolonged gastric emptying time seems more plausible than the fasting state.


Subject(s)
Models, Biological , Pediatrics/methods , Pharmaceutical Preparations/administration & dosage , Pharmacokinetics , Acetaminophen/administration & dosage , Acetaminophen/blood , Acetaminophen/pharmacokinetics , Administration, Oral , Adolescent , Child , Child, Preschool , Computer Simulation , Data Interpretation, Statistical , Emtricitabine/administration & dosage , Emtricitabine/blood , Emtricitabine/pharmacokinetics , Humans , Infant , Infant, Newborn , Intestinal Absorption , Permeability , Pharmaceutical Preparations/blood , Solubility , Theophylline/administration & dosage , Theophylline/blood , Theophylline/pharmacokinetics , Zolpidem/administration & dosage , Zolpidem/blood , Zolpidem/pharmacokinetics
7.
JAMA Netw Open ; 4(3): e213238, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33764424

ABSTRACT

Importance: Higher caffeine consumption during pregnancy has been associated with lower birth weight. However, associations of caffeine consumption, based on both plasma concentrations of caffeine and its metabolites, and self-reported caffeinated beverage intake, with multiple measures of neonatal anthropometry, have yet to be examined. Objective: To evaluate the association between maternal caffeine intake and neonatal anthropometry, testing effect modification by fast or slow caffeine metabolism genotype. Design, Setting, and Participants: A longitudinal cohort study, the National Institute of Child Health and Human Development Fetal Growth Studies-Singletons, enrolled 2055 nonsmoking women at low risk for fetal growth abnormalities with complete information on caffeine consumption from 12 US clinical sites between 2009 and 2013. Secondary analysis was completed in 2020. Exposures: Caffeine was evaluated by both plasma concentrations of caffeine and paraxanthine and self-reported caffeinated beverage consumption measured/reported at 10-13 weeks gestation. Caffeine metabolism defined as fast or slow using genotype information from the single nucleotide variant rs762551 (CYP1A2*1F). Main Outcomes and Measures: Neonatal anthropometric measures, including birth weight, length, and head, abdominal, arm, and thigh circumferences, skin fold and fat mass measures. The ß coefficients represent the change in neonatal anthropometric measure per SD change in exposure. Results: A total of 2055 participants had a mean (SD) age of 28.3 (5.5) years, mean (SD) body mass index of 23.6 (3.0), and 580 (28.2%) were Hispanic, 562 (27.4%) were White, 518 (25.2%) were Black, and 395 (19.2%) were Asian/Pacific Islander. Delivery occurred at a mean (SD) of 39.2 (1.7) gestational weeks. Compared with the first quartile of plasma caffeine level (≤28 ng/mL), neonates of women in the fourth quartile (>659 ng/mL) had lower birth weight (ß = -84.3 g; 95% CI, -145.9 to -22.6 g; P = .04 for trend), length (ß = -0.44 cm; 95% CI, -0.78 to -0.12 cm; P = .04 for trend), and head (ß = -0.28 cm; 95% CI, -0.47 to -0.09 cm; P < .001 for trend), arm (ß = -0.25 cm; 95% CI, -0.41 to -0.09 cm: P = .02 for trend), and thigh (ß = -0.29 cm; 95% CI, -0.58 to -0.04 cm; P = .07 for trend) circumference. Similar reductions were observed for paraxanthine quartiles, and for continuous measures of caffeine and paraxanthine concentrations. Compared with women who reported drinking no caffeinated beverages, women who consumed approximately 50 mg per day (~ 1/2 cup of coffee) had neonates with lower birth weight (ß = -66 g; 95% CI, -121 to -10 g), smaller arm (ß = -0.17 cm; 95% CI, -0.31 to -0.02 cm) and thigh (ß = -0.32 cm; 95% CI, -0.55 to -0.09 cm) circumference, and smaller anterior flank skin fold (ß = -0.24 mm; 95% CI, -0.47 to -0.01 mm). Results did not differ by fast or slow caffeine metabolism genotype. Conclusions and Relevance: In this cohort study, small reductions in neonatal anthropometric measurements with increasing caffeine consumption were observed. Findings suggest that caffeine consumption during pregnancy, even at levels much lower than the recommended 200 mg per day of caffeine, are associated with decreased fetal growth.


Subject(s)
Anthropometry/methods , Birth Weight/physiology , Caffeine/pharmacokinetics , Fetal Development/drug effects , Maternal Exposure/adverse effects , Adult , Biomarkers/blood , Female , Follow-Up Studies , Gestational Age , Humans , Infant, Newborn , Male , Pregnancy , Retrospective Studies , Theophylline/blood
8.
Int J Neuropsychopharmacol ; 24(1): 32-39, 2021 01 20.
Article in English | MEDLINE | ID: mdl-32808022

ABSTRACT

BACKGROUND: Neuroticism is a strong predictor for a variety of social and behavioral outcomes, but the etiology is still unknown. Our study aims to provide a comprehensive investigation of causal effects of serum metabolome phenotypes on risk of neuroticism using Mendelian randomization (MR) approaches. METHODS: Genetic associations with 486 metabolic traits were utilized as exposures, and data from a large genome-wide association study of neuroticism were selected as outcome. For MR analysis, we used the standard inverse-variance weighted (IVW) method for primary MR analysis and 3 additional MR methods (MR-Egger, weighted median, and MR pleiotropy residual sum and outlier) for sensitivity analyses. RESULTS: Our study identified 31 metabolites that might have causal effects on neuroticism. Of the 31 metabolites, uric acid and paraxanthine showed robustly significant association with neuroticism in all MR methods. Using single nucleotide polymorphisms as instrumental variables, a 1-SD increase in uric acid was associated with approximately 30% lower risk of neuroticism (OR: 0.77; 95% CI: 0.62-0.95; PIVW = 0.0145), whereas a 1-SD increase in paraxanthine was associated with a 7% higher risk of neuroticism (OR: 1.07; 95% CI: 1.01-1.12; PIVW = .0145). DISCUSSION: Our study suggested an increased level of uric acid was associated with lower risk of neuroticism, whereas paraxanthine showed the contrary effect. Our study provided novel insight by combining metabolomics with genomics to help understand the pathogenesis of neuroticism.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Metabolome/genetics , Neuroticism , Theophylline/blood , Uric Acid/blood , Adult , Humans , Polymorphism, Single Nucleotide
9.
Neurology ; 95(24): e3428-e3437, 2020 12 15.
Article in English | MEDLINE | ID: mdl-32999056

ABSTRACT

OBJECTIVE: To identify markers of resistance to developing Parkinson disease (PD) among LRRK2 mutation carriers (LRRK2+), we carried out metabolomic profiling in individuals with PD and unaffected controls (UC), with and without the LRRK2 mutation. METHODS: Plasma from 368 patients with PD and UC in the LRRK2 Cohort Consortium (LCC), comprising 118 LRRK2+/PD+, 115 LRRK2+/UC, 70 LRRK2-/PD+, and 65 LRRK2-/UC, and CSF available from 68 of them, were analyzed by liquid chromatography with mass spectrometry. For 282 analytes quantified in plasma and CSF, we assessed differences among the 4 groups and interactions between LRRK2 and PD status, using analysis of covariance models adjusted by age, study site cohort, and sex, with p value corrections for multiple comparisons. RESULTS: Plasma caffeine concentration was lower in patients with PD vs UC (p < 0.001), more so among LRRK2+ carriers (by 76%) than among LRRK2- participants (by 31%), with significant interaction between LRRK2 and PD status (p = 0.005). Similar results were found for caffeine metabolites (paraxanthine, theophylline, 1-methylxanthine) and a nonxanthine marker of coffee consumption (trigonelline) in plasma, and in the subset of corresponding CSF samples. Dietary caffeine was also lower in LRRK2+/PD+ compared to LRRK2+/UC with significant interaction effect with the LRRK2+ mutation (p < 0.001). CONCLUSIONS: Metabolomic analyses of the LCC samples identified caffeine, its demethylation metabolites, and trigonelline as prominent markers of resistance to PD linked to pathogenic LRRK2 mutations, more so than to idiopathic PD. Because these analytes are known both as correlates of coffee consumption and as neuroprotectants in animal PD models, the findings may reflect their avoidance by those predisposed to develop PD or their protective effects among LRRK2 mutation carriers.


Subject(s)
Alkaloids/blood , Caffeine/blood , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Neuroprotective Agents/blood , Parkinson Disease/blood , Parkinson Disease/genetics , Aged , Alkaloids/cerebrospinal fluid , Caffeine/cerebrospinal fluid , Chromatography, Liquid , Cohort Studies , Female , Heterozygote , Humans , Male , Mass Spectrometry , Metabolomics , Middle Aged , Neuroprotective Agents/cerebrospinal fluid , Parkinson Disease/cerebrospinal fluid , Theophylline/blood , Theophylline/cerebrospinal fluid , Xanthines/blood , Xanthines/cerebrospinal fluid
10.
Ann Biol Clin (Paris) ; 78(2): 147-155, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32319943

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the analytical performance of the Alinity®c Abbott compared to the Architect® immunoassay system for the determination of drugs having a narrow therapeutic index. METHODS: Valproic acid, amikacin, gentamicin, phenobarbital and vancomycin were analyzed using Particle-Enhanced Turbidimetric Inhibitor Immunoassay (Petinia), phenytoin and theophylline were analyzed using an immunoenzymatic method and a colorimetric method was performed to quantify lithium. The methods were validated according to the total error approach. Seven validation standards were analyzed in quintuplet during four days to establish the limits of the methods. Dilution integrity and interferences (hemolysis and high concentrations of bilirubin and lipids) were also tested. Depending on the analyte, the results obtained for twenty to forty patients on the Alinity® were compared to those obtained on the Architect®. RESULTS: The bias and the coefficients of variation for repeatability and for intermediate precision were lower than 15% for all drugs. Accuracy profiles were acceptable (acceptance limits fixed at 30%) in the validated ranges. The lower limits of quantification (LLOQ) were similar to those determined by Abbott except for gentamicin for which we determined a LLOQ at 1.22 mg/L while Abbott determined it at 0.5 mg/L. All assays diluted linear and analyte concentrations were not affected by interferences. Concentrations obtained for real samples on the Alinity®c are comparable to those obtained on the Architect®ci. CONCLUSIONS: The analytical validation of a method suitable for therapeutic drug monitoring of drugs on the Alinity®c meets the requirements of European Medicines Agency.


Subject(s)
Drug Monitoring/instrumentation , Drug Monitoring/methods , Nephelometry and Turbidimetry/instrumentation , Nephelometry and Turbidimetry/methods , Amikacin/analysis , Amikacin/blood , Automation, Laboratory/instrumentation , Automation, Laboratory/methods , Colorimetry/instrumentation , Colorimetry/methods , Gentamicins/analysis , Gentamicins/blood , Humans , Immunoassay/instrumentation , Immunoassay/methods , Phenobarbital/analysis , Phenobarbital/blood , Phenytoin/analysis , Phenytoin/blood , Reproducibility of Results , Theophylline/analysis , Theophylline/blood , Valproic Acid/analysis , Valproic Acid/blood , Vancomycin/analysis , Vancomycin/blood
11.
Pulm Pharmacol Ther ; 60: 101883, 2020 02.
Article in English | MEDLINE | ID: mdl-31884206

