Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.872
Filter
1.
Molecules ; 29(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38999138

ABSTRACT

Cancer remains a leading cause of death worldwide, often resulting from uncontrolled growth in various organs. Protein kinase inhibitors represent an important class of targeted cancer therapies. Recently, the kinases BRAF and VEGFR-2 have shown synergistic effects on tumor progression. Seeking to develop dual BRAF/VEGFR-2 inhibitors, we synthesized 18 amino-benzothiazole derivatives with structural similarities to reported dual inhibitors. Four compounds-4a, 4f, 4l, and 4r-demonstrated remarkable cytotoxicity, with IC50 values ranging from 3.58 to 15.36 µM, against three cancer cell lines. Furthermore, these compounds showed IC50 values of 38.77-66.22 µM in the case of a normal cell line, which was significantly safer than the reference, sorafenib. Subsequent investigation revealed that compound 4f exhibited the capacity to inhibit the BRAF and VEGFR-2 enzymes, with IC50 values similar to sorafenib (0.071 and 0.194 µM, respectively). Moreover, compound 4f caused G2-M- and S-phase cycle arrest. Molecular modeling demonstrated binding patterns compatible with inhibition for both targets, where 4f exerted the critical interactions in the BRAF site and interacted in the VEGFR-2 site in a manner akin to sorafenib, demonstrating affinity similar to dabrafenib.


Subject(s)
Antineoplastic Agents , Benzothiazoles , Cell Proliferation , Molecular Docking Simulation , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Thiadiazoles , Vascular Endothelial Growth Factor Receptor-2 , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Humans , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Benzothiazoles/chemical synthesis , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Thiadiazoles/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Drug Design , Structure-Activity Relationship , Sorafenib/pharmacology , Sorafenib/chemistry , Molecular Structure , Computer Simulation , Drug Screening Assays, Antitumor
2.
J Med Chem ; 67(14): 12428-12438, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38996002

ABSTRACT

Targeting Ca2+/calmodulin-dependent protein kinase γ (CaMKIIγ) in macrophages using RNAi nanotechnology represents an innovative and promising strategy in the diagnosis and treatment of atherosclerosis. Nevertheless, it remains elusive because of the current challenges associated with the systemic delivery of siRNA nanoparticle (NP) to atheromatous plaques and the complexity of atherosclerotic plaques. Here, we demonstrate the potential of a thienothiadiazole-based near-infrared-II (NIR-II) organic aggregation-induced emission (AIE) platform encapsulated with the Camk2g siRNA to effectively target CaMKIIγ in macrophages for dynamic imaging and image-guided gene therapy of atherosclerosis. The nanoparticles effectively decreased CaMKIIγ expression and increased the expression of the efferocytosis receptor MerTK in plaque macrophages, leading to a reduction in the necrotic core area of the lesion in an aortic plaque model. Our theranostic approach highlights the substantial promise of near-infrared II (NIR-II) AIEgens for imaging and image-guided therapy of atherosclerosis.


Subject(s)
Atherosclerosis , Optical Imaging , RNA, Small Interfering , Atherosclerosis/diagnostic imaging , Atherosclerosis/therapy , RNA, Small Interfering/chemistry , RNA, Small Interfering/therapeutic use , Animals , Mice , Nanoparticles/chemistry , Humans , Plaque, Atherosclerotic/diagnostic imaging , Macrophages/metabolism , Mice, Inbred C57BL , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Infrared Rays
3.
Clin Drug Investig ; 44(7): 471-493, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38904739

ABSTRACT

Standard schizophrenia treatment involves antipsychotic medications that target D2 dopamine receptors. However, these drugs have limitations in addressing all symptoms and can lead to adverse effects such as motor impairments, metabolic effects, sedation, sexual dysfunction, cognitive impairment, and tardive dyskinesia. Recently, KarXT has emerged as a novel drug for schizophrenia. KarXT combines xanomeline, a muscarinic receptor M1 and M4 agonist, with trospium, a nonselective antimuscarinic agent. Of note, xanomeline can readily cross blood-brain barrier (BBB) and, thus, enter into the brain, thereby stimulating muscarinic receptors (M1 and M4). By doing so, xanomeline has been shown to target negative symptoms and potentially improve positive symptoms. Trospium, on the other hand, is not able to cross BBB, thereby not affecting M1 and M4 receptors; instead, it acts as an antimuscarinic agent and, hence, diminishes peripheral activity of muscarinic receptors to minimize side effects probably stemming from xanomeline in other organs. Accordingly, ongoing clinical trials investigating KarXT's efficacy in schizophrenia have demonstrated positive outcomes, including significant improvements in the Positive and Negative Syndrome Scale (PANSS) total score and cognitive function compared with placebo. These findings emphasize the potential of KarXT as a promising treatment for schizophrenia, providing symptom relief while minimizing side effects associated with xanomeline monotherapy. Despite such promising evidence, further research is needed to confirm the efficacy, safety, and tolerability of KarXT in managing schizophrenia. This review article explores the current findings and potential mechanisms of KarXT in the treatment of schizophrenia.


Subject(s)
Antipsychotic Agents , Schizophrenia , Humans , Schizophrenia/drug therapy , Antipsychotic Agents/therapeutic use , Antipsychotic Agents/adverse effects , Muscarinic Antagonists/therapeutic use , Muscarinic Antagonists/adverse effects , Pyridines/therapeutic use , Pyridines/adverse effects , Pyridines/pharmacology , Benzilates/therapeutic use , Benzilates/adverse effects , Drug Combinations , Animals , Muscarinic Agonists/therapeutic use , Muscarinic Agonists/adverse effects , Thiadiazoles/therapeutic use , Thiadiazoles/adverse effects , Thiadiazoles/pharmacology
4.
Biochem Biophys Res Commun ; 726: 150201, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-38924881

ABSTRACT

In the current research study, we aim to design and synthesize highly potent hybrid analogs of benzimidazole derived thiadiazole based Schiff base derivatives which can combat the cholinesterase enzymes (acetylcholinesterase and butyrylcholinesterase) accountable for developing Alzheimer's disease. In this context, we have synthesized 15 analogs of benzimidazole based thiadiazole derivatives, which were subsequently confirmed through spectroscopic techniques including 1H NMR, 13C NMR and HREI-MS. Biological investigation of all the analogs revealed their varied acetylcholinesterase inhibitory potency covering a range between 3.20 ± 0.10 µM to 20.50 ± 0.20 µM as well as butyrylcholinesterase inhibitory potential with a range of 4.30 ± 0.50 µM to 20.70 ± 0.50 µM when compared with the standard drug Donepezil having IC50 = 6.70 ± 0.20 µM for AChE and 7.90 ± 0.10 µM for BuChE. The promising inhibition by the analogs was evaluated in SAR analysis, where analog-1 (IC50 = 3.20 ± 0.10 µM for AChE and 4.30 ± 0.50 µM for BuChE), analog-4 (IC50 = 4.30 ± 0.30 µM for AChE and 5.50 ± 0.20 µM for BuChE) and analog-5 (IC50 = 4.10 ± 0.30 µM for AChE and 4.60 ± 0.40 µM for BuChE) were found as the lead candidates. Moreover, molecular docking and ADME analysis were conducted to explore the better binding interactions and drugs likeness respectively.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Benzimidazoles , Butyrylcholinesterase , Cholinesterase Inhibitors , Molecular Docking Simulation , Thiadiazoles , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/metabolism , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Thiadiazoles/chemical synthesis , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/chemical synthesis , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/chemistry , Humans , Structure-Activity Relationship , Computer Simulation
5.
Exp Mol Pathol ; 137: 104896, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703552

ABSTRACT

BACKGROUND: Glutaminase 1 (GLS1), a key enzyme in glutamine metabolism in cancer cells, acts as a tumor promoter and could be a potential therapeutic target. CB-839, a GLS1-specific inhibitor, was developed recently. Herein, we aimed to elucidate the anti-tumor effects and mechanism of action of CB-839 in colorectal cancer (CRC). METHODS: Using the UCSC Xena public database, we evaluated GLS1 expression in various cancers. Immunostaining for GLS1 was performed on 154 surgically resected human CRC specimens. Subsequently, we examined the GLS1 mRNA expression levels in eight CRC cell lines and evaluated the association between GLS1 expression and CB-839 efficacy. To create a reproducible CRC model with abundant stroma and an allogeneic immune response, we co-transplanted CT26 and stem cells into BALB/c mice and treated them with CB-839. Finally, RNA sequencing of mouse tumors was performed. RESULTS: Database analysis showed higher GLS1 expression in CRC tissues than in normal colon tissues. Clinical samples from 114 of the 154 patients with CRC showed positive GLS1 expression. GLS1 expression in clinical CRC tissues correlated with vascular invasion. CB-839 treatment inhibited cancer cell proliferation depending on GLS1 expression in vitro and inhibited tumor growth and metastasis in the CRC mouse model. RNA sequencing revealed that CB-839 treatment inhibited stromal activation, tumor growth, migration, and angiogenesis. These findings were validated through in vitro and in vivo experiments and clinical specimen analysis. CONCLUSIONS: GLS1 expression in CRC plays important roles in tumor progression. CB-839 has inhibitory effects on cancer proliferation and the tumor microenvironment.


Subject(s)
Cell Proliferation , Colorectal Neoplasms , Glutaminase , Mice, Inbred BALB C , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Animals , Glutaminase/antagonists & inhibitors , Glutaminase/metabolism , Glutaminase/genetics , Mice , Cell Proliferation/drug effects , Female , Cell Line, Tumor , Benzeneacetamides/pharmacology , Xenograft Model Antitumor Assays , Male , Stromal Cells/metabolism , Stromal Cells/pathology , Stromal Cells/drug effects , Thiadiazoles/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Tumor Microenvironment/drug effects , Antineoplastic Agents/pharmacology , Middle Aged , Disease Models, Animal
6.
Chem Biodivers ; 21(6): e202400496, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38700369

ABSTRACT

Tuberculosis remains a global health threat, with increasing infection rates and mortality despite existing anti-TB drugs. The present work focuses on the research findings regarding the development and evaluation of thiadiazole-linked thiazole derivatives as potential anti-tuberculosis agents. We present the synthesis data and confirm the compound structures using spectroscopic techniques. The current study reports twelve thiazole-thiadiazole compounds (5 a-5 l) for their anti-tuberculosis and related bioactivities. This paper emphasizes compounds 5 g, 5 i, and 5 l, which exhibited promising MIC values, leading to further in silico and interaction analysis. Pharmacophore mapping data included in the present analysis identified tubercular ThyX as potential drug targets. The compounds were evaluated for anti-tubercular activity using standard methods, revealing significant MIC values, particularly compound 5 l, with the best MIC value of 7.1285 µg/ml. Compounds 5 g and 5 i also demonstrated moderate to good MIC values against M. tuberculosis (H37Ra). Structural inspection of the docked poses revealed interactions such as hydrogen bonds, halogen bonds, and interactions containing Pi electron cloud, shedding light on conserved interactions with residues like Arg 95, Cys 43, His 69, and Arg 87 from the tubercular ThyX enzyme.


Subject(s)
Antitubercular Agents , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis , Thiadiazoles , Thiazoles , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Thiadiazoles/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Mycobacterium tuberculosis/drug effects , Structure-Activity Relationship , Molecular Structure , Humans
7.
J Mol Neurosci ; 74(2): 52, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724832

ABSTRACT

Treatment of glioblastoma multiforme (GBM) remains challenging. Unraveling the orchestration of glutamine metabolism may provide a novel viewpoint on GBM therapy. The study presented a full and comprehensive comprehending of the glutamine metabolism atlas and heterogeneity in GBM for facilitating the development of a more effective therapeutic choice. Transcriptome data from large GBM cohorts were integrated in this study. A glutamine metabolism-based classification was established through consensus clustering approach, and a classifier by LASSO analysis was defined for differentiating the classification. Prognosis, signaling pathway activity, tumor microenvironment, and responses to immune checkpoint blockade (ICB) and small molecular drugs were characterized in each cluster. A combinational therapy of glutaminase inhibitor CB839 with dihydroartemisinin (DHA) was proposed, and the influence on glutamine metabolism, apoptosis, reactive oxygen species (ROS), and migration was measured in U251 and U373 cells. We discovered that GBM presented heterogeneous glutamine metabolism-based clusters, with unique survival outcomes, activity of signaling pathways, tumor microenvironment, and responses to ICB and small molecular compounds. In addition, the classifier could accurately differentiate the two clusters. Strikingly, the combinational therapy of CB839 with DHA synergistically attenuated glutamine metabolism, triggered apoptosis and ROS accumulation, and impaired migrative capacity in GBM cells, demonstrating the excellent preclinical efficacy. Altogether, our findings unveil the glutamine metabolism heterogeneity in GBM and propose an innovative combination therapy of CB839 with DHA for this malignant disease.


Subject(s)
Artemisinins , Brain Neoplasms , Glioblastoma , Glutamine , Glioblastoma/metabolism , Glioblastoma/drug therapy , Humans , Glutamine/metabolism , Cell Line, Tumor , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Artemisinins/therapeutic use , Artemisinins/pharmacology , Reactive Oxygen Species/metabolism , Glutaminase/metabolism , Glutaminase/antagonists & inhibitors , Tumor Microenvironment , Apoptosis , Thiadiazoles/pharmacology , Thiadiazoles/therapeutic use , Cell Movement , Benzeneacetamides/pharmacology , Benzeneacetamides/therapeutic use , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology
8.
J Agric Food Chem ; 72(20): 11369-11380, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38727083

ABSTRACT

In keeping with our investigation, a simple and practical synthesis of novel heterocyclic compounds with a sulfamoyl moiety that can be employed as insecticidal agents was reported. The compound 2-hydrazinyl-N-(4-sulfamoylphenyl)-2-thioxoacetamide 1 was coupled smoothly with triethylorthoformate or a variety of halo compounds, namely phenacyl chloride, chloroacetyl chloride, chloroacetaldehyde, chloroacetone, 1,3-dichloropropane, 1,2-dichloroethane, ethyl chloroformate, 2,3-dichloro-1,4-naphthoquinone, and chloroanil respectively, which afforded the 1,3,4-thiadiazole and 1,3,4-thiadiazine derivatives. The new products structure was determined using elemental and spectral analysis. Under laboratory conditions, the biological and toxicological effects of the synthetic compounds were also evaluated as insecticides against Spodoptera littoralis (Boisd.). Compounds 3 and 5 had LC50 values of 6.42 and 6.90 mg/L, respectively. The investigated compounds (from 2 to 11) had been undergoing molecular docking investigation for prediction of the optimal arrangement and strength of binding between the ligand (herein, the investigated compounds (from 2 to 11)) and a receptor (herein, the 2CH5) molecule. The binding affinity within docking score (S, kcal/mol) ranged between -8.23 (for compound 5), -8.12 (for compound 3) and -8.03 (for compound 9) to -6.01 (for compound 8). These compounds were shown to have a variety of binding interactions within the 2CH5 active site, as evidenced by protein-ligand docking configurations. This study gives evidence that those compounds have 2CH5-inhibitory capabilities and hence may be used for 2CH5-targeting development. Furthermore, the three top-ranked compounds (5, 3, and 9) and the standard buprofezin were subjected to density functional theory (DFT) analysis. The highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy difference (ΔE) of compounds 5, 3, and 9 was found to be comparable to that of buprofezin. These findings highlighted the potential and relevance of charge transfer at the molecular level.


Subject(s)
Drug Design , Insecticides , Molecular Docking Simulation , Spodoptera , Thiadiazines , Thiadiazoles , Animals , Insecticides/chemistry , Insecticides/chemical synthesis , Insecticides/pharmacology , Spodoptera/drug effects , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Thiadiazoles/chemical synthesis , Thiadiazines/chemistry , Thiadiazines/pharmacology , Thiadiazines/chemical synthesis , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemical synthesis , Insect Proteins/chemistry , Benzenesulfonamides , Molecular Structure , Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase II/metabolism , Carbonic Anhydrase II/chemistry
9.
J Med Chem ; 67(10): 8406-8419, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38723203

ABSTRACT

Forty-one 1,3,4-thiadiazolyl-containing thiazolidine-2,4-dione derivatives (MY1-41) were designed and synthesized as protein tyrosine phosphatase 1B (PTP1B) inhibitors with activity against diabetes mellitus (DM). All synthesized compounds (MY1-41) presented potential PTP1B inhibitory activities, with half-maximal inhibitory concentration (IC50) values ranging from 0.41 ± 0.05 to 4.68 ± 0.61 µM, compared with that of the positive control lithocholic acid (IC50 = 9.62 ± 0.14 µM). The most potent compound, MY17 (IC50 = 0.41 ± 0.05 µM), was a reversible, noncompetitive inhibitor of PTP1B. Circular dichroism spectroscopy and molecular docking were employed to analyze the binding interaction between MY17 and PTP1B. In HepG2 cells, MY17 treatment could alleviate palmitic acid (PA)-induced insulin resistance by upregulating the expression of phosphorylated insulin receptor substrate and protein kinase B. In vivo, oral administration of MY17 could reduce the fasting blood glucose level and improve glucose tolerance and dyslipidemia in mice suffering from DM.


Subject(s)
Diabetes Mellitus, Experimental , Hypoglycemic Agents , Molecular Docking Simulation , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Thiazolidinediones , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Animals , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/therapeutic use , Hep G2 Cells , Mice , Thiazolidinediones/pharmacology , Thiazolidinediones/chemistry , Thiazolidinediones/chemical synthesis , Diabetes Mellitus, Experimental/drug therapy , Structure-Activity Relationship , Male , Thiadiazoles/pharmacology , Thiadiazoles/chemistry , Thiadiazoles/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Insulin Resistance , Blood Glucose/drug effects , Blood Glucose/analysis , Blood Glucose/metabolism
10.
Pharmacol Rep ; 76(3): 557-571, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38587587

ABSTRACT

BACKGROUND: The use of amphotericin B (AmB) in the therapy of systemic mycosis is associated with strong side effects, including nephrotoxicity, and hepatotoxicity. Therefore, agents that can reduce the toxic effects of AmB while acting synergistically as antifungal agents are currently being sought. 1,3,4-thiadiazole derivatives are promising compounds that have an antifungal activity and act synergically with AmB. Such combinations might allow the dose of AmB, which is essential for preventing patients from having serious side effects, to be decreased. This might result from the antioxidant properties of 1,3,4-thiadiazoles. Thus, the aim of the study was to investigate redox homeostasis in human renal proximal tubule epithelial cells (RPTEC) after they had been treated with AmB in combination with 1,3,4-thiadiazole derivatives. METHODS: Cellular redox homeostasis was assessed by investigating the total antioxidant capacity (TAC) of cells, the malondialdehyde (MDA) concentration, and the activity of antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT). TAC was measured using an ABTS method. The MDA concentration, and the activity of SOD, GPX, and CAT were determined spectrophotometrically using commercially available assays. Additionally, the antioxidant defense system-related gene expression profile was determined using oligonucleotide microarrays (HG-U133A 2.0). Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to confirm the microarray results. RESULTS: Amphotericin B and selected 1,3,4-thiadiazole derivatives had a significant effect on the total antioxidant capacity of the RPTEC cells, and the activity of the antioxidant enzymes. We also revealed that the effect of thiadiazoles on the SOD and CAT activities is dependent on the treatment of RPTEC cells with AmB. At the transcriptional level, the expression of several genes was affected by the studied compounds and their combinations. CONCLUSIONS: The results confirmed that thiadiazoles can stimulate the RPTEC cells to defend against the oxidative stress that is generated by AmB. In addition, together with the previously demonstrated synergistic antifungal activity, and low nephrotoxicity, these compounds have the potential to be used in new therapeutic strategies in the treatment of fungal infections.


Subject(s)
Amphotericin B , Antifungal Agents , Antioxidants , Homeostasis , Oxidation-Reduction , Thiadiazoles , Thiadiazoles/pharmacology , Humans , Amphotericin B/pharmacology , Oxidation-Reduction/drug effects , Antioxidants/pharmacology , Homeostasis/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/administration & dosage , Superoxide Dismutase/metabolism , Catalase/metabolism , Kidney Tubules, Proximal/drug effects , Glutathione Peroxidase/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Oxidative Stress/drug effects , Malondialdehyde/metabolism , Drug Synergism , Cells, Cultured
11.
Chem Biodivers ; 21(6): e202400522, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38606431

ABSTRACT

1,3,4-Thiadiazole compounds were synthesized using pyridine carboxylic acid derivatives and thiosemicarbazide derivatives. The molecular structures of the resulting compounds were characterized by spectroscopic methods such as ATR-FTIR, 1H-NMR, and elemental analysis. Its compounds were also examined for their antibacterial properties against some strains of bacteria. Five synthesized compounds showed varying antibacterial effects on Escherichia coli, Salmonella kentucky, Bacillus substilis and Klebsiella pneumoniae. This result revealed that some of the resulting compounds could be antibacterial agents.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Klebsiella pneumoniae , Microbial Sensitivity Tests , Pyridines , Thiadiazoles , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Thiadiazoles/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Pyridines/chemical synthesis , Klebsiella pneumoniae/drug effects , Escherichia coli/drug effects , Molecular Structure , Structure-Activity Relationship
12.
J Agric Food Chem ; 72(18): 10227-10235, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38669314

ABSTRACT

In this study, 24 indole derivatives containing 1,3,4-thiadiazole were discovered and synthesized. The target compounds' antifungal efficacy against 14 plant pathogenic fungal pathogens was then determined in vitro. With an EC50 value of 2.7 µg/mL, Z2 demonstrated the highest level of bioactivity among them against Botrytis cinerea (B.c.), exceeding the concentrations of the control prescription drugs azoxystrobin (Az) (EC50 = 14.5 µg/mL) and fluopyram (Fl) (EC50 = 10.1 µg/mL). Z2 underwent in vivo testing on blueberry leaves in order to evaluate its usefulness in real-world settings. A reasonable protective effect was obtained with a control effectiveness of 93.0% at 200 µg/mL, which was superior to those of Az (83.0%) and Fl (52.0%). At 200 µg/mL, this chemical had an efficacy of 84.0% in terms of curative efficacy. These figures outperformed those of Az (69.0%) and Fl (48.0%). Scanning electron microscopy (SEM) experiments and light microscopy experiments showed that Z2 altered the integrity of the cell wall and cell membrane of the pathogenic fungus B.c., which led to an increase in the content of malondialdehyde (MDA), cellular leakage, and cellular permeability. Enzyme activity assays and molecular docking studies indicated that Z2 could act as a potential succinate dehydrogenase inhibitor (SDHI). It was hypothesized that Z2 could cause disruption of mycelial cell membranes, which in turn leads to mycelial death. According to the research, indole derivatives containing 1,3,4-thiadiazole were expected to evolve into new fungicides due to their significant antifungal effects on plant fungi.


Subject(s)
Botrytis , Fungicides, Industrial , Indoles , Plant Diseases , Thiadiazoles , Thiadiazoles/pharmacology , Thiadiazoles/chemistry , Thiadiazoles/chemical synthesis , Indoles/chemistry , Indoles/pharmacology , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Botrytis/drug effects , Botrytis/growth & development , Plant Diseases/microbiology , Structure-Activity Relationship , Microbial Sensitivity Tests
13.
Z Naturforsch C J Biosci ; 79(3-4): 61-71, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38578162

ABSTRACT

A new series of 4-nitroimidazole bearing aryl piperazines 7-16, tetrazole 17 and 1,3,4-thiadiazole 18 derivatives was synthesized. All derivatives were screened for their anticancer activity against eight diverse human cancer cell lines (Capan-1, HCT-116, LN229, NCI-H460, DND-41, HL-60, K562, and Z138). Compound 17 proved the most potent compound of the series inhibiting proliferation of most of the selected human cancer cell lines with IC50 values in the low micromolar range. In addition, compound 11 exhibited IC50 values ranging 8.60-64.0 µM against a selection of cancer cell lines. These findings suggest that derivative 17 can potentially be a new lead compound for further development of novel antiproliferative agents. Additionally, 17-18 were assessed for their antibacterial and antituberculosis activity. Derivatives 17 and 18 were the most potent compounds of this series against both Staphylococcus aureus strain Wichita and a methicillin resistant strain of S. aureus (MRSA), as well as against Mycobacterium tuberculosis strain mc26230. The antiviral activity of 7-18 was also evaluated against diverse viruses, but no activity was detected. The docking study of compound 17 with putative protein targets in acute myeloid leukemia had been studied. Furthermore, the molecular dynamics simulation of 17 and 18 had been investigated.


Subject(s)
Anti-Bacterial Agents , Antineoplastic Agents , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Nitroimidazoles , Humans , Nitroimidazoles/pharmacology , Nitroimidazoles/chemistry , Nitroimidazoles/chemical synthesis , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Molecular Docking Simulation , Staphylococcus aureus/drug effects , Mycobacterium tuberculosis/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Thiadiazoles/pharmacology , Thiadiazoles/chemistry , Thiadiazoles/chemical synthesis , Cell Proliferation/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry
14.
Adv Healthc Mater ; 13(17): e2303842, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38458147

ABSTRACT

Although being applied as photosensitizers for photodynamic therapy, covalent organic frameworks (COFs) fail the precise fluorescence imaging in vivo and phototherapy in deep-tissue, due to short excitation/emission wavelengths. Herein, this work proposes the first example of NIR-II emissive and benzobisthiadiazole-based COF-980. Comparing to its ligands, the structure of COF-980 can more efficiently reducing the energy gap (ΔES1-T1) between the excited state and the triplet state to enhance photodynamic therapy efficiency. Importantly, COF-980 demonstrates high photostability, good anti-diffusion property, superior reactive oxygen species (ROS) generation efficiency, promising imaging ability, and ROS production in deep tissue (≈8 mm). Surprisingly, COF-980 combined with laser irradiation could trigger larger amount of intracellular ROS to high efficiently induce cancer cell death. Notably, COF-980 NPs precisely enable PDT guided by NIR-II fluorescence imaging that effectively inhibit the 4T1 tumor growth with negligible adverse effects. This study provides a universal approach to developing long-wavelength emissive COFs and exploits its applications for biomedicine.


Subject(s)
Optical Imaging , Photochemotherapy , Reactive Oxygen Species , Thiadiazoles , Photochemotherapy/methods , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Animals , Reactive Oxygen Species/metabolism , Mice , Optical Imaging/methods , Cell Line, Tumor , Humans , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Mice, Inbred BALB C , Female
15.
Chem Biodivers ; 21(7): e202301870, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38538544

ABSTRACT

New sets of functionalized thiazolidinone and thiadiazole derivatives were synthesized, and their cytotoxicity was evaluated on HepG2, MCF-7, HTC-116, and WI38 cells. The synthetic approach is based on the preparation of 4-(4-acetamidophenyl)thiosemicarbazide (4) and their thiosemicarbazones 5 a-e, which are converted to the corresponding thiazoldin-4-one compounds 6 a-e upon cyclization with ethyl bromoacetate. The thiadiazole compounds 9 and 12 were obtained by reacting 4-(4-acetamidophenyl)thiosemicarbazide with isothiocyanates and/or ethyl 2-cyano-3,3-bis(methylthio)acrylate, respectively. The thiazolidinone compounds 6 c and 6 e exhibited strong cytotoxicity against breast cancer cells, with an IC50 (6.70±0.5 µM) and IC50 (7.51±0.8 µM), respectively, very close to that of doxorubicin (IC50: 4.17±0.2 µM). In addition, the anti-cancer properties of the tested thiazolidinone and thiadiazole scaffolds were further explored by the molecular docking program (MOE)-(PDB Code-1DLS). Compounds 5 d, 5 e, 6 d, 6 e, and 7 have the best binding affinity, ranging from -8.5386 kcal.mol-1 to -8.2830 kcal.mol-1.


Subject(s)
Antineoplastic Agents , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Thiadiazoles , Thiazolidines , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Thiadiazoles/chemical synthesis , Thiazolidines/chemistry , Thiazolidines/pharmacology , Thiazolidines/chemical synthesis , Structure-Activity Relationship , Cell Line, Tumor , Cell Proliferation/drug effects , Molecular Structure , Dose-Response Relationship, Drug
16.
Chem Biodivers ; 21(6): e202400408, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38441384

ABSTRACT

To develop novel bacterial biofilm inhibiting agents, a series of 1,3,4-thiadiazole derivatives containing sulfonylpiperazine structures were designed, synthesized, and characterized using 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR), and high-resolution mass spectrometry. Meanwhile, their biological activities were evaluated, and the ensuing structure-activity relationships were discussed. The bioassay results showed the substantial antimicrobial efficacy exhibited by most of the compounds. Among them, compound A24 demonstrated a strong efficacy with an EC50 value of 7.8 µg/mL in vitro against the Xanthomonas oryzae pv. oryzicola (Xoc) pathogen, surpassing commercial agents thiodiazole copper (31.8 µg/mL) and bismerthiazol (43.3 µg/mL). Mechanistic investigations into its anti-Xoc properties revealed that compound A24 operates by increasing the permeability of bacterial cell membranes, inhibiting biofilm formation and cell motility, and inducing morphological changes in bacterial cells. Importantly, in vivo tests showed its excellent protective and curative effects on rice bacterial leaf streak. Besides, molecular docking showed that the hydrophobic effect and hydrogen-bond interactions are key factors between the binding of A24 and AvrRxo1-ORF1. Therefore, these results suggest the utilization of 1,3,4-thiadiazole derivatives containing sulfonylpiperazine structures as a bacterial biofilm inhibiting agent, warranting further exploration in the realm of agrochemical development.


Subject(s)
Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Molecular Docking Simulation , Thiadiazoles , Xanthomonas , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Thiadiazoles/chemical synthesis , Structure-Activity Relationship , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Xanthomonas/drug effects , Biofilms/drug effects , Piperazines/pharmacology , Piperazines/chemistry , Piperazines/chemical synthesis , Molecular Structure , Oryza/microbiology
17.
Plant Physiol ; 195(3): 2323-2338, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38478585

ABSTRACT

Hydroxylated monoterpenes (HMTPs) are differentially emitted by tomato (Solanum lycopersicum) plants resisting bacterial infection. We have studied the defensive role of these volatiles in the tomato response to bacteria, whose main entrance is through stomatal apertures. Treatments with some HMTPs resulted in stomatal closure and pathogenesis-related protein 1 (PR1) induction. Particularly, α-terpineol induced stomatal closure in a salicylic acid (SA) and abscisic acid-independent manner and conferred resistance to bacteria. Interestingly, transgenic tomato plants overexpressing or silencing the monoterpene synthase MTS1, which displayed alterations in the emission of HMTPs, exhibited changes in the stomatal aperture but not in plant resistance. Measures of both 2-C-methyl-D-erythritol-2,4-cyclopyrophosphate (MEcPP) and SA levels revealed competition for MEcPP by the methylerythritol phosphate (MEP) pathway and SA biosynthesis activation, thus explaining the absence of resistance in transgenic plants. These results were confirmed by chemical inhibition of the MEP pathway, which alters MEcPP levels. Treatments with benzothiadiazole (BTH), a SA functional analog, conferred enhanced resistance to transgenic tomato plants overexpressing MTS1. Additionally, these MTS1 overexpressors induced PR1 gene expression and stomatal closure in neighboring plants. Our results confirm the role of HMTPs in both intra- and interplant immune signaling and reveal a metabolic crosstalk between the MEP and SA pathways in tomato plants.


Subject(s)
Monoterpenes , Plant Diseases , Plant Stomata , Plants, Genetically Modified , Salicylic Acid , Solanum lycopersicum , Solanum lycopersicum/microbiology , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Salicylic Acid/metabolism , Monoterpenes/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Stomata/physiology , Plant Stomata/drug effects , Hydroxylation , Thiadiazoles/pharmacology , Gene Expression Regulation, Plant , Sugar Phosphates/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology , Erythritol/analogs & derivatives , Erythritol/metabolism , Disease Resistance/genetics , Disease Resistance/drug effects
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124117, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38461559

ABSTRACT

Cancer's global impact necessitates innovative and less toxic treatments. Thiosemicarbazones (TSCs), adaptable metal chelators, offer such potential. In this study, we have synthesized N (4)-substituted heterocyclic TSCs from syringaldehyde (TSL1, TSL2), and also report the unexpected copper-mediated cyclization of the TSCs to form thiadiazoles (TSL3, TSL4), expanding research avenues. This work includes extensive characterization and studies such as DNA/protein binding, molecular docking, and theoretical analyses to demonstrate the potential of the as-prepared TSCs and thiadiazoles against different cancer cells. The DFT results depict that the thiadiazoles exhibit greater structural stability and reduced reactivity compared to the corresponding TSCs. The docking results suggest superior EGFR inhibition for TSL3 with a binding constant value of - 6.99 Kcal/mol. According to molecular dynamics studies, the TSL3-EGFR complex exhibits a lower average RMSD (1.39 nm) as compared to the TSL1-EGFR complex (3.29 nm) suggesting that both the thiadiazole and thiosemicarbazone examined here can be good inhibitors of EGFR protein, also that TSL3 can inhibit EGFR better than TSL1. ADME analysis indicates drug-likeness and oral availability of the thiadiazole-based drugs. The DNA binding experiment through absorption and emission spectroscopy discovered that TSL3 is more active towards DNA which is quantitatively calculated with a Kb value of 4.74 × 106 M-1, Kq value of 4.04 × 104 M-1and Kapp value of 5 × 106 M-1. Furthermore, the BSA binding studies carried out with fluorescence spectroscopy showed that TSL3 shows better binding capacity (1.64 × 105 M-1) with BSA protein. All the compounds show significant cytotoxicity against A459-lung, MCF-7-breast, and HepG2-liver cancer cell lines; TSL3 exhibits the best cytotoxicity, albeit less effective than cisplatin. Thiadiazoles demonstrate greater cytotoxicity than the TSCs. Overall, the promise of TSCs and thiadiazoles in cancer research is highlighted by this study. Furthermore, it unveils unexpected copper-mediated cyclization of the TSCs to thiadiazoles.


Subject(s)
Antineoplastic Agents , Thiadiazoles , Thiosemicarbazones , Molecular Docking Simulation , Density Functional Theory , Copper/pharmacology , Copper/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Cyclization , Thiadiazoles/pharmacology , Thiadiazoles/chemistry , Spectrometry, Fluorescence , DNA/chemistry , ErbB Receptors/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
19.
Chem Biodivers ; 21(4): e202400135, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38425248

ABSTRACT

Four series of novel pyridine derivatives (17 a-i, 18 a-i, 19 a-e, and 20 a-e) were synthesized and their antimicrobial activities were evaluated. Of all the target compounds, almost half target compounds showed moderate or high antibacterial activity. The 4-F substituted compound 17 d (MIC=0.5 µg/mL) showed the highest antibacterial activity, its activity was twice the positive control compound gatifloxacin (MIC=1.0 µg/mL). For fungus ATCC 9763, the activities of compounds 17 a and 17 d are equivalent to the positive control compound fluconazole (MIC=8 µg/mL). Furthermore, compounds 17 a and 17 d showed little cytotoxicity to human LO2 cells, and did not show hemolysis even at ultra-high concentration (200 µM). The results indicate that these compounds are valuable for further development as antibacterial and antifungal agents.


Subject(s)
Thiadiazoles , Humans , Thiadiazoles/pharmacology , Antifungal Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Fungi , Pyridines/pharmacology , Microbial Sensitivity Tests , Structure-Activity Relationship
20.
Future Med Chem ; 16(4): 335-348, 2024 02.
Article in English | MEDLINE | ID: mdl-38314616

ABSTRACT

Aim: Recently, thiadiazole-containing drugs have gained greater clinical relevance and are being explored for the development of new antidiabetic, antiurease and antimicrobial agents that target drug resistance. Methods & results: The authors disclose the synthesis of N-(5-[4-(trifluoromethyl)phenyl]-1,3,4-thiadiazol-2-yl)methanimine derivatives starting from 4-(trifluoromethyl)benzoic acid. All of the synthesized derivatives were evaluated for their biological potential in order to investigate the inhibitory activity against antidiabetic, antiurease and antibacterial profiles. Compounds 1, 2 and 9 showed excellent inhibitory activities due to the hydrogen bonding presence of -OH, -F and -CF3 substitutions attached with the phenyl ring. Conclusion: The present study provides potent antidiabetic, antiurease and antimicrobial agents that can be further optimized to discover novel antidiabetic, antiurease drugs.


Subject(s)
Anti-Infective Agents , Thiadiazoles , Molecular Docking Simulation , Structure-Activity Relationship , Schiff Bases/pharmacology , Thiadiazoles/pharmacology , Anti-Infective Agents/pharmacology , Hypoglycemic Agents/pharmacology , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL