Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.730
1.
J Mater Sci Mater Med ; 35(1): 32, 2024 Jun 19.
Article En | MEDLINE | ID: mdl-38896160

This study leverages nanotechnology by encapsulating indocyanine green (ICG) and paclitaxel (Tax) using zeolitic imidazolate frameworks-8 (ZIF-8) as a scaffold. This study aims to investigate the chemo-photothermal therapeutic potential of ZIF-8@ICG@Tax nanoparticles (NPs) in the treatment of non-small cell lung cancer (NSCLC). An "all-in-one" theranostic ZIF-8@ICG@Tax NPs was conducted by self-assembly based on electrostatic interaction. First, the photothermal effect, stability, pH responsiveness, drug release, and blood compatibility of ZIF-8@ICG@Tax were evaluated through in vitro testing. Furthermore, the hepatic and renal toxicity of ZIF-8@ICG@Tax were assessed through in vivo testing. Additionally, the anticancer effects of these nanoparticles were investigated both in vitro and in vivo. Uniform and stable chemo-photothermal ZIF-8@ICG@Tax NPs had been successfully synthesized and had outstanding drug releasing capacities. Moreover, ZIF-8@ICG@Tax NPs showed remarkable responsiveness dependent both on pH in the tumor microenvironment and NIR irradiation, allowing for targeted drug delivery and controlled drug release. NIR irradiation can enhance the tumor cell response to ZIF-8@ICG@Tax uptake, thereby promoting the anti-tumor growth in vitro and in vivo. ZIF-8@ICG@Tax and NIR irradiation have demonstrated remarkable synergistic anti-tumor growth properties compared to their individual components. This novel theranostic chemo-photothermal NPs hold great potential as a viable treatment option for NSCLC.


Carcinoma, Non-Small-Cell Lung , Drug Liberation , Indocyanine Green , Lung Neoplasms , Nanoparticles , Paclitaxel , Theranostic Nanomedicine , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/pathology , Indocyanine Green/chemistry , Humans , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Hydrogen-Ion Concentration , Nanoparticles/chemistry , Theranostic Nanomedicine/methods , Paclitaxel/chemistry , Paclitaxel/pharmacology , Mice , Zeolites/chemistry , Infrared Rays , Phototherapy/methods , Mice, Inbred BALB C , Cell Line, Tumor , A549 Cells , Metal-Organic Frameworks/chemistry , Mice, Nude , Drug Delivery Systems , Imidazoles
2.
Carbohydr Polym ; 340: 122328, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38857995

This article presents a novel approach to treating prostate cancer using a nanocarrier composed of folic acid (FA), ß-cyclodextrin (ß-CD), and magnetic graphene oxide (MGO) as a theranostic agent. The carrier is designed to improve the solubility and bioavailability of curcumin, a potential therapeutic substance against prostate cancer. Folic acid receptors overexpressed on the surface of solid tumors, including prostate cancer, may facilitate targeted drug delivery to tumor cells while avoiding nonspecific effects on healthy tissues. The anticancer efficacy of Folic acid-curcumin@ß-CD-MGO in vitro was also examined on LNCaP (an androgen-dependent) and PC3 (an androgen-independent) prostate cancer cells. The relaxivity of nanoparticles in MRI images was also investigated as a diagnostic factor. The results showed a concentration-dependent inhibitory effect on cell proliferation, induction of oxidative damage, and apoptotic effects. Also, nanoparticle relaxometry shows that this agent can be used as a negative contrast agent in MRI images. Overall, this study represents a promising theranostic agent to improve the delivery and trace of curcumin and enhance its therapeutic potential in the treatment of prostate cancer.


Cell Proliferation , Curcumin , Folic Acid , Graphite , Prostatic Neoplasms , Theranostic Nanomedicine , beta-Cyclodextrins , Curcumin/chemistry , Curcumin/pharmacology , Male , Graphite/chemistry , Graphite/pharmacology , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , beta-Cyclodextrins/chemistry , Theranostic Nanomedicine/methods , Folic Acid/chemistry , Folic Acid/pharmacology , Cell Proliferation/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Magnetic Resonance Imaging/methods , Nanoparticles/chemistry , Folate Receptors, GPI-Anchored/metabolism , Drug Liberation , Magnetite Nanoparticles/chemistry
3.
Int J Nanomedicine ; 19: 5479-5492, 2024.
Article En | MEDLINE | ID: mdl-38863646

Background: In recent years, PD-L1 has been primarily utilized as an immune checkpoint marker in cancer immunotherapy. However, due to tumor heterogeneity, the response rate to such therapies often falls short of expectations. In addition to its role in immunotherapy, PD-L1 serves as a specific target on the surface of tumor cells for targeted diagnostic and therapeutic interventions. There is an absence of a fully developed PD-L1-targeted diagnostic and therapeutic probe for clinical use, which constrains the exploration and clinical exploitation of this target. Methods and Results: In this study, we engineered a PD-L1-targeted probe with multimodal imaging and dual therapeutic functionalities utilizing organic melanin nanoparticles. Functionalization with the WL12-SH peptide endowed the nanoprobe with specific targeting capabilities. Subsequent radiolabeling with 89Zr (half-life: 100.8 hours) and chelation of Mn2+ ions afforded the probe the capacity for simultaneous PET and MRI imaging modalities. Cellular uptake assays revealed pronounced specificity, with -positive cells exhibiting significantly higher uptake than -negative counterparts (p < 0.05). Dual-modal PET/MRI imaging delineated rapid and sustained accumulation at the neoplastic site, yielding tumor-to-non-tumor (T/NT) signal ratios at 24 hours post-injection of 16.67±3.45 for PET and 6.63±0.64 for MRI, respectively. We conjugated the therapeutic radionuclide 131I (half-life: 8.02 days) to the construct and combined low-dose radiotherapy and photothermal treatment (PTT), culminating in superior antitumor efficacy while preserving a high safety profile. The tumors in the cohort receiving the dual-modality therapy exhibited significantly reduced volume and weight compared to those in the control and monotherapy groups. Conclusion: We developed and applied a novel -targeted multimodal theranostic nanoprobe, characterized by its high specificity and superior imaging capabilities as demonstrated in PET/MRI modalities. Furthermore, this nanoprobe facilitates potent therapeutic efficacy at lower radionuclide doses when used in conjunction with PTT.


B7-H1 Antigen , Magnetic Resonance Imaging , Multimodal Imaging , Nanoparticles , Positron-Emission Tomography , Theranostic Nanomedicine , Theranostic Nanomedicine/methods , Animals , B7-H1 Antigen/metabolism , Positron-Emission Tomography/methods , Nanoparticles/chemistry , Humans , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Cell Line, Tumor , Mice , Melanins/chemistry , Zirconium/chemistry , Radioisotopes/chemistry , Female , Immunotherapy/methods
4.
Theranostics ; 14(8): 3043-3079, 2024.
Article En | MEDLINE | ID: mdl-38855174

In 1853, the perception of prostate cancer (PCa) as a rare ailment prevailed, was described by the eminent Londoner surgeon John Adams. Rapidly forward to 2018, the landscape dramatically altered. Currently, men face a one-in-nine lifetime risk of PCa, accentuated by improved diagnostic methods and an ageing population. With more than three million men in the United States alone grappling with this disease, the overall risk of succumbing to stands at one in 39. The intricate clinical and biological diversity of PCa poses serious challenges in terms of imaging, ongoing monitoring, and disease management. In the field of theranostics, diagnostic and therapeutic approaches that harmoniously merge targeted imaging with treatments are integrated. A pivotal player in this arena is radiotheranostics, employing radionuclides for both imaging and therapy, with prostate-specific membrane antigen (PSMA) at the forefront. Clinical milestones have been reached, including FDA- and/or EMA-approved PSMA-targeted radiodiagnostic agents, such as [18F]DCFPyL (PYLARIFY®, Lantheus Holdings), [18F]rhPSMA-7.3 (POSLUMA®, Blue Earth Diagnostics) and [68Ga]Ga-PSMA-11 (Locametz®, Novartis/ ILLUCCIX®, Telix Pharmaceuticals), as well as PSMA-targeted radiotherapeutic agents, such as [177Lu]Lu-PSMA-617 (Pluvicto®, Novartis). Concurrently, ligand-drug and immune therapies designed to target PSMA are being advanced through rigorous preclinical research and clinical trials. This review delves into the annals of PSMA-targeted radiotheranostics, exploring its historical evolution as a signature molecule in PCa management. We scrutinise its clinical ramifications, acknowledge its limitations, and peer into the avenues that need further exploration. In the crucible of scientific inquiry, we aim to illuminate the path toward a future where the enigma of PCa is deciphered and where its menace is met with precise and effective countermeasures. In the following sections, we discuss the intriguing terrain of PCa radiotheranostics through the lens of PSMA, with the fervent hope of advancing our understanding and enhancing clinical practice.


Antigens, Surface , Glutamate Carboxypeptidase II , Prostatic Neoplasms , Radiopharmaceuticals , Humans , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/therapy , Glutamate Carboxypeptidase II/metabolism , Male , Antigens, Surface/metabolism , Radiopharmaceuticals/therapeutic use , Nuclear Medicine/methods , Nuclear Medicine/history , Theranostic Nanomedicine/methods , Radioisotopes/therapeutic use , History, 21st Century , History, 20th Century
5.
ACS Macro Lett ; 13(6): 768-774, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38829688

The low therapeutic efficacy and potential long-term toxicity of antitumor treatments seriously limit the clinical application of phototherapies. Herein, we develop a degradable phototheranostic nanoplatform for NIR-II fluorescence bioimaging-guided synergistic photothermal (PTT) and photodynamic therapies (PDT) and immune activation to inhibit tumor growth. The phototheranostic nanoplatform (CX@PSS) consists of multidisulfide-containing polyurethane loaded with a photosensitizer CX, which can be specifically degraded in the GSH overexpressed tumor microenvironment (TME) and exhibits good NIR-II fluorescence, photodynamic, and photothermal properties. Under 808 nm light irradiation, CX@PSS exhibits efficient photothermal conversion and ROS generation, which further induces immunogenic cell death (ICD), releasing tumor-associated antigens and activating the immune response. In vitro and in vivo studies confirm the potential of CX@PSS in NIR II FL imaging-guided tumor treatments by synergistic PTT, PDT, and immune activation. This work is expected to provide a new pathway for clinical applications of imaging-guided tumor diagnosis and treatments.


Photochemotherapy , Photosensitizing Agents , Theranostic Nanomedicine , Tumor Microenvironment , Tumor Microenvironment/drug effects , Animals , Mice , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/chemistry , Theranostic Nanomedicine/methods , Photochemotherapy/methods , Optical Imaging/methods , Infrared Rays , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Cell Line, Tumor , Neoplasms/diagnostic imaging , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Photothermal Therapy/methods , Polyurethanes/chemistry , Polyurethanes/pharmacology
6.
Proc Natl Acad Sci U S A ; 121(25): e2322403121, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38865273

Fluorine magnetic resonance imaging (19F-MRI) is particularly promising for biomedical applications owing to the absence of fluorine in most biological systems. However, its use has been limited by the lack of safe and water-soluble imaging agents with high fluorine contents and suitable relaxation properties. We report innovative 19F-MRI agents based on supramolecular dendrimers self-assembled by an amphiphilic dendrimer composed of a hydrophobic alkyl chain and a hydrophilic dendron. Specifically, this amphiphilic dendrimer bears multiple negatively charged terminals with high fluorine content, which effectively prevented intra- and intermolecular aggregation of fluorinated entities via electrostatic repulsion. This permitted high fluorine nuclei mobility alongside good water solubility with favorable relaxation properties for use in 19F-MRI. Importantly, the self-assembling 19F-MRI agent was able to encapsulate the near-infrared fluorescence (NIRF) agent DiR and the anticancer drug paclitaxel for multimodal 19F-MRI and NIRF imaging of and theranostics for pancreatic cancer, a deadly disease for which there remains no adequate early detection method or efficacious treatment. The 19F-MRI and multimodal 19F-MRI and NIRF imaging studies on human pancreatic cancer xenografts in mice confirmed the capability of both imaging modalities to specifically image the tumors and demonstrated the efficacy of the theranostic agent in cancer treatment, largely outperforming the clinical anticancer drug paclitaxel. Consequently, these dendrimer nanosystems constitute promising 19F-MRI agents for effective cancer management. This study offers a broad avenue to the construction of 19F-MRI agents and theranostics, exploiting self-assembling supramolecular dendrimer chemistry.


Dendrimers , Fluorine , Theranostic Nanomedicine , Dendrimers/chemistry , Animals , Theranostic Nanomedicine/methods , Humans , Mice , Fluorine/chemistry , Paclitaxel/chemistry , Paclitaxel/therapeutic use , Magnetic Resonance Imaging/methods , Cell Line, Tumor , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/therapy , Fluorine-19 Magnetic Resonance Imaging/methods , Mice, Nude , Contrast Media/chemistry
7.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article En | MEDLINE | ID: mdl-38892434

Many different types of nanoparticles have been suggested for tumor-targeted theranosis. However, most systems were prepared through a series of complicated processes and could not even overcome the blood-immune barriers. For the accurate diagnosis and effective treatment of cancers, herein we suggested the lipid micellar structure capturing quantum dot (QD) for cancer theranosis. The QD/lipid micelles (QDMs) were prepared using a simple self-assembly procedure and then conjugated with anti-epidermal growth factor receptor (EGFR) antibodies for tumor targeting. As a therapeutic agent, Bcl2 siRNA-cholesterol conjugates were loaded on the surface of QDMs. The EGFR-directed QDMs containing Bcl2 siRNA, so-called immuno-QDM/siBcl2 (iQDM/siBcl2), exhibited the more effective delivery of QDs and siBcl2 to target human colorectal cancer cells in cultures as well as in mouse xenografts. The effective in vivo targeting of iQDM/siBcl2 resulted in a more enhanced therapeutic efficacy of siBcl2 to the target cancer in mice. Based on the results, anti-EGFR QDM capturing therapeutic siRNA could be suggested as an alternative modality for tumor-targeted theranosis.


ErbB Receptors , Proto-Oncogene Proteins c-bcl-2 , Quantum Dots , RNA, Small Interfering , Quantum Dots/chemistry , Animals , ErbB Receptors/genetics , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Humans , RNA, Small Interfering/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Mice , Cell Line, Tumor , Nanoparticles/chemistry , Lipids/chemistry , Theranostic Nanomedicine/methods , Xenograft Model Antitumor Assays , Micelles
9.
J Inorg Biochem ; 256: 112569, 2024 Jul.
Article En | MEDLINE | ID: mdl-38701687

The clinical success of [223Ra]RaCl2 (Xofigo®) for the palliative treatment of bone metastases in patients with prostate cancer has highlighted the therapeutic potential of α-particle emission. Expanding the applicability of radium-223 in Targeted Alpha Therapy of non-osseous tumors is followed up with significant interest, as it holds the potential to unveil novel treatment options in the comprehensive management of cancer. Moreover, the use of barium radionuclides, like barium-131 and -135m, is still unfamiliar in nuclear medicine applications, although they can be considered as radium-223 surrogates for imaging purposes. Enabling these applications requires the establishment of chelators able to form stable complexes with radium and barium radionuclides. Until now, only a limited number of ligands have been suggested and these molecules have been primarily inspired by existing structures known for their ability to complex large metal cations. However, a systematic inspection of chelators specifically tailored to Ra2+ and Ba2+ has yet to be conducted. This work delves into a comprehensive investigation of a series of small organic ligands, aiming to unveil the coordination preferences of both radium-223 and barium-131/135m. Electronic binding energies of both metal cations to each ligand were theoretically computed via Density Functional Theory calculations (COSMO-ZORA-PBE-D3/TZ2P), while thermodynamic stability constants were experimentally determined for Ba2+-ligand complexes by potentiometry, NMR and UV-Vis spectroscopies. The outcomes revealed malonate, 2-hydroxypyridine 1-oxide and picolinate as the most favorable building blocks to design multidentate chelators. These findings serve as foundation guidelines, propelling the development of cutting-edge radium-223- and barium-131/135m-based radiopharmaceuticals for Targeted Alpha Therapy and theranostics of cancer.


Radium , Radium/chemistry , Radium/therapeutic use , Humans , Radioisotopes/chemistry , Coordination Complexes/chemistry , Coordination Complexes/therapeutic use , Barium/chemistry , Alpha Particles/therapeutic use , Chelating Agents/chemistry , Chelating Agents/therapeutic use , Neoplasms/drug therapy , Theranostic Nanomedicine/methods , Metals, Alkaline Earth/chemistry , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/therapeutic use
10.
Int J Nanomedicine ; 19: 4451-4464, 2024.
Article En | MEDLINE | ID: mdl-38799694

Introduction: Researchers are increasingly favouring the use of biological resources in the synthesis of metallic nanoparticles. This synthesis process is quick and affordable. The current study examined the antibacterial and anticancer effects of silver nanoparticles (AgNPs) derived from the Neurada procumbens plant. Biomolecules derived from natural sources can be used to coat AgNPs to make them biocompatible. Methods: UV-Vis spectroscopy was used to verify the synthesis of AgNPs from Neurada procumbens plant extract, while transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FTIR) were used to characterize their morphology, crystalline structure, stability, and coating. Results: UV-visible spectrum of AgNPs shows an absorption peak at 422 nm, indicating the isotropic nature of these nanoparticles. As a result of the emergence of a transmission peak at 804.53 and 615.95 cm-1 in the spectrum of the infrared light emitted by atoms in a sample, FTIR spectroscopy demonstrated that the Ag stretching vibration mode is metal-oxygen (M-O). Electron dispersive X-ray (EDX) spectral analysis shows that elementary silver has a peak at 3 keV. Irradiating the silver surface with electrons, photons, or laser beams triggers the illumination. The emission peak locations have been found between 300 and 550 nm. As a result of DLS analysis, suspended particles showed a bimodal size distribution, with their Z-average particle size being 93.38 nm. Conclusion: The findings showed that the antibacterial action of AgNPs was substantially (p≤0.05) more evident against Gramme-positive strains (S. aureus and B. cereus) than E. coli. The biosynthesis of AgNPs is an environmentally friendly method for making nanostructures that have antimicrobial and anticancer properties.


Green Chemistry Technology , Metal Nanoparticles , Silver , Theranostic Nanomedicine , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Green Chemistry Technology/methods , Humans , Theranostic Nanomedicine/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Neoplasm Invasiveness/prevention & control , Particle Size , Microbial Sensitivity Tests , Spectroscopy, Fourier Transform Infrared , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/pathology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects
11.
Int J Mol Sci ; 25(10)2024 May 10.
Article En | MEDLINE | ID: mdl-38791253

The application of metal-based nanoparticles (mNPs) in cancer therapy and diagnostics (theranostics) has been a hot research topic since the early days of nanotechnology, becoming even more relevant in recent years. However, the clinical translation of this technology has been notably poor, with one of the main reasons being a lack of understanding of the disease and conceptual errors in the design of mNPs. Strikingly, throughout the reported studies to date on in vivo experiments, the concepts of "tumor targeting" and "tumor cell targeting" are often intertwined, particularly in the context of active targeting. These misconceptions may lead to design flaws, resulting in failed theranostic strategies. In the context of mNPs, tumor targeting can be described as the process by which mNPs reach the tumor mass (as a tissue), while tumor cell targeting refers to the specific interaction of mNPs with tumor cells once they have reached the tumor tissue. In this review, we conduct a critical analysis of key challenges that must be addressed for the successful targeting of either tumor tissue or cancer cells within the tumor tissue. Additionally, we explore essential features necessary for the smart design of theranostic mNPs, where 'smart design' refers to the process involving advanced consideration of the physicochemical features of the mNPs, targeting motifs, and physiological barriers that must be overcome for successful tumor targeting and/or tumor cell targeting.


Metal Nanoparticles , Neoplasms , Theranostic Nanomedicine , Humans , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/diagnosis , Neoplasms/pathology , Theranostic Nanomedicine/methods , Animals , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Drug Delivery Systems/methods
13.
Cancer J ; 30(3): 185-193, 2024.
Article En | MEDLINE | ID: mdl-38753753

ABSTRACT: Neuroendocrine tumors (NETs) are rare tumors that develop from cells of the neuroendocrine system and can originate in multiple organs and tissues such as the bowels, pancreas, adrenal glands, ganglia, thyroid, and lungs. This review will focus on gastroenteropancreatic NETs (more commonly called NETs) characterized by frequent somatostatin receptor (SSTR) overexpression and pheochromocytomas/paragangliomas (PPGLs), which typically overexpress norepinephrine transporter. Advancements in SSTR-targeted imaging and treatment have revolutionized the management of patients with NETs. This comprehensive review delves into the current practice, discussing the use of the various Food and Drug Administration-approved SSTR-agonist positron emission tomography tracers and the predictive imaging biomarkers, and elaborating on 177Lu-DOTATATE peptide receptor radionuclide therapy including the evolving areas of posttherapy imaging practices and peptide receptor radionuclide therapy retreatment. SSTR-targeted imaging and therapy can also be used in patients with PPGL; however, this patient population has demonstrated the best outcomes from norepinephrine transporter-targeted therapy with 131I-metaiodobenzylguanidine. Metaiodobenzylguanidine theranostics for PPGL will be discussed, noting that in 2024 it became commercially unavailable in the United States. Therefore, the use and reported success of SSTR theranostics for PPGL will also be explored.


Neuroendocrine Tumors , Humans , Neuroendocrine Tumors/therapy , Neuroendocrine Tumors/diagnosis , Neuroendocrine Tumors/pathology , Receptors, Somatostatin/metabolism , Radiopharmaceuticals/therapeutic use , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/pathology , Theranostic Nanomedicine/methods , Precision Medicine/methods , Positron-Emission Tomography/methods , Intestinal Neoplasms/therapy , Intestinal Neoplasms/diagnosis , Intestinal Neoplasms/pathology
14.
Biomed Mater ; 19(4)2024 May 29.
Article En | MEDLINE | ID: mdl-38697197

Infectious diseases caused by bacterial infections are common in clinical practice. Cell membrane coating nanotechnology represents a pioneering approach for the delivery of therapeutic agents without being cleared by the immune system in the meantime. And the mechanism of infection treatment should be divided into two parts: suppression of pathogenic bacteria and suppression of excessive immune response. The membrane-coated nanoparticles exert anti-bacterial function by neutralizing exotoxins and endotoxins, and some other bacterial proteins. Inflammation, the second procedure of bacterial infection, can also be suppressed through targeting the inflamed site, neutralization of toxins, and the suppression of pro-inflammatory cytokines. And platelet membrane can affect the complement process to suppress inflammation. Membrane-coated nanoparticles treat bacterial infections through the combined action of membranes and nanoparticles, and diagnose by imaging, forming a theranostic system. Several strategies have been discovered to enhance the anti-bacterial/anti-inflammatory capability, such as synthesizing the material through electroporation, pretreating with the corresponding pathogen, membrane hybridization, or incorporating with genetic modification, lipid insertion, and click chemistry. Here we aim to provide a comprehensive overview of the current knowledge regarding the application of membrane-coated nanoparticles in preventing bacterial infections as well as addressing existing uncertainties and misconceptions.


Anti-Bacterial Agents , Bacterial Infections , Cell Membrane , Nanoparticles , Humans , Cell Membrane/metabolism , Bacterial Infections/drug therapy , Nanoparticles/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Nanomedicine/methods , Inflammation , Nanotechnology/methods , Drug Delivery Systems , Bacteria , Theranostic Nanomedicine/methods
15.
Int J Pharm ; 658: 124203, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38705249

Most nanomedicines with suitable sizes (normally 100-200 nm) exhibit favorable accumulation in the periphery of tumors but hardly penetrate into deep tumors. Effective penetration of nanomedicines requires smaller sizes (less than 30 nm) to overcome the elevated tumor interstitial fluid pressure. Moreover, integrating an efficient diagnostic agent in the nanomedicines is in high demand for precision theranostics of tumors. To this end, a near-infrared light (NIR) -triggered size-shrinkable micelle system (Fe3O4@AuNFs/DOX-M) coloaded antitumor drug doxorubicin (DOX) and biomodal imaging agent magnetic gold nanoflower (Fe3O4@AuNFs) was developed to achieve efficient theranostic of tumors. Upon the accumulation of Fe3O4@AuNFs/DOX-M in the tumor periphery, a NIR laser was irradiated near the tumor sites, and the loaded Fe3O4@Au NFs could convert the light energy to heat, which triggered the cleavage of DOX-M to the ultra-small micelles (∼5 nm), thus realizing the deep penetration of micelles and on-demand drug release. Moreover, Fe3O4@AuNFs in the micelles could also be used as CT/MRI dual-modal contrast agent to "visualize" the tumor. Up to 92.6 % of tumor inhibition was achieved for the developed Fe3O4@AuNFs/DOX-M under NIR irradiation. This versatile micelle system provided a promising drug carrier platform realizing efficient tumor dual-modal diagnosis and photothermal-chemotherapy integration.


Doxorubicin , Gold , Infrared Rays , Micelles , Theranostic Nanomedicine , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Animals , Gold/chemistry , Gold/administration & dosage , Theranostic Nanomedicine/methods , Humans , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/diagnostic imaging , Drug Liberation , Mice , Antibiotics, Antineoplastic/administration & dosage , Magnetic Resonance Imaging/methods , Mice, Inbred BALB C , Drug Delivery Systems/methods , Contrast Media/chemistry , Contrast Media/administration & dosage , Drug Carriers/chemistry , Particle Size , Female , Mice, Nude
16.
Crit Rev Oncol Hematol ; 198: 104377, 2024 Jun.
Article En | MEDLINE | ID: mdl-38710296

Brain metastases (BrM) are common malignant lesions in the central nervous system, and pose a significant threat in advanced-stage malignancies due to delayed diagnosis and limited therapeutic options. Their distinct genomic profiles underscore the need for molecular profiling to tailor effective treatments. Recent advances in cancer biology have uncovered molecular drivers underlying tumor initiation, progression, and metastasis. This, coupled with the advances in molecular imaging technology and radiotracer synthesis, has paved the way for the development of innovative radiopharmaceuticals with enhanced specificity and affinity for BrM specific targets. Despite the challenges posed by the blood-brain barrier to effective drug delivery, several radiolabeled compounds have shown promise in detecting and targeting BrM. This manuscript provides an overview of the recent advances in molecular biomarkers used in nuclear imaging and targeted radionuclide therapy in both clinical and preclinical settings. Additionally, it explores potential theranostic applications addressing the unique challenges posed by BrM.


Brain Neoplasms , Humans , Brain Neoplasms/secondary , Brain Neoplasms/therapy , Brain Neoplasms/diagnosis , Theranostic Nanomedicine/methods , Radiopharmaceuticals/therapeutic use , Biomarkers, Tumor/metabolism , Animals , Molecular Targeted Therapy/methods , Molecular Imaging/methods , Precision Medicine/methods
17.
Artif Cells Nanomed Biotechnol ; 52(1): 321-333, 2024 Dec.
Article En | MEDLINE | ID: mdl-38795050

Polydopamine (PDA) stands as a versatile material explored in cancer nanomedicine for its unique properties, offering opportunities for multifunctional drug delivery platforms. This study explores the potential of utilizing a one-pot synthesis to concurrently integrate Fe, Gd and Mn ions into porous PDA-based theranostic drug delivery platforms called Ferritis, Gadolinis and Manganis, respectively. Our investigation spans the morphology, magnetic properties, photothermal characteristics and cytotoxicity profiles of those potent nanoformulations. The obtained structures showcase a spherical morphology, robust magnetic response and promising photothermal behaviour. All of the presented nanoparticles (NPs) display pronounced paramagnetism, revealing contrasting potential for MRI imaging. Relaxivity values, a key determinant of contrast efficacy, demonstrated competitive or superior performance compared to established, used contrasting agents. These nanoformulations also exhibited robust photothermal properties under near infra-red irradiation, showcasing their possible application for photothermal therapy of cancer. Our findings provide insights into the potential of metal-doped PDA NPs for cancer theranostics.


Indoles , Magnetic Resonance Imaging , Polymers , Indoles/chemistry , Humans , Polymers/chemistry , Contrast Media/chemistry , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Manganese/chemistry , Theranostic Nanomedicine/methods
18.
J Nanobiotechnology ; 22(1): 235, 2024 May 09.
Article En | MEDLINE | ID: mdl-38725031

Different from most of the conventional platforms with dissatisfactory theranostic capabilities, supramolecular nanotheranostic systems have unparalleled advantages via the artful combination of supramolecular chemistry and nanotechnology. Benefiting from the tunable stimuli-responsiveness and compatible hierarchical organization, host-guest interactions have developed into the most popular mainstay for constructing supramolecular nanoplatforms. Characterized by the strong and diverse complexation property, cucurbit[8]uril (CB[8]) shows great potential as important building blocks for supramolecular theranostic systems. In this review, we summarize the recent progress of CB[8]-based supramolecular theranostics regarding the design, manufacture and theranostic mechanism. Meanwhile, the current limitations and corresponding reasonable solutions as well as the potential future development are also discussed.


Bridged-Ring Compounds , Imidazoles , Theranostic Nanomedicine , Theranostic Nanomedicine/methods , Bridged-Ring Compounds/chemistry , Imidazoles/chemistry , Humans , Animals , Nanoparticles/chemistry , Heterocyclic Compounds, 2-Ring , Macrocyclic Compounds , Imidazolidines
19.
Sci Rep ; 14(1): 10646, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724530

Individual theranostic agents with dual-mode MRI responses and therapeutic efficacy have attracted extensive interest due to the real-time monitor and high effective treatment, which endow the providential treatment and avoid the repeated medication with side effects. However, it is difficult to achieve the integrated strategy of MRI and therapeutic drug due to complicated synthesis route, low efficiency and potential biosafety issues. In this study, novel self-assembled ultrasmall Fe3O4 nanoclusters were developed for tumor-targeted dual-mode T1/T2-weighted magnetic resonance imaging (MRI) guided synergetic chemodynamic therapy (CDT) and chemotherapy. The self-assembled ultrasmall Fe3O4 nanoclusters synthesized by facilely modifying ultrasmall Fe3O4 nanoparticles with 2,3-dimercaptosuccinic acid (DMSA) molecule possess long-term stability and mass production ability. The proposed ultrasmall Fe3O4 nanoclusters shows excellent dual-mode T1 and T2 MRI capacities as well as favorable CDT ability due to the appropriate size effect and the abundant Fe ion on the surface of ultrasmall Fe3O4 nanoclusters. After conjugation with the tumor targeting ligand Arg-Gly-Asp (RGD) and chemotherapy drug doxorubicin (Dox), the functionalized Fe3O4 nanoclusters achieve enhanced tumor accumulation and retention effects and synergetic CDT and chemotherapy function, which serve as a powerful integrated theranostic platform for cancer treatment.


Magnetic Resonance Imaging , Theranostic Nanomedicine , Magnetic Resonance Imaging/methods , Theranostic Nanomedicine/methods , Animals , Mice , Humans , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Cell Line, Tumor , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/therapy , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/therapeutic use , Succimer/chemistry , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology
20.
Int J Mol Sci ; 25(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38732200

We are living in an era of advanced nanoscience and nanotechnology. Numerous nanomaterials, culminating in nanorobots, have demonstrated ingenious applications in biomedicine, including breast cancer (BC) nano-theranostics. To solve the complicated problem of BC heterogeneity, non-targeted drug distribution, invasive diagnostics or surgery, resistance to classic onco-therapies and real-time monitoring of tumors, nanorobots are designed to perform multiple tasks at a small scale, even at the organelles or molecular level. Over the last few years, most nanorobots have been bioengineered as biomimetic and biocompatible nano(bio)structures, resembling different organisms and cells, such as urchin, spider, octopus, fish, spermatozoon, flagellar bacterium or helicoidal cyanobacterium. In this review, readers will be able to deepen their knowledge of the structure, behavior and role of several types of nanorobots, among other nanomaterials, in BC theranostics. We summarized here the characteristics of many functionalized nanodevices designed to counteract the main neoplastic hallmark features of BC, from sustaining proliferation and evading anti-growth signaling and resisting programmed cell death to inducing angiogenesis, activating invasion and metastasis, preventing genomic instability, avoiding immune destruction and deregulating autophagy. Most of these nanorobots function as targeted and self-propelled smart nano-carriers or nano-drug delivery systems (nano-DDSs), enhancing the efficiency and safety of chemo-, radio- or photodynamic therapy, or the current imagistic techniques used in BC diagnosis. Most of these nanorobots have been tested in vitro, using various BC cell lines, as well as in vivo, mainly based on mice models. We are still waiting for nanorobots that are low-cost, as well as for a wider transition of these favorable effects from laboratory to clinical practice.


Breast Neoplasms , Nanotechnology , Humans , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Breast Neoplasms/diagnosis , Female , Nanotechnology/methods , Animals , Nanostructures/chemistry , Nanostructures/therapeutic use , Robotics/methods , Theranostic Nanomedicine/methods , Drug Delivery Systems/methods , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
...