ABSTRACT

Doxofylline, an oral methylxanthine with bronchodilator and anti-inflammatory activities, offers a promising alternative to theophylline due to its superior efficacy/safety profile. No long-term studies on the efficacy and safety of doxofylline are currently available in asthma. The aim of the Long-term clinical trial on the Efficacy and Safety profile of Doxofylline in Asthma (LESDA) study was to investigate the safety and efficacy profile of doxofylline administered for one year in asthmatic patients. LESDA was a multicenter, open-label, Phase III, clinical trial in which adult asthmatic patients received the same treatment (oral doxofylline 400 mg t.i.d.) for one year. Efficacy was assessed through periodic pulmonary function tests and by having the subjects keep monthly records of asthma events rates and use of salbutamol as rescue medication. The rate of adverse events (AEs) was recorded during the study. Three-hundred nine patients were screened and allocated in the study. Doxofylline significantly improved the change from baseline in forced expiratory volume in 1 s (FEV1) (+16.90 ± 1.81%, P < 0.001 vs. baseline). Doxofylline also significantly improved the rate of asthma events (events/day: -0.57 ± 0.18, P < 0.05 vs. baseline) and the use of salbutamol as rescue medication (puffs/day: -1.48 ± 0.25, P < 0.01 vs. baseline). The most common AEs were nausea (14.56%), headache (14.24%), insomnia (10.68%), and dyspepsia (10.03%). There were neither serious AEs nor deaths during or shortly after the study. Concluding, doxofylline is effective and well tolerated when administered chronically in asthmatic patients.


Subject(s)
Asthma/drug therapy , Bronchodilator Agents/adverse effects , Bronchodilator Agents/therapeutic use , Theophylline/analogs & derivatives , Administration, Oral , Adult , Aged , Aged, 80 and over , Albuterol , Bronchodilator Agents/administration & dosage , Bronchodilator Agents/blood , Female , Forced Expiratory Volume , Humans , Male , Middle Aged , Safety , Theophylline/administration & dosage , Theophylline/adverse effects , Theophylline/blood , Theophylline/therapeutic use , Treatment Outcome
12.
Molecules ; 24(21)2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31683708

ABSTRACT

As a novel monoterpenoid indole alkaloid, gardneramine has been confirmed to possess excellent nervous depressive effects. However, there have been no reports about the measurement of gardneramine in vitro and in vivo. The motivation of this study was to establish and validate a specific, sensitive, and robust analytical method based on UHPLC-MS/MS for quantification of gardneramine in rat plasma and various tissues after intravenous administration. The analyte was extracted from plasma and tissue samples by protein precipitation with methanol using theophylline as an internal standard (I.S.). The analytes were separated on an Agilent ZORBAX Eclipse Plus C18 column using a gradient elution of acetonitrile and 0.1% formic acid in water at a flow rate of 0.3 mL/min. Gardneramine and I.S. were detected and quantified using positive electrospray ionization in multiple reaction monitoring (MRM) mode with transitions of m/z 413.1→217.9 for gardneramine and m/z 181.2→124.1 for I.S.. Perfect linearity range was 1-2000 ng/mL with a correlation coefficient (r2) of ≥0.990. The lower limit of quantification (LLOQ) of 1.0 ng/mL was adequate for application to different preclinical studies. The method was successfully applied for determination of gardneramine in bio-samples.


Subject(s)
Alkaloids/blood , Alkaloids/pharmacokinetics , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Alkaloids/administration & dosage , Animals , Injections, Intravenous , Rats, Sprague-Dawley , Reference Standards , Reproducibility of Results , Theophylline/blood , Tissue Distribution
13.
Anal Chem ; 91(22): 14467-14475, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31638372

ABSTRACT

Dried blood spots (DBS) are often used as a less invasive alternative to venous blood sampling. Despite its numerous advantages, the use of conventional DBS suffers from the hematocrit (hct) effect when analyzing a subpunch. This effect could be avoided by using hct-independent sampling devices, of which the hemaPEN is a recent example. This device collects the blood via four integrated 2.74 µL microcapillaries, each depositing the blood on a prepunched paper disc. In this study, we evaluated the technical performance of the hemaPEN devices, using an extensive bioanalytical validation and application on authentic patient samples. An LC-MS/MS method quantifying caffeine and its metabolite paraxanthine in dried whole blood (using the hemaPEN device) was fully validated, meeting all preset acceptance criteria. A comparative analysis of 91 authentic patient samples (hct range: 0.17-0.53) of hemaPEN, 3 mm DBS subpunches, and whole blood revealed a limited hct dependence (≤7% concentration difference over a 0.20-0.50 hct range) for the hemaPEN devices, which we could not attribute to the analytical procedure. Using conventional partial-punch DBS (3 mm punches), concentration differences of ≥25% over this hct range were found. The hemaPEN showed to be robust to the effects of blood sample volume, device lot, analytical operator, and storage stability. The technical performance of the hemaPEN when dealing with patients having a high hct and in cases where a large blood drop is present should be further investigated. Based on the successful validation and application on patient samples, we conclude that the hemaPEN device shows good potential for the volumetric collection of DBS.


Subject(s)
Caffeine/blood , Dried Blood Spot Testing/instrumentation , Theophylline/blood , Chromatography, High Pressure Liquid , Dried Blood Spot Testing/methods , Female , Humans , Tandem Mass Spectrometry
14.
J Vet Pharmacol Ther ; 42(6): 593-601, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31529628

ABSTRACT

Theophylline is a commonly used bronchodilator drug for treatment of chronic canine bronchitis, but no formulations validated in dogs are currently available. An oral, modified and compounded theophylline product (MCT), which could fulfil this need, is available through a USP-compliant, veterinary compounding pharmacy; however, its pharmacokinetic properties are unknown. The aim of this study was to determine the pharmacokinetics of MCT. Plasma drug concentrations were measured in seven healthy, fed dogs after single doses of intravenous aminophylline (8.6 mg/kg theophylline equivalent) and oral MCT (10 mg/kg). Systemic bioavailability of the MCT was 96.2 ± 32.9%. MCT times to maximum concentration, mean absorption time and terminal half-life were 8.85 ± 3.63, 6.95 ± 3.42, and 8.67 ± 1.62 hr, respectively. Based on simulations of 10 mg/kg and 12-hr dosing, steady-state plasma theophylline concentrations are expected to exceed the minimum therapeutic concentration for 71.7 ± 35.6% of the dosing interval. Overall, the MCT product investigated showed similar pharmacokinetic characteristics compared to previously validated extended-release theophylline products. An oral dose of 10 mg/kg q 12 hr is likely an appropriate dosage to begin therapy; however, therapeutic drug monitoring may be warranted because of inter-individual variation.


Subject(s)
Bronchitis, Chronic/veterinary , Dog Diseases/drug therapy , Theophylline/pharmacokinetics , Theophylline/therapeutic use , Animals , Area Under Curve , Bronchitis, Chronic/drug therapy , Bronchodilator Agents/administration & dosage , Bronchodilator Agents/blood , Bronchodilator Agents/pharmacokinetics , Bronchodilator Agents/therapeutic use , Dogs , Female , Half-Life , Injections, Intravenous , Male , Theophylline/administration & dosage , Theophylline/blood
15.
Mol Nutr Food Res ; 63(22): e1900659, 2019 11.
Article in English | MEDLINE | ID: mdl-31483556

ABSTRACT

SCOPE: The goal of this work is to identify circulating biomarkers of habitual coffee intake using a metabolomic approach, and to investigate their associations with coffee intake in four European countries. METHODS AND RESULTS: Untargeted mass spectrometry-based metabolic profiling is performed on serum samples from 451 participants of the European Prospective Investigation on Cancer and Nutrition (EPIC) originating from France, Germany, Greece, and Italy. Eleven coffee metabolites are found to be associated with self-reported habitual coffee intake, including eight more strongly correlated (r = 0.25-0.51, p < 10E-07 ). Trigonelline shows the highest correlation, followed by caffeine, two caffeine metabolites (paraxanthine and 5-Acetylamino-6-amino-3-methyluracil), quinic acid, and three compounds derived from coffee roasting (cyclo(prolyl-valyl), cyclo(isoleucyl-prolyl), cyclo(leucyl-prolyl), and pyrocatechol sulfate). Differences in the magnitude of correlations are observed between countries, with trigonelline most highly correlated with coffee intake in France and Germany, quinic acid in Greece, and cyclo(isoleucyl-prolyl) in Italy. CONCLUSION: Several biomarkers of habitual coffee intake are identified. No unique biomarker is found to be optimal for all tested populations. Instead, optimal biomarkers are shown to depend on the population and on the type of coffee consumed. These biomarkers should help to further explore the role of coffee in disease risk.


Subject(s)
Biomarkers/blood , Coffee , Metabolomics , Adult , Aged , Alkaloids/blood , Caffeine/blood , Coffee/metabolism , Europe , Female , Humans , Male , Middle Aged , Prospective Studies , Theophylline/blood
16.
Mikrochim Acta ; 186(9): 651, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31463587

ABSTRACT

Lanthanum oxide nanomaterials were decorated with carbon black (CB) and grafted with a poly(acrylic acid) nanogel to obtain a composite material (CB-g-PAA/La2O3) for simultaneous determination of acetaminophen (AMP), naproxen (NPX), and theophylline (TPH). The nanogel was synthesized by in-situ free radical polymerization. The composite was dropped onto a glassy carbon electrode (GCE), and the modified GCE displays robust electrocatalytic activity towards AMP, NPX, and TPH, with voltammetric signals that are enhanced compared to a bare GCE. Features of merit for AMP, NPX, and TPH, respectively, include (a) peak potentials of 0.42, 0.85 and 0.12 V (vs. Ag/AgCl), (b) linear ranges from 0.05-887, 0.05-884, and 0.02-888 µM, and (c) detection limits of 20, 35, and 15 nM. The practical applicability of the CB-g-PAA/La2O3/GCE was illustrated by analyzing serum and urine samples. Graphical abstract Schematic presentation of simultaneous electrochemical sensing of acetaminophen (AMP), naproxen (NPX), and theophylline (TPH) in real sample analysis using poly(acrylic acid) nanogel covalently grafted onto a carbon black/La2O3 composite (CB-g-PAA/La2O3/GCE).


Subject(s)
Acetaminophen/analysis , Acrylic Resins/chemistry , Lanthanum/chemistry , Nanogels/chemistry , Naproxen/analysis , Oxides/chemistry , Soot/chemistry , Theophylline/analysis , Acetaminophen/blood , Acetaminophen/urine , Electrochemistry , Electrodes , Humans , Models, Molecular , Molecular Conformation , Naproxen/blood , Naproxen/urine , Polymerization , Theophylline/blood , Theophylline/urine
17.
Molecules ; 24(16)2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31394755

ABSTRACT

Caffeine is one of the most widely consumed psycho-stimulants. The study of the beneficial effects of caffeine consumption to decrease the risk of developing several neuropsychiatric pathologies is receiving increasing attention. Thus, accurate and sensitive methods have been developed, mainly by LC-MS/MS, in order to quantify caffeine and its metabolites. These quantifications of caffeine and its metabolites by LC-MS/MS require a considerable effort to select or find a surrogate matrix, without the compounds of interest, to be used in the calibration curves. Thus, we evaluated the possibility of using calibration curves prepared in solvent instead of calibration curves prepared in human plasma. Results show that the calibration curves prepared in solvent and in human plasma were similar by comparing their slopes and interceptions, and the accuracy and precision were within the limits of acceptance for both calibration curves. This work demonstrates that, by using internal standards, it is possible to use a calibration curve in solvent instead of a calibration curve in plasma to perform an accurate and precise quantification of caffeine and theobromine.


Subject(s)
Caffeine/analysis , Chromatography, Liquid , Tandem Mass Spectrometry , Theobromine/analysis , Caffeine/blood , Caffeine/chemistry , Chromatography, Liquid/methods , Humans , Reproducibility of Results , Sensitivity and Specificity , Tandem Mass Spectrometry/methods , Theobromine/blood , Theobromine/chemistry , Theophylline/analysis , Theophylline/blood , Theophylline/chemistry
18.
Biol Pharm Bull ; 42(8): 1423-1427, 2019.
Article in English | MEDLINE | ID: mdl-31366878

ABSTRACT

Age is known as one of influencing factor for theophylline (TP)-metabolizing capacity. In a previous our study, the ratio of TP and its major metabolite 1,3-dimethyluric acid (DMU) in serum (DMU/TP) is a useful index to estimate TP-metabolizing capacity, and this value markedly increased by influencing factor, such as the history of smoking. However, it is unknown whether DMU/TP values in serum reflect age-associated changes of TP-metabolizing capacity. In this study, the effect of age on the DMU/TP values in serum were investigated using mice of different age due to the limited blood sampling in human. The concentrations of TP and its metabolites in mouse serum were simultaneously measured using HPLC. As observed in human serum, serum TP concentrations were closely correlated with DMU concentration in mice, which indicates that the DMU/TP ratio is a good indicator of TP metabolic ability in mice. When TP was administered subcutaneously in 2-28-week-old mice, age-associated changes in the DMU/TP ratio in mice were observed. In conclusion, age-associated changes in TP-metabolizing capacity can be estimated by the DMU/TP ratio in serum.


Subject(s)
Aging/blood , Theophylline/blood , Uric Acid/analogs & derivatives , Aging/metabolism , Animals , Male , Mice, Inbred ICR , Theophylline/pharmacokinetics , Uric Acid/blood
19.
Biomed Chromatogr ; 33(12): e4672, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31386207

ABSTRACT

The combination of acebrophylline (ABP), levocetirizine (LCZ) and pranlukast (PRN) is used to treat allergic rhinitis, asthma, hay-fever and other conditions where patients experience difficulty in breathing. This study was carried out with the aim of developing and validating a reverse-phase high-performance liquid chromatographic bioanalytical method to simultaneously quantitate ABP, LCZ and PRN in rat plasma. The objective also includes determination of the pharmacokinetic interaction of these three drugs after administration via the oral route after individual and combination treatment in rat. Optimum resolution between the analytes was observed with a C18 Kinetex column (250 mm × 4.6 mm × 5 µm). The chromatography was performed in a gradient elution mode with a 1 mL/min flow rate. The calibration curves were linear over the concentration range of 100-1600 ng/mL. The intra- and inter-day precision and accuracy were found to be within acceptable limits as specified in US Food and Drug Administration guideline for bioanalytical method validation. The analytes were stable on the bench-top (8 h), after three freeze-thaw cycles, in the autosampler (8 h) and as a dry extract (-80°C for 48 h). The statistical results of the pharmacokinetic study in Sprague-Dawley rats showed a significant change in pharmacokinetic parameters for PRN upon co-administration of the three drugs.


Subject(s)
Ambroxol/analogs & derivatives , Cetirizine , Chromones , Theophylline/analogs & derivatives , Ambroxol/blood , Ambroxol/chemistry , Ambroxol/pharmacokinetics , Animals , Cetirizine/blood , Cetirizine/chemistry , Cetirizine/pharmacokinetics , Chromatography, High Pressure Liquid , Chromones/blood , Chromones/chemistry , Chromones/pharmacokinetics , Limit of Detection , Linear Models , Male , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Theophylline/blood , Theophylline/chemistry , Theophylline/pharmacokinetics
20.
J Pharm Biomed Anal ; 174: 220-225, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31181483

ABSTRACT

A sensitive and specific ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for simultaneous determination of doxofylline and its two metabolites in human plasma. After protein precipitation with methanol, the chromatographic separation was carried out on an ACQUITY UPLC HSS T3 column, with acetonitrile and 0.1% formic acid in water as mobile phase at a flow rate of 0.30 mL·min-1. The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM) mode via electrospray ionization (ESI) source, with target quantitative ion pairs of m/z 267.0→181.1 for doxofylline, 239.0→181.1 for theophylline-7-acetic acid and 225.1→181.1 for etofylline. The calibration curve was linear over the range of 2-3000 ng·mL-1 (r > 0.99). The LLOQ was evaluated to be 2 ng·mL-1. The method described herein allowed simultaneous determination of the three analytes for the first time and was successfully applied to the pharmacokinetic study of doxofylline and its metabolites after intravenous administration in healthy volunteers.


Subject(s)
Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Theophylline/analogs & derivatives , Adult , Calibration , Female , Healthy Volunteers , Humans , Infusions, Intravenous , Male , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization , Theophylline/blood , Theophylline/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL