Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.184
Filter
1.
J Egypt Natl Canc Inst ; 36(1): 22, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910202

ABSTRACT

BACKGROUND: Innovations in cancer treatment have contributed to the improved survival rate of cancer patients. The cancer survival rates have been growing and nearly two third of those survivors have been exposed to clinical radiation during their treatment. The study of long-term radiation effects, especially secondary cancer induction, has become increasingly important. An accurate assessment of out-of-field/peripheral dose (PDs) is necessary to estimate the risk of second cancer after radiotherapy and the damage to the organs at risk surrounding the planning target volume. This study was designed to measure the PDs as a function of dose, distances, and depths from Telecobalt-60 (Co-60) beam in water phantom using thermoluminescent dosimeter-100 (TLD-100). METHODS: The PDs were measured for Co-60 beam at specified depths of 0 cm (surface), 5 cm, 10 cm, and 15 cm outside the radiation beam at distances of 5, 10, and 13 cm away from the radiation field edge using TLD-100 (G1 cards) as detectors. These calibrated cards were placed on the acrylic disc in circular tracks. The radiation dose of 2000 mGy of Co-60 beam was applied inside 10 × 10 cm2 field size at constant source to surface distance (SSD) of 80 cm. RESULTS: The results showed maximum and minimum PDs at surface and 5 cm depth respectively at all distances from the radiation field edge. Dose distributions out of the field edge with respect to distance were isotropic. The decrease in PDs at 5 cm depth was due to dominant forward scattering of Co-60 gamma rays. The increase in PDs beyond 5 cm depth was due to increase in the irradiated volume, increase in penumbra, increase in source to axis distance (SAD), and increase in field size due to inverse square factor. CONCLUSION: It is concluded that the PDs depends upon depth and distance from the radiation field edge. All the measurements show PDs in the homogenous medium (water); therefore, it estimates absorbed dose to the organ at risk (OAR) adjacent to cancer tissues/planning target volume (PTV). It is suggested that PDs can be minimized by using the SAD technique, as this technique controls sources of scattered radiation like inverse square factor and effect of penumbra up-to some extent.


Subject(s)
Cobalt Radioisotopes , Phantoms, Imaging , Radiotherapy Dosage , Thermoluminescent Dosimetry , Humans , Thermoluminescent Dosimetry/methods , Water , Radiotherapy Planning, Computer-Assisted/methods , Neoplasms/radiotherapy , Radiation Dosage , Organs at Risk/radiation effects
2.
Radiat Prot Dosimetry ; 200(10): 890-900, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38847419

ABSTRACT

The metrological quality of a measurement is characterised by evaluating the uncertainty in the measurement. In this paper, uncertainty in personal dose measured using individual monitoring CaSO4:Dy-based thermoluminescence dosimeter badge is evaluated by application of the guide to the expression of uncertainty in measurement method. The present dose reporting quantity, whole body dose (WBD) and the proposed quantity, personal dose equivalent, Hp(10) has been used as measurands. The influence of various input quantities on the measurement were analyzed through tests that conform to the requirements of the International Electrotechnical Commission IEC 62387. The study found that the expanded uncertainties for WBD and Hp(10) measurements were 63.4% and 41.4%, respectively, corresponding to a 95% coverage probability for workplace fields covering a wide photon energy range (33-1250 keV). However, the uncertainty estimates were quite lower for the type of workplaces that are identified using the dose evaluation algorithm. The input quantities, namely, the response to a mixture of photon beam qualities and photon energy and angular dependence contribute the most to the total uncertainty.


Subject(s)
Occupational Exposure , Radiation Dosage , Thermoluminescent Dosimetry , Workplace , Thermoluminescent Dosimetry/instrumentation , Thermoluminescent Dosimetry/methods , Humans , Occupational Exposure/analysis , Uncertainty , Radiation Monitoring/methods , Algorithms , Dysprosium/chemistry , Photons , Radiation Protection/methods , Radiation Protection/standards , Radiation Dosimeters
3.
Radiat Prot Dosimetry ; 200(10): 919-937, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38851183

ABSTRACT

The features of the glow curves of LiF:Mg,Ti are dependent on many parameters of irradiation, storage, ionisation density and readout. These are presented herein with emphasis on their complexity. Successful applications require some understanding of the great diversity of the glow curves. Glow curve analysis/deconvolution in order to better understand the mechanisms is a 'tricky business' even with Tm-Tstop analysis. In the theoretical framework of spatially correlated trapping and luminescent centres, a mechanism is described which simulates the behaviour of composite peak 5 at different cooling rates and following photon bleaching at 3.65 eV.


Subject(s)
Fluorides , Lithium Compounds , Magnesium , Thermoluminescent Dosimetry , Titanium , Lithium Compounds/chemistry , Magnesium/chemistry , Fluorides/radiation effects , Fluorides/chemistry , Thermoluminescent Dosimetry/instrumentation , Thermoluminescent Dosimetry/methods , Titanium/chemistry , Luminescence , Photons
4.
Appl Radiat Isot ; 210: 111371, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38815447

ABSTRACT

This work builds upon a prior study, examining the dosimetric utility of pencil lead and thin graphitic sheets, focusing upon the measurement of skin doses within the mammographic regime. In recognizing the near soft-tissue equivalence of graphite and the earlier-observed favourable thermoluminescence yield of thin sheets of graphite, this has led to present study of 50 µm thick graphite for parameters typical of external beam fractionated radiotherapy and skin dose evaluations. The graphite layers were annealed and then stacked to form an assembly of 0.5 mm nominal thickness. Using a 6 MV photon beam and delivering doses from 2- to 60 Gy, irradiations were conducted, the assembly first forming a superficial layer to a solid water phantom and subsequently underlying a 1.5 cm bolus, seeking to circumvent the build-up to electronic equilibrium for skin treatments. Investigations were made of several dosimetric properties arising from the thermoluminescence yield of the 50 µm thick graphite slabs, in particular proportionality and sensitivity to dose. The results show excellent sensitivity within the dose range of interest, the thermoluminescence response varying with increasing depth through the stacked graphite layers, obtaining a coefficient of determination of 90%. Acknowledging there to be considerable challenge in accurately matching skin thickness with dose, the graphite sheets have nevertheless shown considerable promise as dosimeters of skin, sensitive in determination of dose from the surface of the graphite through to sub-dermal depth thicknesses.


Subject(s)
Graphite , Photons , Skin , Graphite/chemistry , Skin/radiation effects , Humans , Radiation Dosimeters , Phantoms, Imaging , Radiotherapy Dosage , Thermoluminescent Dosimetry/methods , Equipment Design
5.
Biomed Phys Eng Express ; 10(4)2024 May 17.
Article in English | MEDLINE | ID: mdl-38714180

ABSTRACT

Radiotherapy (RT) is one of the major treatment modalities among surgery and chemotherapy for carcinoma breast. The surface dose study of modified reconstructive constructive Mastectomy (MRM) breast is important due to the heterogeneity in the body contour and the conventional treatment angle to save the lungs and heart from the radiation. These angular entries of radiation beam cause an unpredictable dose deposition on the body surface, which has to be monitored. Thermoluminescent dosimeter (TLD) or optically stimulated luminescent dosimeter (nano OSLD) are commonly preferable dosimeters for this purpose. The surface dose response of TLD and nano OSLD during MRM irradiation has been compared with the predicted dose from the treatment planning system (TPS). The study monitored 100 MRM patients by employing a total 500 dosimeters consisting of TLD (n = 250) and nano OSLD (n = 250), during irradiation from an Elekta Versa HD 6 MV Linear accelerator. The study observed a variance of 3.9% in the dose measurements for TLD and 3.2% for nano OSLD from the planned surface dose, with a median percentage dose of 44.02 for nano OSLD and 40.30 for TLD (p value 0.01). There was no discernible evidence of variation in dose measurements attributable to differences in field size or from patient to patient. Additionally, no variation was observed in dose measurements when comparing the placement of the dosimeter from central to off-centre positions. In comparison, a minor difference in dose measurements were noted between TLD and nano OSLD, The study's outcomes support the applicability of both TLD and nano OSLD as effective dosimeters during MRM breast irradiation for surface dose evaluation.


Subject(s)
Breast Neoplasms , Mastectomy , Radiotherapy Dosage , Thermoluminescent Dosimetry , Humans , Female , Thermoluminescent Dosimetry/methods , Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Radiotherapy Planning, Computer-Assisted/methods , Optically Stimulated Luminescence Dosimetry/methods , Middle Aged , Radiation Dosage , Adult , Breast/radiation effects , Breast/surgery
6.
Biomed Phys Eng Express ; 10(4)2024 May 15.
Article in English | MEDLINE | ID: mdl-38701767

ABSTRACT

Thermoluminescent dosimeters (TLDs) serve as compact and user-friendly tools for various applications, including personal radiation dosimetry and radiation therapy. This study explores the potential of utilizing TLD-100 personal dosimetry, conventionally applied in PET/CT (positron emission tomography/computed tomography) settings, in the PET/MRI (magnetic resonance imaging) environment. The integration of MRI into conventional radiotherapy and PET systems necessitates ionizing radiation dosimetry in the presence of static magnetic fields. In this study, TLD-100 dosimeters were exposed on the surface of a water-filled cylindrical phantom containing PET-radioisotope and positioned on the patient table of a 3 T PET/MRI, where the magnetic field strength is around 0.2 T, aiming to replicate real-world scenarios experienced by personnel in PET/MRI environments. Results indicate that the modified MR-safe TLD-100 personal dosimeters exhibit no significant impact from the static magnetic field of the 3 T PET/MRI, supporting their suitability for personal dosimetry in PET/MRI settings. This study addresses a notable gap in existing literature on the effect of MRI static magnetic field on TLDs.


Subject(s)
Magnetic Resonance Imaging , Occupational Exposure , Phantoms, Imaging , Thermoluminescent Dosimetry , Thermoluminescent Dosimetry/methods , Humans , Magnetic Resonance Imaging/methods , Occupational Exposure/analysis , Occupational Exposure/prevention & control , Positron Emission Tomography Computed Tomography/methods , Radiation Dosage , Positron-Emission Tomography/methods , Radiation Monitoring/methods , Magnetic Fields , Radiation Dosimeters
7.
Appl Radiat Isot ; 208: 111307, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564840

ABSTRACT

Early works that used thermoluminescent dosimeters (TLDs) to measure absorbed dose from alpha particles reported relatively high variation (10%) between TLDs, which is undesirable for modern dosimetry applications. This work outlines a method to increase precision for absorbed dose measured using TLDs with alpha-emitting radionuclides by applying an alpha-specific chip factor (CF) that individually characterizes the TLD sensitivity to alpha particles. Variation between TLDs was reduced from 21.8% to 6.7% for the standard TLD chips and 7.9% to 3.3% for the thin TLD chips. It has been demonstrated by this work that TLD-100 can be calibrated to precisely measure the absorbed dose to water from alpha-emitting radionuclides.


Subject(s)
Radiation Dosimeters , Thermoluminescent Dosimetry , Thermoluminescent Dosimetry/methods , Radioisotopes , Radiometry/methods , Calibration
8.
Life Sci Space Res (Amst) ; 41: 52-55, 2024 May.
Article in English | MEDLINE | ID: mdl-38670652

ABSTRACT

The health risk of staying in space is a well-known fact, and the radiation doses to the astronauts must be monitored. The Pille-ISS thermoluminescent dosimeter system is present on the International Space Station (ISS) since 2003. We present an analysis of 60000 data points over 19 years from the 90 min automatic measurements and show a 4-day-long segment of 15 min measurements. In the case of the 15 min we show that the mapping of the radiation environment for the orbit of the ISS is possible with the Pille system. From our results the dose rates inside the South Atlantic Anomaly (SAA) are at least 1 magnitude higher than outside. From the 90 min data, we select orbits passing through the SAA. A statistical correlation in the SAA between the ISS altitude and monthly mean dose rate is presented with the Spearman correlation value of ρSAA=0.56. The dose rate and the sunspot number show strong inverse Pearson correlation (R2=-0.90) at a given altitude.


Subject(s)
Astronauts , Spacecraft , Thermoluminescent Dosimetry , Spacecraft/instrumentation , Thermoluminescent Dosimetry/instrumentation , Thermoluminescent Dosimetry/methods , Humans , Radiation Dosage , Radiation Monitoring/instrumentation , Radiation Monitoring/methods , Cosmic Radiation , Space Flight
9.
Luminescence ; 39(2): e4683, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38332469

ABSTRACT

This work explores the thermoluminescence (TL) and photoluminescence (PL) properties of Ag/Y co-doped zinc oxide (ZnO) nanophosphor. The proposed dosimeter was prepared by the coprecipitation method and sintered at temperatures from 400°C to 1000°C in an air atmosphere. Raman spectroscopy was studied to investigate the structural features of this composition. The new proposed dosimeter revealed two peaks at 150°C and 175°C with a small shoulder at high temperature (225°C). The PL spectrum showed strong green emissions between 500 to 550 nm. The Raman spectrum showed many bands related to the interaction between ZnO, silver (Ag), and yttrium oxide (Y2 O3 ). The rising sintering temperature enhanced the TL glow curve intensity. The Ag/Y co-doped ZnO nanophosphor showed an excellent linearity index within a dose from 1 to 4 Gy. The minimum detectable dose (MDD) of the Ag/Y co-doped ZnO nanopowder (pellets) equaled 0.518 mGy. The main TL properties were achieved in this work as follows: thermal fading (37% after 45 days at 1 and 4 Gy), optical fading (53% after 1 h and 68% after 6 h by exposure to sunlight), effective atomic number (27.6), and energy response (flat behavior from 0.1 to 1.3 MeV). Finally, the proposed material shows promising results nominated to be used for radiation measurements.


Subject(s)
Zinc Oxide , Temperature , Thermoluminescent Dosimetry/methods , Silver/chemistry
10.
Radiat Prot Dosimetry ; 200(5): 481-486, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38324740

ABSTRACT

The performance of two thermoluminescent dosimetry systems (RGD-3D and RE2000) manufactured in China and Finland was compared. Both of these dosimetry systems demonstrated satisfactory results as their performance met the requirements of the standard. The two dosimetry systems showed similar performance in the energy response. The RGD-3D dosimetry system performed better in nonlinear response, minimum detectable level and blind sample tests, whereas the RE2000 dosimetry system showed better stability.


Subject(s)
Photons , Thermoluminescent Dosimetry , Thermoluminescent Dosimetry/methods , Radiometry/methods , Oligopeptides , China
11.
Luminescence ; 39(1): e4679, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38286606

ABSTRACT

In this work, (99 - x)CaSO4 -Dy2 O3 -xEu2 O3 , (where x = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5) thermoluminescence phosphors were prepared using a coprecipitation method. The thermoluminescence (TL) dosimetry (TLD) characteristics such as TL sensitivity, dose-response, minimum detectable dose, thermal fading, and the effect of sunlight on the prepared phosphors were investigated. The obtained results indicated that the most sensitive phosphor was obtained at x = 0.05. Large thermal fading of 6% after 1 h and 26% after 24 h from irradiation followed by 71% after 1 month with no additional fading was observed within a time frame exceeding 2 months throughout the remaining duration of the investigation, which also spanned over 2 months. Despite the phosphor's high fading rate, the relative sensitivity of the prepared samples was ~90% compared with TLD-100. The marked effect of day sunlight was also determined. High dose-response within the low-dose range from 0.01 to 5 Gy was observed. The obtained results suggested that the synthesized phosphor is well suited for applications involving radiation biology and radiotherapy dosimetry.


Subject(s)
Dysprosium , Thermoluminescent Dosimetry , Thermoluminescent Dosimetry/methods
12.
Radiat Prot Dosimetry ; 200(4): 423-427, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38195760

ABSTRACT

The effect of natural rapid cooling and oven slow cooling on the precision of thermoluminescence measurements of LiF:Mg,Ti is investigated. Three separate series of measurements resulted in average precisions of 5.1 and 5.0%, respectively. However, the highest precision of 1.7% (1 SD) was achieved for an oven-cooled material.


Subject(s)
Lithium Compounds , Thermoluminescent Dosimetry , Thermoluminescent Dosimetry/methods , Fluorides , Titanium , Equipment Design
13.
Med Phys ; 51(3): 2311-2319, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37991111

ABSTRACT

BACKGROUND: Dosimetry in ultra-high dose rate (UHDR) electron beamlines poses a significant challenge owing to the limited usability of standard dosimeters in high dose and high dose-per-pulse (DPP) applications. PURPOSE: In this study, Al2 O3 :C nanoDot optically stimulated luminescent dosimeters (OSLDs), single-use powder-based LiF:Mg,Ti thermoluminescent dosimeters (TLDs), and Gafchromic EBT3 film were evaluated at extended dose ranges (up to 40 Gy) in conventional dose rate (CONV) and UHDR beamlines to determine their usability for calibration and dose verification in the setting of FLASH radiation therapy. METHODS: OSLDs and TLDs were evaluated against established dose-rate-independent Gafchromic EBT3 film with regard to the potential influence of mean dose rate, instantaneous dose rate, and DPP on signal response. The dosimeters were irradiated at CONV or UHDR conditions on a 9-MeV electron beam. Under UHDR conditions, different settings of pulse repetition frequency (PRF), pulse width (PW), and pulse amplitude were used to characterize the individual dosimeters' response in order to isolate their potential dependencies on dose, dose rate, and DPP. RESULTS: The OSLDs, TLDs, and Gafchromic EBT3 film were found to be suitable at a dose range of up to 40 Gy without any indication of saturation in signal. The response of OSLDs and TLDs in UHDR conditions were found to be independent of mean dose rate (up to 1440 Gy/s), instantaneous dose rate (up to 2 MGy/s), and DPP (up to 7 Gy), with uncertainties on par with nominal values established in CONV beamlines (± 4%). In cross-comparing the response of OSLDs, TLDs and Gafchromic film at dose rates of 0.18-245 Gy/s, the coefficient of variation or relative standard deviation in the measured dose between the three dosimeters (inter-dosimeter comparison) was found to be within 2%. CONCLUSIONS: We demonstrated the dynamic range of OSLDs, TLDs, and Gafchromic film to be suitable up to 40 Gy, and we developed a protocol that can be used to accurately translate the measured signal in each respective dosimeter to dose. OSLDs and powdered TLDs were shown to be viable for dosimetric measurement in UHDR beamlines, providing dose measurements with accuracies on par with Gafchromic EBT3 film and their concurrent use demonstrating a means for redundant dosimetry in UHDR conditions.


Subject(s)
Radiation Dosimeters , Titanium , Radiation Dosage , Thermoluminescent Dosimetry/methods , Radiometry/methods
14.
Radiat Res ; 200(6): 569-576, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37931289

ABSTRACT

In this study, the preparation and characterization of copper (Cu) and terbium (Tb) co-doped lithium borate glass using spectroscopic and thermoluminescence techniques are reported. A thermal treatment was introduced to increase the degree of crystallinity. The thermoluminescence glow curve signal of the samples displayed upon exposure to beta radiation was measured and analyzed. It was found that the samples doped with 0.1% of copper and co-doped with 0.3% terbium showed the highest thermoluminescent (TL) signal in response to the irradiated dose. The analyses revealed that the glow curves of the doped samples were composed of nine overlapping glow peaks with activation energies between 0.73 and 2.78 eV. As a whole area under the glow curve, the TL signals displayed a linear dose response in the range from 110 mGy to 55 Gy. The minimum detectible dose of the samples was found to be 10.39 µGy. It was found that peaks 1 and 2 disappear after one day of storage. The rest of the peaks (3-9) remain almost constant up to 74 days of storage.


Subject(s)
Copper , Terbium , Copper/chemistry , Terbium/chemistry , Thermoluminescent Dosimetry/methods
15.
Radiat Prot Dosimetry ; 199(15-16): 1818-1823, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37819281

ABSTRACT

Extremity radiation monitoring is an important tool for the assessment of occupational exposures to staff at a variety of workplaces where ionising radiation is used. This work shows the feasibility of applying 3D printing for the development of customisable ring dosemeters. The rings were developed using two types of resin, hard and flexible and has the possibility of sterilisation using different techniques. The printed ring dosemeter was associated with BeO optically stimulated dosemeters. The energy and angular response were found within ±20% in the energy range from 24 to 662 keV and from 0° to 60° angle of incidence. This contributes to the reduction of measurement uncertainty when compared with currently used thermoluminescent detectors dosemeters. The new ring dosemeter showed a satisfactory response with respect to the performance criteria of the IEC 62387 Standard, in addition to providing improved ergonomics in relation to the commercial ring dosemeter.


Subject(s)
Occupational Exposure , Radiation Monitoring , Humans , Radiation Dosage , Radiation Monitoring/methods , Radiation Dosimeters , Protective Devices , Occupational Exposure/analysis , Printing, Three-Dimensional , Thermoluminescent Dosimetry/methods
16.
Radiat Res ; 200(4): 357-365, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37702413

ABSTRACT

Significant past work has identified unexpected risks of central nervous system (CNS) exposure to the space radiation environment, where long-lasting functional decrements have been associated with multiple ion species delivered at low doses and dose rates. As shielding is the only established intervention capable of limiting exposure to the dangerous radiation fields in space, the recent discovery that pions, emanating from regions of enhanced shielding, can contribute significantly to the total absorbed dose on a deep space mission poses additional concerns. As a prerequisite to biological studies evaluating pion dose equivalents for various CNS exposure scenarios of mice, a careful dosimetric validation study is required. Within our ultimate goal of evaluating the functional consequences of defined pion exposures to CNS functionality, we report in this article the detailed dosimetry of the PiMI pion beam line at the Paul Scherrer Institute, which was developed in support of radiobiological experiments. Beam profiles and contamination of the beam by protons, electrons, positrons and muons were characterized prior to the mice irradiations. The dose to the back and top of the mice was measured using thermoluminescent dosimeters (TLD) and optically simulated luminescence (OSL) to cross-validate the dosimetry results. Geant4 Monte Carlo simulations of radiation exposure of a mouse phantom in water by charged pions were also performed to quantify the difference between the absorbed dose from the OSL and TLD and the absorbed dose to water, using a simple model of the mouse brain. The absorbed dose measured by the OSL dosimeters and TLDs agreed within 5-10%. A 30% difference between the measured absorbed dose and the dose calculated by Geant4 in the dosimeters was obtained, probably due to the approximated Monte Carlo configuration compared to the experiment. A difference of 15-20% between the calculated absorbed dose to water at a 5 mm depth and in the passive dosimeters was obtained, suggesting the need for a correction factor of the measured dose to obtain the absorbed dose in the mouse brain. Finally, based on the comparison of the experimental data and the Monte Carlo calculations, we consider the dose measurement to be accurate to within 15-20%.


Subject(s)
Mesons , Animals , Mice , Radiometry/methods , Protons , Central Nervous System , Monte Carlo Method , Thermoluminescent Dosimetry/methods , Water , Phantoms, Imaging
17.
Article in English | MEDLINE | ID: mdl-37625926

ABSTRACT

OBJECTIVES: We aimed to map the correlation between thermoluminescent dosimeters (TLDs) and Gafchromic film for measuring absorbed doses and to compare minimum, maximum, and mean absorbed doses over larger regions of interest and at various craniofacial organs and tissues during cone beam computed tomography (CBCT) exposure of the mandibular third molar region. STUDY DESIGN: We positioned TLDs at 75 measurement points in a head phantom. Gafchromic film was cut to the same shape as the 5 levels of the phantom and was placed on top of the TLDs. Both dosimetry methods thus included the surface of each level simultaneously. CBCT scans were made using a 5 × 5 cm field of view and a rotation angle of 200°. Measurements included absorbed dose distributions, doses at all 75 points, and minimum, maximum, and mean doses within organs and tissues. RESULTS: The correlation of point-dose measurements at all TLD sites with doses measured on film was strong (R2 = 0.9687), with greatest correlation at lower doses (<2 mGy). Large deviations between TLD and film measurements of minimum and maximum doses and absorbed doses to the organs occurred at all 5 levels. TLD positioning failed to cover several organ sites; for these, only absorbed dose measurements from the film were available. CONCLUSIONS: TLDs were unable to sample dose distributions and gradients accurately. The characteristics of Gafchromic LD-V1 film make it a favorable alternative in dental CBCT dosimetry.


Subject(s)
Radiation Dosimeters , Thermoluminescent Dosimetry , Humans , Radiation Dosage , Thermoluminescent Dosimetry/methods , Cone-Beam Computed Tomography/methods , Mandible/diagnostic imaging , Phantoms, Imaging
18.
Luminescence ; 38(10): 1780-1788, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37491134

ABSTRACT

This study reports the thermoluminescence (TL) aspects of Ca10 K(PO4 )7 :Dy phosphor synthesized using a wet chemical method for the first time. The X-ray diffraction (XRD) results confirm the formation of the desired crystalline phase. Surface morphological studies reveal the formation of polyhedrons and agglomerations having an average diameter of 200 nm, while energy dispersive X-ray spectroscopy (EDS) data show the presence and composition of the elements in appropriate amounts. The effect of Dy doping concentration has been studied on the TL properties with exposure to gamma radiations from the Co-60 source. The best TL response has been observed for 5 mol% Dy doping concentration. The glow curve is simple and consists of a single peak at 130°C. The effect of the heating rate has been studied on the TL glow curve, and the heating rate of 5°C/s shows the best TL response. The various TL properties such as annealing conditions, dose-response, TL linearity, fading, and reusability of the prepared phosphor have been studied to check its suitability as a good TL dosimeter (TLD). TL characterization of the phosphor reports that the TL response is linear from 5- to 2000 Gy. The results show that this phosphor can be a good TLD for the dosimetry of gamma radiations from Co-60.


Subject(s)
Radiation Dosimeters , Thermoluminescent Dosimetry , Thermoluminescent Dosimetry/methods , Gamma Rays , Radiometry
19.
Phys Med Biol ; 68(15)2023 07 21.
Article in English | MEDLINE | ID: mdl-37336242

ABSTRACT

Objective.This work investigates the use of Al2O3:C and Al2O3:C,Mg optically stimulated luminescence (OSL) detectors to determine both the dose and the radiation quality in light ion beams. The radiation quality is here expressed through either the linear energy transfer (LET) or the closely related metricQeff, which depends on the particle's speed and effective charge. The derived LET andQeffvalues are applied to improve the dosimetry in light ion beams.Approach.OSL detectors were irradiated in mono-energetic1H-,4He-,12C-, and16O-ion beams. The OSL signal is associated with two emission bands that were separated using a pulsed stimulation technique and subjected to automatic corrections based on reference irradiations. Each emission band was investigated independently for dosimetry, and the ratio of the two emission intensities was parameterized as a function of fluence- and dose-averaged LET, as well asQeff. The determined radiation quality was subsequently applied to correct the dose for ionization quenching.Main results.For both materials, theQeffdeterminations in1H- and4He-ion beams are within 5 % of the Monte Carlo simulated values. Using the determined radiation quality metrics to correct the nonlinear (ionization quenched) detector response leads to doses within 2 % of the reference doses.Significance.Al2O3:C and Al2O3:C,Mg OSL detectors are applicable for dosimetry and radiation quality estimations in1H- and4He-ions. Only Al2O3:C,Mg shows promising results for dosimetry in12C-ions. Across both materials and the investigated ions, the estimatedQeffvalues were less sensitive to the ion types than the estimated LET values were. The reduced uncertainties suggest new possibilities for simultaneously estimating the physical and biological dose in particle therapy with OSL detectors.


Subject(s)
Linear Energy Transfer , Optically Stimulated Luminescence Dosimetry , Aluminum Oxide , Radiometry/methods , Luminescence , Ions , Thermoluminescent Dosimetry/methods
20.
Appl Radiat Isot ; 198: 110850, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37207370

ABSTRACT

Ionizing radiation dosimetry with thermoluminescence (TL) materials based on silicon or glass can be interesting in its potential use in radiation monitoring as the solution to the constant looking of development of new radiation detectors. In this work, TL characteristics of sodium silicate exposed to beta radiation effects were studied. TL response beta irradiated exhibited a glow curve with two peaks centered at 398 K and 473 K. Samples showed linearity from 0.55 to 13.2 Gy. TL readings after 10 times showed a repeatability with an error of less than 1%. Remain information showed significant losses during the first 24 h, but its information was almost constant after 72 h of storage. The Tmax-Tstop method exhibited three peaks which were mathematically analyzed with a general order deconvolution finding kinetic orders close to the second order for the first peak, meanwhile the kinetic order for the second peak and third peak are close to second order. Finally, the VHR method showed anomalous TL glow curve behavior with an increasing intensity TL as the heating rate increased.


Subject(s)
Silicon , Thermoluminescent Dosimetry , Kinetics , Thermoluminescent Dosimetry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...