Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 621
Filter
1.
Bioorg Chem ; 152: 107722, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39213796

ABSTRACT

This study reports the Design Hypothesis of a novel series of 1,3-diphenyl pyrazole-thiosemicarbazone as novel tyrosinase inhibitors (TYRI). The designed compounds were prepared and their TYRI activity and mechanisms were studied. The results showed that the selected compounds exhibited potent tyrosinase inhibitory activities greater than that of kojic acid (KA). Lead candidates, denoted as 6g and 6n, with a para-hydroxyphenyl group attached to the 3-position of the pyrazole ring demonstrated IC50 values of 2.09 and 3.18 µM, respectively. The potency of these compounds was approximately 5-8 times higher than that of KA. The in vitro melanin content of 6g or 6n-treated melanoma cells resulted in significant efficacy in melanin reduction. The DPPH assay result revealed that the tyrosinase inhibition mechanism for these derivatives was independent of a redox effect and corresponded to the interaction with tyrosinase. According to the Lineweaver-Burk plot, the most potent compounds, 6g and 6n, exhibit a mixed type of inhibition, primarily noncompetitive inhibition. In silico molecular docking studies were employed to determine the binding mode and explore the Design Hypothesis in detail. The results suggested that these compounds could be considered promising leads for the further development of novel inhibitors to treat disorders related to tyrosinase.


Subject(s)
Antioxidants , Enzyme Inhibitors , Melanins , Molecular Docking Simulation , Monophenol Monooxygenase , Pyrazoles , Thiosemicarbazones , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Structure-Activity Relationship , Melanins/metabolism , Melanins/antagonists & inhibitors , Kinetics , Molecular Structure , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Dose-Response Relationship, Drug , Humans , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/pharmacology , Picrates/antagonists & inhibitors , Animals , Cell Line, Tumor
2.
Molecules ; 29(16)2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39202982

ABSTRACT

The eleven new copper(II) and nickel(II) coordination compounds [Cu(L)Br]2 (1), [Cu(L)Cl] (2), [Cu(L)NO3] (3), [Ni(L)Cl] (4), [Ni(HL)2](NO3)2 (5), and [Cu(A)(L)]NO3, where A is 1,10-phenanthroline (6), 2,2'-bipyridine (7), 3,4-dimethylpyridine (8), 3-methylpyridine (9), pyridine (10) and imidazole (11) were synthesized with 3-(morpholin-4-yl)propane-2,3-dione 4-allylthiosemicarbazone (HL). The new thiosemicarbazone was characterized by NMR and FTIR spectroscopy. All the coordination compounds were characterized by elemental analysis and FTIR spectroscopy. Also, the crystal structures of HL and complexes 1, 6, 7, and 11 were determined using single-crystal X-ray diffraction analysis. Complex 1 has a dimeric molecular structure with two bromide bridging ligands, while 6, 7, and 11 are ionic compounds and comprise monomeric complex cations. The studied complexes manifest antibacterial and antifungal activities and also have an antiradical activity that, in many cases, surpasses the activity of trolox, which is used as a standard antioxidant in medicine. Copper complexes 1-3 have very weak antiradical properties (IC50 > 100 µM), but nickel complexes 4-5 are strong antiradicals with IC50 values lower than that of trolox. The mixed ligand copper complexes with additional ligand of N-heteroaromatic base are superior to complexes without these additional ligands. They are 1.4-5 times more active than trolox.


Subject(s)
Anti-Bacterial Agents , Antifungal Agents , Coordination Complexes , Copper , Microbial Sensitivity Tests , Nickel , Thiosemicarbazones , Nickel/chemistry , Copper/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemical synthesis , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Crystallography, X-Ray , Molecular Structure
3.
J Med Chem ; 67(14): 12155-12183, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38967641

ABSTRACT

We implemented isosteric replacement of sulfur to selenium in a novel thiosemicarbazone (PPTP4c4mT) to create a selenosemicarbazone (PPTP4c4mSe) that demonstrates potentiated anticancer efficacy and selectivity. Their design specifically incorporated cyclohexyl and styryl moieties to sterically inhibit the approach of their Fe(III) complexes to the oxy-myoglobin heme plane. Importantly, in contrast to the Fe(III) complexes of the clinically trialed thiosemicarbazones Triapine, COTI-2, and DpC, the Fe(III) complexes of PPTP4c4mT and PPTP4c4mSe did not induce detrimental oxy-myoglobin oxidation. Furthermore, PPTP4c4mSe demonstrated more potent antiproliferative activity than the homologous thiosemicarbazone, PPTP4c4mT, with their selectivity being superior or similar, respectively, to the clinically trialed thiosemicarbazone, COTI-2. An advantageous property of the selenosemicarbazone Zn(II) complexes relative to their thiosemicarbazone analogues was their greater transmetalation to Cu(II) complexes in lysosomes. This latter effect probably promoted their antiproliferative activity. Both ligands down-regulated multiple key receptors that display inter-receptor cooperation that leads to aggressive and resistant breast cancer.


Subject(s)
Antineoplastic Agents , Selenium , Sulfur , Thiosemicarbazones , Zinc , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemical synthesis , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Zinc/chemistry , Selenium/chemistry , Selenium/pharmacology , Sulfur/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Structure-Activity Relationship , Drug Screening Assays, Antitumor
4.
Eur J Med Chem ; 276: 116697, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39047610

ABSTRACT

Copper complexes have shown promising anticancer properties, but they are often poorly soluble in aqueous solutions, thus limiting their possible medical developments and applications. We have recently isolated some copper(II) complexes with salicylaldehyde thiosemicarbazone ligands exhibiting remarkable nanomolar cytotoxic activity, but in vivo tests evidenced several difficulties related to their poor solubility. To overcome these limitations and increase solubility in aqueous solution, herein we report the synthetic strategy that led to the introduction of the sulfonic group on the ligands, then separated as salts (NaH2L1 - NaH2L5), as well as the synthesis and characterization of the related copper(II) complexes. The characterization of the complexes is completed by the analysis of the structures obtained by X-rays diffraction on single crystals on the species [Cu(HL5)(H2O)]2.2H2O, [Cu(HL2)(H2O)2].2H2O, and [Cu(HL1)(H2O]2.2H2O. While the uncoordinated ligands do not affect cancer cell viability, copper(II) complexes exhibit low to sub-micromolar cytotoxic activity, which is maintained in 3D (HCT-15 and 2008) spheroidal models of cancer cell. Notably, copper(II) complexes were selective towards cancer cells, showing high selectivity indexes. Investigations focused on elucidating the mechanism of action evidenced the protein disulfide-isomerase as an innovative molecular target for this class of water-soluble copper(II) complexes. Finally, preliminary in vivo experiments performed with the most representative derivative in the murine Lewis Lung Carcinoma, highlight its significant antitumor efficacy and better tolerability profile with respect to the reference metallodrug, suggesting for this sulfonated Cu(II) complex a potential clinical relevance.


Subject(s)
Antineoplastic Agents , Copper , Drug Screening Assays, Antitumor , Protein Disulfide-Isomerases , Solubility , Thiosemicarbazones , Water , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Humans , Water/chemistry , Animals , Copper/chemistry , Copper/pharmacology , Mice , Protein Disulfide-Isomerases/antagonists & inhibitors , Protein Disulfide-Isomerases/metabolism , Molecular Structure , Structure-Activity Relationship , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Cell Survival/drug effects , Dose-Response Relationship, Drug , Cell Proliferation/drug effects , Cell Line, Tumor
5.
Future Med Chem ; 16(12): 1219-1237, 2024.
Article in English | MEDLINE | ID: mdl-38989988

ABSTRACT

Aim: Novel thiazole hybrids were synthesized via thiazolation of 4-phenylthiosemicarbazone (4). Materials & methods: The anticancer activity against the NCI 60 cancer cell line panel. Results: Methyl 2-(2-((1-(naphthalen-2-yl)ethylidene)hydrazineylidene)-4-oxo-3-phenylthiazolidin-5-ylidene)acetate (6a) showed significant anticancer activity at 10 µM with a mean growth inhibition (GI) of 51.18%. It showed the highest cytotoxic activity against the ovarian cancer OVCAR-4 with an IC50 of 1.569 ± 0.06 µM. Compound 6a inhibited PI3Kα with IC50 = 0.225 ± 0.01 µM. Moreover, compound 6a revealed a decrease of Akt and mTOR phosphorylation in OVCAR-4 cells. In addition, antibacterial activity showed that compounds 11 and 12 were the most active against Staphylococcus aureus. Conclusion: Compound 6a is a promising molecule that could be a lead candidate for further studies.


Novel naphthalene-azine-thiazole hybrids 5-12 were synthesized via late-stage thiazolation of the corresponding 4-phenylthiosemicarbazone 4. Compound 6a showed significant anticancer activity at single-dose screening and yielded excellent inhibitory activity with a mean GI of 51.18%. Compound 6a showed the highest cytotoxic activity against OVCAR-4 with an IC50 of 1.569 ± 0.06 µM. Moreover, compound 6a exhibited an IC50 of 31.89 ± 1.19 µM against normal ovarian cell line (OCE1) and a selectivity index of 19.1. Compound 6a inhibited PI3Kα with IC50 = 0.225 ± 0.01 µM compared with alpelisib (IC50 = 0.061 ± 0.003 µM). Moreover, compound 6a revealed a powerful decrease of Akt and mTOR phosphorylation in the OVCAR-4 cell line. The cell cycle analysis showed that compound 6a caused an arrest at the G2/M phase. The compound also increased the total apoptosis by 26.8-fold and raised the level of caspase-3 by 4.34 times in OVCAR-4. In addition, antibacterial activity was estimated against Gram-positive and Gram-negative bacterial strains. Compounds 11 and 12 were the most active derivatives, with MIC value of 256 µg/ml against Staphylococcus aureus. Molecular docking was done and showed that 6a interlocked and fitted well into the ATP binding site of PI3Kα kinase (Protein Data Bank ID: 4JPS) with a fitness value (-119.153 kcal/mol) and forms the key H-bonds with Val851 and Ser854 like the marketed PI3Kα inhibitor alpelisib. Consequently, 6a is the most promising molecule that could be a lead candidate for further studies.


Subject(s)
Antineoplastic Agents , Molecular Docking Simulation , Staphylococcus aureus , Thiazoles , Thiosemicarbazones , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemical synthesis , Staphylococcus aureus/drug effects , Cell Line, Tumor , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Cell Proliferation/drug effects , Microbial Sensitivity Tests , Molecular Structure , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Semicarbazones
6.
Acta Chim Slov ; 71(2): 215-225, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38919104

ABSTRACT

1H-indole-2,3-dione 3-[4-(4-sulfamoylphenyl)thiosemicarbazones] (6a-j) were evaluated against Para-influenza-3, Reovirus-1, Sindbis, Coxsackie B4 and Punto Toro viruses. New 1-methyl-1H-indole-2,3-dione 3-[4-(4-sulfamoylphenyl)thiosemicarbazones] (7a-c) were synthesized to evaluate the contribution of methyl substitution at position 1- of the indole ring to antiviral activity. The test results showed that compounds 5-trifluoromethoxy- substituted 6c (EC50: 2-9 µM) and 5-bromo- substituted 6f (EC50: 2-3 µM) have non-toxic selective antiviral activity while not all standards are active against Reovirus-1. Molecular docking studies of 6c and 6f were carried out to determine the possible binding positions with Reovirus-1. Trifluoromethoxy and bromine substitutions at position 5- of the indole ring provided selective antiviral activity, while methyl substitution at position 1- of the indole ring significantly decreased the activity and increased toxicity against Reovirus-1.


Subject(s)
Antiviral Agents , Thiosemicarbazones , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Thiosemicarbazones/chemical synthesis , Molecular Docking Simulation , Animals , Indoles/pharmacology , Indoles/chemistry , Humans , Structure-Activity Relationship
7.
Bioorg Chem ; 148: 107486, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788367

ABSTRACT

The study aims to synthesize a novel bis(thiosemicarbazone) derivative based on platinum (thioPt) and evaluate its anticancer properties against MFC-7 and MDA-MB-231 breast cancer cells. A new platinum complex was synthesised by reacting K2PtCl4 with 2,2'-(1,2-diphenylethane-1,2-diylidene)bis(hydrazine-1-carbothioamide) in ethanol in the presence of K2CO3. In the obtained complex, the platinum atom is coordinated by a conjugated system = N-NC-S-The structures of the new compound were characterised using NMR spectroscopy, HR MS, IR, and X-ray structural analysis. The obtained results of the cytotoxicity assay indicate that compound thioPt had potent anticancer activity (MCF-7: 61.03 ± 3.57 µM, MDA-MB-231: 60.05 ± 5.40 µM) with less toxicity against normal MCF-10A breast epithelial cells, even compared to the reference compound (cisplatin). In addition, subsequent experiments found that thioPt induces apoptosis through both an extrinsic (↑caspase 8 activity) and intrinsic (↓ΔΨm) pathway, which ultimately leads to an increase in active caspase 3/7 levels. The induction of autophagy and levels of proteins involved in this process (LC3A/B and Beclin-1) were examined in MCF-7 and MDA-MB-231 breast cancer cells exposed to tested compounds (thio, thioPt, cisPt) at a concentration of 50 µM for 24 h. Based on these results, it can be concluded that thio and thioPt do not significantly affect the autophagy process. This demonstrates their superiority over cisplatin, which can stimulate cancer cell survival through its effect on stimulation of autophagy.


Subject(s)
Antineoplastic Agents , Apoptosis , Breast Neoplasms , Cell Proliferation , Drug Screening Assays, Antitumor , Thiosemicarbazones , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Thiosemicarbazones/chemical synthesis , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Apoptosis/drug effects , Structure-Activity Relationship , Molecular Structure , Cell Proliferation/drug effects , Female , Dose-Response Relationship, Drug , Cell Line, Tumor , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/chemical synthesis , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Platinum/chemistry , Platinum/pharmacology , Autophagy/drug effects
8.
J Med Chem ; 67(11): 9091-9103, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38778566

ABSTRACT

Induction of cuproptosis and targeting of multiple signaling pathways show promising applications in tumor therapy. In this study, we synthesized two thiosemicarbazone-copper complexes ([CuII(L)Cl] 1 and [CuII2CuI(L)2Cl3] 2, where HL is the (E)-N-methyl-2-(phenyl(pyridin-2-yl)methylene ligand), to assess their antilung cancer activities. Both copper complexes showed better anticancer activity than cisplatin and exhibited hemolysis comparable to that of cisplatin. In vivo experiments showed that complex 2 retarded the A549 cell growth in a mouse xenograft model with low systemic toxicity. Primarily, complex 2 kills lung cancer cells in vitro and in vivo by triggering multiple pathways, including cuproptosis. Complex 2 is the first mixed-valent Cu(I/II) complex to induce cellular events consistent with cuproptosis in cancer cells, which may stimulate the development of mixed-valent copper complexes and provide effective cancer therapy.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Copper , Lung Neoplasms , Thiosemicarbazones , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/therapeutic use , Humans , Copper/chemistry , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/therapeutic use , Mice , Mice, Nude , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Cell Line, Tumor , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , A549 Cells , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Signal Transduction/drug effects , Structure-Activity Relationship , Hemolysis/drug effects , Drug Screening Assays, Antitumor , Mice, Inbred BALB C
9.
J Med Chem ; 67(11): 9069-9090, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38771959

ABSTRACT

The development of copper(II) thiosemicarbazone complexes as potential anticancer agents, possessing dual functionality as inhibitors of R2 ribonucleotide reductase (RNR) and tubulin polymerization by binding at the colchicine site, presents a promising avenue for enhancing therapeutic effectiveness. Herein, we describe the syntheses and physicochemical characterization of four isomeric proligands H2L3-H2L6, with the methylmorpholine substituent at pertinent positions of the pyridine ring, along with their corresponding Cu(II) complexes 3-6. Evidently, the position of the morpholine moiety and the copper(II) complex formation have marked effects on the in vitro antiproliferative activity in human uterine sarcoma MES-SA cells and the multidrug-resistant derivative MES-SA/Dx5 cells. Activity correlated strongly with quenching of the tyrosyl radical (Y•) of mouse R2 RNR protein, inhibition of RNR activity in the cancer cells, and inhibition of tubulin polymerization. Insights into the mechanism of antiproliferative activity, supported by experimental results and molecular modeling calculations, are presented.


Subject(s)
Antineoplastic Agents , Copper , Morpholines , Ribonucleotide Reductases , Thiosemicarbazones , Tubulin , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemical synthesis , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Ribonucleotide Reductases/antagonists & inhibitors , Ribonucleotide Reductases/metabolism , Tubulin/metabolism , Animals , Morpholines/pharmacology , Morpholines/chemistry , Morpholines/chemical synthesis , Copper/chemistry , Mice , Cell Line, Tumor , Cell Proliferation/drug effects , Structure-Activity Relationship , Polymerization/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Pyridines/pharmacology , Pyridines/chemistry , Pyridines/chemical synthesis , Tubulin Modulators/pharmacology , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Drug Screening Assays, Antitumor , Models, Molecular
10.
Arch Pharm (Weinheim) ; 357(8): e2400140, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38687119

ABSTRACT

Diabetes is a serious metabolic disorder affecting individuals of all age groups and prevails globally due to the failure of previous treatments. This study aims to address the most prevalent form of type 2 diabetes mellitus (T2DM) by reporting on the design, synthesis, and in vitro as well as in silico evaluation of chromone-based thiosemicarbazones as potential α-glucosidase inhibitors. In vitro experiments showed that the tested compounds were significantly more potent than the standard acarbose, with the lead compound 3n exhibiting an IC50 value of 0.40 ± 0.02 µM, ~2183-fold higher than acarbose having an IC50 of 873.34 ± 1.67 µM. A kinetic mechanism analysis demonstrated that compound 3n exhibited reversible inhibition of α-glucosidase. To gain deeper insights, in silico molecular docking, pharmacokinetics, and molecular dynamics simulations were conducted for the investigation of the interactions, orientation, stability, and conformation of the synthesized compounds within the active pocket of α-glucosidase.


Subject(s)
Chromones , Diabetes Mellitus, Type 2 , Drug Design , Glycoside Hydrolase Inhibitors , Hypoglycemic Agents , Molecular Docking Simulation , Thiosemicarbazones , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Chromones/pharmacology , Chromones/chemical synthesis , Chromones/chemistry , Structure-Activity Relationship , alpha-Glucosidases/metabolism , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Thiosemicarbazones/chemical synthesis , Diabetes Mellitus, Type 2/drug therapy , Molecular Structure , Humans , Molecular Dynamics Simulation , Computer Simulation , Dose-Response Relationship, Drug
11.
Int J Biol Macromol ; 266(Pt 2): 131068, 2024 May.
Article in English | MEDLINE | ID: mdl-38531526

ABSTRACT

An extensive range of new biologically active morpholine based thiosemicarbazones derivatives 3a-r were synthesized, characterized by spectral techniques and evaluated as inhibitors of ENPP isozymes. Most of the novel thiosemicarbazones exhibit potent inhibition towards NPP1 and NPP3 isozymes. Compound 3 h was potent inhibitor of NPP1 with IC50 value of 0.55 ±â€¯0.02. However, the most powerful inhibitor of NPP3 was 3e with an IC50 value of 0.24 ±â€¯0.02. Furthermore, Lineweaver-Burk plot for compound 3 h against NPP1 and for compound 3e against NPP3 was devised through enzymes kinetics studies. Molecular docking and in silico studies was also done for analysis of interaction pattern of all newly synthesized compounds. The results were further validated by molecular dynamic (MD) simulation where the stability of conformational transformation of the best protein-ligand complex (3e) were justified on the basis of RMSD and RMSF analysis.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Morpholines , Phosphoric Diester Hydrolases , Pyrophosphatases , Thiosemicarbazones , Morpholines/chemistry , Morpholines/pharmacology , Morpholines/chemical synthesis , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/chemistry , Pyrophosphatases/metabolism , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemical synthesis , Humans , Kinetics , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/chemical synthesis , Computer Simulation , Structure-Activity Relationship , Ligands
12.
Anticancer Agents Med Chem ; 24(9): 649-667, 2024.
Article in English | MEDLINE | ID: mdl-38367264

ABSTRACT

INTRODUCTION: Carbonic anhydrases (CAs) are widespread metalloenzymes with the core function of catalyzing the interconversion of CO2 and HCO3 -. Targeting these enzymes using selective inhibitors has emerged as a promising approach for the development of novel therapeutic agents against multiple diseases. METHODS: A series of novel thiosemicarbazone-containing derivatives were synthesized, characterized, and tested for their inhibitory activity against pharmaceutically important human CA I (hCA I), II (hCA II), IX (hCA IX), and XII (hCA XII) using the single tail approach. RESULTS: The compounds generally inhibited the isoenzymes at low nanomolar concentrations, with compound 6b having Ki values of 7.16, 0.31, 92.5, and 375 nM against hCA I, II, IX and XII, respectively. Compound 6e exhibited Ki values of 27.6, 0.34, 872, and 94.5 nM against hCA I, II, IX and XII, respectively. CONCLUSION: To rationalize the inhibition data, molecular docking studies were conducted, providing insight into the binding mechanisms, molecular interactions, and selectivity of the compounds towards the isoenzymes.


Subject(s)
Benzenesulfonamides , Carbonic Anhydrase Inhibitors , Carbonic Anhydrases , Sulfonamides , Thiosemicarbazones , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Humans , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemical synthesis , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemical synthesis , Carbonic Anhydrases/metabolism , Structure-Activity Relationship , Molecular Structure , Molecular Docking Simulation , Dose-Response Relationship, Drug
13.
J Enzyme Inhib Med Chem ; 37(1): 986-993, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35322729

ABSTRACT

The enormous burden of the COVID-19 pandemic in economic and healthcare terms has cast a shadow on the serious threat of antimicrobial resistance, increasing the inappropriate use of antibiotics and shifting the focus of drug discovery programmes from antibacterial and antifungal fields. Thus, there is a pressing need for new antimicrobials involving innovative modes of action (MoAs) to avoid cross-resistance rise. Thiosemicarbazones (TSCs) stand out due to their easy preparation and polypharmacological application, also in infectious diseases. Recently, we reported a small library of TSCs (1-9) that emerged for their non-cytotoxic behaviour. Inspired by their multifaceted activity, we investigated the antibacterial, antifungal, and antidermatophytal profiles of derivatives 1-9, highlighting a new promising research line. Furthermore, the ability of these compounds to inhibit selected microbial and human carbonic anhydrases (CAs) was assessed, revealing their possible involvement in the MoA and a good selectivity index for some derivatives.


Subject(s)
Anti-Infective Agents/pharmacology , Bacteria/drug effects , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Fungi/drug effects , Thiosemicarbazones/pharmacology , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Bacteria/enzymology , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Fungi/enzymology , Microbial Sensitivity Tests , Molecular Structure , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/chemistry
14.
Appl Radiat Isot ; 182: 110119, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35093818

ABSTRACT

PURPOSE: The [64Cu]Cu-PTSM radiopharmaceutical, pyruvaldehyde bis(N4-methylthiosemicarbazonato)copper(II), is suitable for use in microPET and autoradiographic imaging to assess regional tissue perfusion in small animal models. We report here an approach to synthesis and formulation of the [64Cu]Cu-PTSM radiopharmaceutical at the high concentrations required for use in imaging with rodent models of human disease. METHODS: The [64Cu]Cu-PTSM radiopharmaceutical was prepared at small volumes by addition of the H2PTSM ligand to acetate-buffered [64Cu]copper chloride, followed by solid phase extraction to isolate and purify the product, which was then recovered and formulated in 2-mL normal saline containing 5% ethanol and 5% propylene glycol. RESULTS: The [64Cu]Cu-PTSM radiopharmaceutical has been produced over the range of 0.41-1.85 GBq (11-50 mCi) [64Cu]Cu-PTSM in the 2.0-mL final product volume. Radiochemical purity of the [64Cu]Cu-PTSM radiopharmaceutical product averaged 99.8 ± 0.4% (n = 64), with the final formulated product produced at an 83 ± 5% radiochemical yield. CONCLUSIONS: The approach to [64Cu]Cu-PTSM synthesis and formulation has proven to be reliable and robust, supporting radiopharmaceutical delivery at the high concentrations required for PET studies in mouse and other rodent models.


Subject(s)
Organometallic Compounds/chemical synthesis , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemical synthesis , Thiosemicarbazones/chemical synthesis , Animals , Copper Radioisotopes , Models, Animal , Molecular Structure , Organometallic Compounds/chemistry , Perfusion Imaging , Radiopharmaceuticals/chemistry , Rodentia , Thiosemicarbazones/chemistry
15.
Anticancer Agents Med Chem ; 22(2): 349-355, 2022.
Article in English | MEDLINE | ID: mdl-33653255

ABSTRACT

AIM: The present study aims to identify the anticancer effect of novel 1H-indole-2,3-dione 3- thiosemicarbazone derivatives. These compounds could be promising anticancer agents in leukemia treatment. BACKGROUND: Conventional chemotherapeutic agents accumulate in both normal and tumor cells due to nonspecificity. For effective cancer treatment, new drugs need to be developed to make chemotherapeutics selective for cancer cells. The ultimate goal of cancer treatment is to reduce systemic toxicity and improve the quality of life. METHODS: In this study, the anticancer effects of 5-trifluoromethoxy-1H-indole-2,3-dione 3-thiosemicarbazone derivatives (A-L) were investigated in chronic myelogenous leukemia K562, Burkitt's lymphoma P3HR1, acute promyelocytic leukemia HL60 cells, and vincristine-resistant sublines of K562 and P3HR1 cells. Additionally, the compounds were tested on lymphoid-derived cells from ALL patients. In order to investigate the particular mechanism of death caused by the cytotoxic effects of the compounds, immunohistochemical caspase 3 staining was performed in P3HR1 cells, and the resulting apoptotic activities were demonstrated. RESULTS: All tested compounds have been found to have cytotoxic effects against lymphoma cells at submicromolar concentrations (IC50= 0.89-1.80 µM). Most compounds show significant selectivity for the P3HR1 and P3HR1 Vin resistance. The most effective and selective compound is 4-bromophenyl substituted compound I (IC50=0.96 and 0.89 µM). Cyclohexyl and benzyl substituted compounds D and E have also been found to have cytotoxic effects against K562 cell lines (IC50=2.38 µM), while the allyl substituted compound C is effective on all cell lines (IC50=1.13-2.21 µM). 4-Fluorophenyl substituted F compound has been observed to be effective on all cells (IC50=1.00-2.41 µM) except K562 cell. Compound C is the only compound that shows inhibition of HL-60 cells (IC50= 1.13 µM). Additionally, all compounds exhibited cytotoxic effects on lymphoidderived cells at 1µM concentration. These results are in accordance with the results obtained in lymphoma cells. CONCLUSION: All compounds tested have submicromolar concentrations of cytotoxic effects on cells. These compounds hold potential for use in future treatments of leukemia.


Subject(s)
Antineoplastic Agents/pharmacology , Indoles/pharmacology , Thiosemicarbazones/pharmacology , Adolescent , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Child , Child, Preschool , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Indoles/chemical synthesis , Indoles/chemistry , Male , Molecular Structure , Structure-Activity Relationship , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/chemistry , Tumor Cells, Cultured
16.
Molecules ; 28(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36615218

ABSTRACT

Triazole-based thiosemicarbazone derivatives (6a-u) were synthesized then characterized by spectroscopic techniques, such as 1HNMR and 13CNMR and HRMS (ESI). Newly synthesized derivatives were screened in vitro for inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. All derivatives (except 6c and 6d, which were found to be completely inactive) demonstrated moderate to good inhibitory effects ranging from 0.10 ± 0.050 to 12.20 ± 0.30 µM (for AChE) and 0.20 ± 0.10 to 14.10 ± 0.40 µM (for BuChE). The analogue 6i (IC50 = 0.10 ± 0.050 for AChE and IC50 = 0.20 ± 0.050 µM for BuChE), which had di-substitutions (2-nitro, 3-hydroxy groups) at ring B and tri-substitutions (2-nitro, 4,5-dichloro groups) at ring C, and analogue 6b (IC50 = 0.20 ± 0.10 µM for AChE and IC50 = 0.30 ± 0.10 µM for BuChE), which had di-Cl at 4,5, -NO2 groups at 2-position of phenyl ring B and hydroxy group at ortho-position of phenyl ring C, emerged as the most potent inhibitors of both targeted enzymes (AChE and BuChE) among the current series. A structure-activity relationship (SAR) was developed based on nature, position, number, electron donating/withdrawing effects of substitution/s on phenyl rings. Molecular docking studies were used to describe binding interactions of the most active inhibitors with active sites of AChE and BuChE.


Subject(s)
Alzheimer Disease , Cholinesterase Inhibitors , Thiosemicarbazones , Humans , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/pharmacology , Thiosemicarbazones/therapeutic use
17.
Chem Biol Interact ; 351: 109757, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34848165

ABSTRACT

New thiosemicarbazone-based zinc(II) complexes were synthesized to study their cytotoxicity on A375 malignant melanoma cells. The complexes containing salicylidene (Zn1a), 3-methoxy-salicylidene (Zn1b) or 4-methoxy-salicylidene (Zn1c) moiety were characterized by analytical and spectroscopic methods. Anticancer potential of the complexes was determined by MTT test and HUVEC endothelial cells line was used to comprehend the effect on normal cells. Zn1b with an IC50 of 13 µM was found to be highly cytotoxic against A375 cancer cells, more effective than cisplatin (IC50: 37 µM). Zn1a and Zn1c did not have a negative effect on cell viability in the normal cells and gave the impression that they are more advantageous than cisplatin in this respect. Further, the ability of Zn1a-c to inhibit neuraminidase enzyme and its role in cytotoxicity was discussed. The test revealed that the Zn1b with 3-methoxy substituent exhibited higher inhibition activity against the neuraminidase than the Zn1a and Zn1c as analogical to the cytotoxicity results. In neuraminidase inhibition, IC50 values of Zn1b and Zn1c were 14 and 66 µM, respectively. These concentrations were very close to the cytotoxicity concentrations for Zn1b and Zn1c. The findings may indicate the role of neuraminidase enzyme inhibition in cell death for Zn1b and Zn1c.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Coordination Complexes/pharmacology , Enzyme Inhibitors/pharmacology , Neuraminidase/antagonists & inhibitors , Thiosemicarbazones/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Human Umbilical Vein Endothelial Cells , Humans , Molecular Structure , Structure-Activity Relationship , Thiosemicarbazones/chemical synthesis , Zinc/chemistry
18.
Chem Biodivers ; 18(12): e2100580, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34699127

ABSTRACT

Thiosemicarbazones have been the focus of scientists owing to their broad clinical anticancer range. Herein, A Series of new thiosemicarbazone derivatives 5-9 were synthesized and confirmed through the use of different spectroscopic techniques along with elemental analysis. The in vitro cytotoxic activity of compounds 5-9 against MCF-7 and A549 cell lines and normal breast cells were assessed. Several compounds were found to be active. The most active compound 7 caused MCF-7 cell cycle arrest at G1/ S phases; and induced apoptosis at the pre-G1 phase. The apoptosis-inducing activity of compound 7 was proofed by the elevation of caspase 3/7 activity and also by up-regulation of the expression of Bax and p53 proteins together with the down-regulation of the expression of the Bcl-2 protein. It also had a strong inhibitory effect topoisomerase IIß enzyme. Molecular Docking study revealed that the synthesized compounds had good docking scores compared to the standard drug Etoposide towards the topoisomerase IIß protein (3QX3). Overall, these findings confirmed that the new thiosemicarbazone derivatives could aid in the development of promising cancer drug candidates.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Molecular Docking Simulation , Thiosemicarbazones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells , Molecular Structure , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/chemistry
19.
Bioorg Chem ; 116: 105317, 2021 11.
Article in English | MEDLINE | ID: mdl-34488126

ABSTRACT

KGP94 is a potent, selective, and competitive inhibitor of the lysosomal endopeptidase enzyme (Cathepsin L) currently in preclinical trials for the treatment of metastatic cancer, which is a leading cause of cancer-associated death. Herein, we report two new synthetic routes for synthesizing the target compound through four consecutive steps, using a Weinreb amide approach starting from a common 3-bromobenzoyl chloride. A key step in the approach is a coupling reaction of a readily available Grignard reagent with amide 4 to produce 6, a previously unreported coupling pattern. These new strategies offer an efficient and alternative approach to synthesis of target compound with an excellent overall yield.


Subject(s)
Cathepsin L/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Thiosemicarbazones/pharmacology , Thiourea/analogs & derivatives , Cathepsin L/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/chemistry , Thiourea/chemical synthesis , Thiourea/chemistry , Thiourea/pharmacology
20.
Org Lett ; 23(17): 6756-6759, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34382799

ABSTRACT

An effective, potentially scalable asymmetric synthesis of lysergic acid, a core component of the ergot alkaloid family, is reported. The synthesis features the strategic combination of an intramolecular azomethine ylide cycloaddition and Cossy-Charette ring expansion to assemble the target's C- and D-rings. Simple functional group manipulation produced a compound that had been converted to lysergic acid in four steps, thus constituting a formal synthesis of the natural product. The strategy may be used to prepare novel ergot analogues that include unnatural antipodes and may be more amenable to analogue generation relative to prior approaches.


Subject(s)
Azo Compounds/chemical synthesis , Lysergic Acid/chemical synthesis , Thiosemicarbazones/chemical synthesis , Azo Compounds/chemistry , Cycloaddition Reaction , Lysergic Acid/chemistry , Molecular Structure , Stereoisomerism , Thiosemicarbazones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL