Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.135
Filter
1.
Sci Adv ; 10(36): eadq0350, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39241064

ABSTRACT

RNA polymerase II relies on a repetitive sequence domain (YSPTSPS) within its largest subunit to orchestrate transcription. While phosphorylation on serine-2/serine-5 of the carboxyl-terminal heptad repeats is well established, threonine-4's role remains enigmatic. Paradoxically, threonine-4 phosphorylation was only detected after transcription end sites despite functionally implicated in pausing, elongation, termination, and messenger RNA processing. Our investigation revealed that threonine-4 phosphorylation detection was obstructed by flanking serine-5 phosphorylation at the onset of transcription, which can be removed selectively. Subsequent proteomic analyses identified many proteins recruited to transcription via threonine-4 phosphorylation, which previously were attributed to serine-2. Loss of threonine-4 phosphorylation greatly reduces serine-2 phosphorylation, revealing a cross-talk between the two marks. Last, the function analysis of the threonine-4 phosphorylation highlighted its role in alternative 3'-end processing within pro-proliferative genes. Our findings unveil the true genomic location of this evolutionarily conserved phosphorylation mark and prompt a reassessment of functional assignments of the carboxyl-terminal domain.


Subject(s)
RNA Polymerase II , Threonine , Transcription, Genetic , Phosphorylation , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Threonine/metabolism , Humans , RNA 3' End Processing , Serine/metabolism , Proteomics/methods
2.
Extremophiles ; 28(3): 41, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192163

ABSTRACT

The peptidoglycan of the hyperthermophile Thermotoga maritima contains an unusual D-lysine in addition to the typical D-alanine and D-glutamate. Previously, we identified the D-lysine and D-glutamate biosynthetic pathways of T. maritima. Additionally, we reported some multifunctional enzymes involved in amino acid metabolism. In the present study, we characterized the enzymatic properties of TM1744 (threonine aldolase) to probe both its potential multifunctionality and D-amino acid metabolizing activities. TM1744 displayed aldolase activity toward both L-allo-threonine and L-threonine, and exhibited higher activity toward L-threo-phenylserine. It did not function as an aldolase toward D-allo-threonine or D-threonine. Furthermore, TM1744 had racemase activity toward two amino acids, although its racemase activity was lower than its aldolase activity. TM1744 did not have other amino acid metabolizing activities. Therefore, TM1744 is a low-specificity L-threonine aldolase with limited racemase activity.


Subject(s)
Bacterial Proteins , Thermotoga maritima , Thermotoga maritima/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Glycine Hydroxymethyltransferase/metabolism , Glycine Hydroxymethyltransferase/genetics , Substrate Specificity , Threonine/metabolism , Racemases and Epimerases/metabolism
3.
Nutrients ; 16(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39203745

ABSTRACT

Lysine, methionine, and threonine are essential amino acids with vital functions for muscle and connective tissue health, metabolic balance, and the immune system. During illness, the demand for these amino acids typically increases, which puts patients at risk for deficiencies with harmful clinical consequences. In a secondary analysis of the Effect of Early Nutritional Support on Frailty, Functional Outcomes, and Recovery of Malnourished Medical Inpatients Trial (EFFORT), which compared individualized nutritional support to usual care nutrition in patients at nutritional risk, we investigated the prognostic impact of the lysine, methionine, and threonine metabolism. We had complete clinical and amino acid data in 237 patients, 58 of whom reached the primary endpoint of death at 30 days. In a model adjusted for comorbidities, sex, nutritional risk, and trial intervention, low plasma methionine levels were associated with 30-day mortality (adjusted HR 1.98 [95% CI 1.16 to 3.36], p = 0.01) and with a decline in functional status (adjusted OR 2.06 [95% CI 1.06 to 4.01], p = 0.03). The results for lysine and threonine did not show statistically significant differences regarding clinical outcomes. These findings suggest that low levels of methionine may be critical during hospitalization among patients at nutritional risk. Further studies should investigate the effect of supplementation of methionine in this patient group to improve outcomes.


Subject(s)
Lysine , Methionine , Threonine , Humans , Lysine/blood , Male , Female , Methionine/blood , Methionine/administration & dosage , Aged , Middle Aged , Malnutrition/mortality , Nutritional Status , Nutritional Support/methods , Amino Acids, Essential/blood , Amino Acids, Essential/administration & dosage , Hospitalization , Aged, 80 and over , Treatment Outcome , Risk Factors
4.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125712

ABSTRACT

Liver lipid metabolism disruption significantly contributes to excessive fat buildup in waterfowl. Research suggests that the supplementation of Threonine (Thr) in the diet can improve liver lipid metabolism disorder, while Thr deficiency can lead to such metabolic disorders in the liver. The mechanisms through which Thr regulates lipid metabolism remain unclear. STAT3 (signal transducer and activator of transcription 3), a crucial transcription factor in the JAK-STAT (Janus kinase-signal transducer and activator of transcription) pathway, participates in various biological processes, including lipid and energy metabolism. This research investigates the potential involvement of STAT3 in the increased lipid storage seen in primary duck hepatocytes as a result of a lack of Thr. Using small interfering RNA and Stattic, a specific STAT3 phosphorylation inhibitor, we explored the impact of STAT3 expression patterns on Thr-regulated lipid synthesis metabolism in hepatocytes. Through transcriptome sequencing, we uncovered pathways related to lipid synthesis and metabolism jointly regulated by Thr and STAT3. The results showed that Thr deficiency increases lipid deposition in primary duck hepatocytes (p < 0.01). The decrease in protein and phosphorylation levels of STAT3 directly caused this deposition (p < 0.01). Transcriptomic analysis revealed that Thr deficiency and STAT3 knockdown jointly altered the mRNA expression levels of pathways related to long-chain fatty acid synthesis and energy metabolism (p < 0.05). Thr deficiency, through mediating STAT3 inactivation, upregulated ELOVL7, PPARG, MMP1, MMP13, and TIMP4 mRNA levels, and downregulated PTGS2 mRNA levels (p < 0.01). In summary, these results suggest that Thr deficiency promotes lipid synthesis, reduces lipid breakdown, and leads to lipid metabolism disorders and triglyceride deposition by downregulating STAT3 activity in primary duck hepatocytes.


Subject(s)
Ducks , Hepatocytes , STAT3 Transcription Factor , Threonine , Triglycerides , Animals , STAT3 Transcription Factor/metabolism , Hepatocytes/metabolism , Phosphorylation , Threonine/metabolism , Triglycerides/metabolism , Lipid Metabolism , Cells, Cultured
5.
Comput Biol Med ; 179: 108859, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029431

ABSTRACT

O-linked glycosylation is a complex post-translational modification (PTM) in human proteins that plays a critical role in regulating various cellular metabolic and signaling pathways. In contrast to N-linked glycosylation, O-linked glycosylation lacks specific sequence features and maintains an unstable core structure. Identifying O-linked threonine glycosylation sites (OTGs) remains challenging, requiring extensive experimental tests. While bioinformatics tools have emerged for predicting OTGs, their reliance on limited conventional features and absence of well-defined feature selection strategies limit their effectiveness. To address these limitations, we introduced HOTGpred (Human O-linked Threonine Glycosylation predictor), employing a multi-stage feature selection process to identify the optimal feature set for accurately identifying OTGs. Initially, we assessed 25 different feature sets derived from various pretrained protein language model (PLM)-based embeddings and conventional feature descriptors using nine classifiers. Subsequently, we integrated the top five embeddings linearly and determined the most effective scoring function for ranking hybrid features, identifying the optimal feature set through a process of sequential forward search. Among the classifiers, the extreme gradient boosting (XGBT)-based model, using the optimal feature set (HOTGpred), achieved 92.03 % accuracy on the training dataset and 88.25 % on the balanced independent dataset. Notably, HOTGpred significantly outperformed the current state-of-the-art methods on both the balanced and imbalanced independent datasets, demonstrating its superior prediction capabilities. Additionally, SHapley Additive exPlanations (SHAP) and ablation analyses were conducted to identify the features contributing most significantly to HOTGpred. Finally, we developed an easy-to-navigate web server, accessible at https://balalab-skku.org/HOTGpred/, to support glycobiologists in their research on glycosylation structure and function.


Subject(s)
Threonine , Glycosylation , Humans , Threonine/metabolism , Threonine/chemistry , Protein Processing, Post-Translational , Software , Computational Biology/methods , Databases, Protein , Proteins/chemistry , Proteins/metabolism
6.
Metab Eng ; 84: 13-22, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796054

ABSTRACT

Acetate, a promising yet underutilized carbon source for biological production, was explored for the efficient production of homoserine and threonine in Escherichia coli W. A modular metabolic engineering approach revealed the crucial roles of both acetate assimilation pathways (AckA/Pta and Acs), optimized TCA cycle flux and glyoxylate shunt activity, and enhanced CoA availability, mediated by increased pantothenate kinase activity, for efficient homoserine production. The engineered strain W-H22/pM2/pR1P exhibited a high acetate assimilation rate (5.47 mmol/g cell/h) and produced 44.1 g/L homoserine in 52 h with a 53% theoretical yield (0.18 mol/mol) in fed-batch fermentation. Similarly, strain W-H31/pM2/pR1P achieved 45.8 g/L threonine in 52 h with a 65% yield (0.22 mol/mol). These results represent the highest reported levels of amino acid production using acetate, highlighting its potential as a valuable and sustainable feedstock for biomanufacturing.


Subject(s)
Acetates , Escherichia coli , Homoserine , Metabolic Engineering , Threonine , Escherichia coli/genetics , Escherichia coli/metabolism , Threonine/biosynthesis , Threonine/metabolism , Threonine/genetics , Acetates/metabolism , Homoserine/metabolism , Homoserine/analogs & derivatives , Homoserine/genetics , Homoserine/biosynthesis , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
7.
Carbohydr Res ; 540: 109138, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703662

ABSTRACT

High-mannose-type glycan structure of N-glycoproteins plays important roles in the proper folding of proteins in sorting glycoprotein secretion and degradation of misfolded proteins in the endoplasmic reticulum (ER). The Glc1Man9GlcNAc2 (G1M9)-type N-glycan is one of the most important signaling molecules in the ER. However, current chemical synthesis strategies are laborious, warranting more practical approaches for G1M9-glycopeptide development. Wang et al. reported the procedure to give G1M9-Asn-Fmoc through chemical modifications and purifications from 40 chicken eggs, but only 3.3 mg of G1M9-glycopeptide was obtained. Therefore, better methods are needed to obtain more than 10 mg of G1M9-glycopeptide. In this study, we report the preparation of G1M9-glycopeptide (13.2 mg) linking Asn-Gly-Thr triad as consensus sequence from 40 chicken eggs. In this procedure, λ-carrageenan treatment followed by papain treatment was used to separate the Fc region of IgY antibody that harbors high-mannose glycans. Moreover, cotton hydrophilic interaction liquid chromatography was adapted for easy purification. The resulting G1M9-Asn(Fmoc)-Gly-Thr was identified by nuclear magnetic resonance and mass spectroscopy. G1M9-Asn(Fmoc)-Gly, G1M9-Asn(Fmoc), and G1M9-OH were also detected by mass spectroscopy. Here, our developed G1M9-tripeptide might be useful for the elucidation of glycoprotein functions as well as the specific roles of the consensus sequence.


Subject(s)
Chickens , Egg Yolk , Oligosaccharides , Animals , Egg Yolk/chemistry , Oligosaccharides/chemistry , Oligosaccharides/chemical synthesis , Asparagine/chemistry , Mannose/chemistry , Threonine/chemistry , Consensus Sequence , Glycine/chemistry , Glycopeptides/chemistry
8.
Int J Biol Macromol ; 272(Pt 1): 132682, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38815947

ABSTRACT

The thermal stability of trimeric lectin BC2L-CN was investigated and found to be considerably altered when mutating residue 83, originally a threonine, located at the fucose-binding loop. Mutants were analyzed using differential scanning calorimetry and isothermal microcalorimetry. Although most mutations decreased the affinity of the protein for oligosaccharide H type 1, six mutations increased the melting temperature (Tm) by >5 °C; one mutation, T83P, increased the Tm value by 18.2 °C(T83P, Tm = 96.3 °C). In molecular dynamic simulations, the investigated thermostable mutants, T83P, T83A, and T83S, had decreased fluctuations in the loop containing residue 83. In the T83S mutation, the side-chain hydroxyl group of serine formed a hydrogen bond with a nearby residue, suggesting that the restricted movement of the side-chain resulted in fewer fluctuations and enhanced thermal stability. Residue 83 is located at the interface and near the upstream end of the equivalent loop in a different protomer; therefore, fluctuations by this residue likely propagate throughout the loop. Our study of the dramatic change in thermal stability by a single amino acid mutation provides useful insights into the rational design of protein structures, especially the structures of oligomeric proteins.


Subject(s)
Molecular Dynamics Simulation , Mutation , Protein Stability , Threonine , Threonine/chemistry , Threonine/genetics , Lectins/chemistry , Lectins/genetics , Temperature , Hydrogen Bonding
9.
Sci Rep ; 14(1): 8695, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622194

ABSTRACT

AMPylation is a biologically significant yet understudied post-translational modification where an adenosine monophosphate (AMP) group is added to Tyrosine and Threonine residues primarily. While recent work has illuminated the prevalence and functional impacts of AMPylation, experimental identification of AMPylation sites remains challenging. Computational prediction techniques provide a faster alternative approach. The predictive performance of machine learning models is highly dependent on the features used to represent the raw amino acid sequences. In this work, we introduce a novel feature extraction pipeline to encode the key properties relevant to AMPylation site prediction. We utilize a recently published dataset of curated AMPylation sites to develop our feature generation framework. We demonstrate the utility of our extracted features by training various machine learning classifiers, on various numerical representations of the raw sequences extracted with the help of our framework. Tenfold cross-validation is used to evaluate the model's capability to distinguish between AMPylated and non-AMPylated sites. The top-performing set of features extracted achieved MCC score of 0.58, Accuracy of 0.8, AUC-ROC of 0.85 and F1 score of 0.73. Further, we elucidate the behaviour of the model on the set of features consisting of monogram and bigram counts for various representations using SHapley Additive exPlanations.


Subject(s)
Protein Processing, Post-Translational , Tyrosine , Tyrosine/metabolism , Amino Acid Sequence , Adenosine Monophosphate/metabolism , Threonine/metabolism
10.
Front Immunol ; 15: 1354128, 2024.
Article in English | MEDLINE | ID: mdl-38558806

ABSTRACT

Importance: Disease models for atopic dermatitis (AD) have primarily focused on understanding underlying environmental, immunologic, and genetic etiologies. However, the role of metabolic mechanisms in AD remains understudied. Objective: To investigate the circulating blood metabolomic and cytokine profile of AD as compared to healthy control patients. Design: This study collected plasma from 20 atopic dermatitis with moderate-to-severe itch (score of ≥5 on the itch Numeric Rating Scale and IGA score ≥3) and 24 healthy control patients. Mass-spectrometry based metabolite data were compared between AD and healthy controls. Unsupervised and supervised machine learning algorithms and univariate analysis analyzed metabolic concentrations. Metabolite enrichment and pathway analyses were performed on metabolites with significant fold change between AD and healthy control patients. To investigate the correlation between metabolites levels and cytokines, Spearman's rank correlation coefficients were calculated between metabolites and cytokines. Setting: Patients were recruited from the Johns Hopkins Itch Center and dermatology outpatient clinics in the Johns Hopkins Outpatient Center. Participants: The study included 20 atopic dermatitis patients and 24 healthy control patients. Main outcomes and measures: Fold changes of metabolites in AD vs healthy control plasma. Results: In patients with AD, amino acids isoleucine, tyrosine, threonine, tryptophan, valine, methionine, and phenylalanine, the amino acid derivatives creatinine, indole-3-acrylic acid, acetyl-L-carnitine, L-carnitine, 2-hydroxycinnamic acid, N-acetylaspartic acid, and the fatty amide oleamide had greater than 2-fold decrease (all P-values<0.0001) compared to healthy controls. Enriched metabolites were involved in branched-chain amino acid (valine, leucine, and isoleucine) degradation, catecholamine biosynthesis, thyroid hormone synthesis, threonine metabolism, and branched and long-chain fatty acid metabolism. Dysregulated metabolites in AD were positively correlated cytokines TARC and MCP-4 and negatively correlated with IL-1a and CCL20. Conclusions and relevance: Our study characterized novel dysregulated circulating plasma metabolites and metabolic pathways that may be involved in the pathogenesis of AD. These metabolic pathways serve as potential future biomarkers and therapeutic targets in the treatment of AD.


Subject(s)
Dermatitis, Atopic , Humans , Cytokines/metabolism , Isoleucine , Pruritus , Valine , Threonine
11.
Methods Enzymol ; 696: 179-199, 2024.
Article in English | MEDLINE | ID: mdl-38658079

ABSTRACT

ß-Hydroxy-α-amino acids (ßHAAs) are an essential class of building blocks of therapeutically important compounds and complex natural products. They contain two chiral centers at Cα and Cß positions, resulting in four possible diastereoisomers. Many innovative asymmetric syntheses have been developed to access structurally diverse ßHAAs. The main challenge, however, is the control of the relative and absolute stereochemistry of the asymmetric carbons in a sustainable way. In this respect, there has been considerable attention focused on the chemoenzymatic synthesis of ßHAAs via a one-step process. Nature has evolved different enzymatic routes to produce these valuable ßHAAs. Among these naturally occurring transformations, L-threonine transaldolases present potential biocatalysts to generate ßHAAs in situ. 4-Fluorothreonine transaldolase from Streptomyces sp. MA37 (FTaseMA) catalyzes the cross-over transaldolation reaction between L-Thr and fluoroacetaldehyde to give 4-fluorothreonine and acetaldehyde (Ad). It has been demonstrated that FTaseMA displays considerable substrate plasticity toward structurally diverse aldehyde acceptors, leading to the production of various ßHAAs. In this chapter, we describe methods for the preparation of FTaseMA, and the chemoenzymatic synthesis of ßHAAs from various aldehydes and L-Thr using FTaseMA.


Subject(s)
Streptomyces , Transaldolase , Streptomyces/enzymology , Transaldolase/metabolism , Transaldolase/chemistry , Transaldolase/genetics , Threonine/analogs & derivatives , Threonine/chemistry , Threonine/metabolism , Biocatalysis , Amino Acids/chemistry , Amino Acids/metabolism , Substrate Specificity , Acetaldehyde/analogs & derivatives , Acetaldehyde/metabolism , Acetaldehyde/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Enzyme Assays/methods , Stereoisomerism
12.
Methods Enzymol ; 696: 199-229, 2024.
Article in English | MEDLINE | ID: mdl-38658080

ABSTRACT

Fluorine (F) is an important element in the synthesis of molecules broadly used in medicine, agriculture, and materials. F addition to organic structures represents a unique strategy for tuning molecular properties, yet this atom is rarely found in Nature and approaches to produce fluorometabolites (such as fluorinated amino acids, key building blocks for synthesis) are relatively scarce. This chapter discusses the use of L-threonine aldolase enzymes (LTAs), a class of enzymes that catalyze reversible aldol addition to the α-carbon of glycine. The C-C bond formation ability of LTAs, together with their known substrate promiscuity, make them ideal for in vitro F biocatalysis. Here, we describe protocols to harness the activity of the low-specificity LTAs isolated from Escherichia coli and Pseudomonas putida on 2-fluoroacetaldehyde to efficiently synthesize 4-fluoro-L-threonine in vitro. This chapter also provides a comprehensive account of experimental protocols to implement these activities in vivo. These methods are illustrative and can be adapted to produce other fluorometabolites of interest.


Subject(s)
Escherichia coli , Halogenation , Pseudomonas putida , Substrate Specificity , Escherichia coli/enzymology , Escherichia coli/genetics , Pseudomonas putida/enzymology , Biocatalysis , Amino Acids/chemistry , Glycine Hydroxymethyltransferase/metabolism , Glycine Hydroxymethyltransferase/chemistry , Glycine Hydroxymethyltransferase/genetics , Threonine/chemistry , Threonine/metabolism , Threonine/analogs & derivatives , Fluorine/chemistry , Aldehydes/chemistry , Aldehydes/metabolism
13.
Cells ; 13(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38607015

ABSTRACT

Blood cells in Drosophila serve primarily innate immune responses. Various stressors influence blood cell homeostasis regarding both numbers and the proportion of blood cell types. The principle molecular mechanisms governing hematopoiesis are conserved amongst species and involve major signaling pathways like Notch, Toll, JNK, JAK/Stat or RTK. Albeit signaling pathways generally rely on the activity of protein kinases, their specific contribution to hematopoiesis remains understudied. Here, we assess the role of Serine/Threonine kinases with the potential to phosphorylate the transcription factor Su(H) in crystal cell homeostasis. Su(H) is central to Notch signal transduction, and its inhibition by phosphorylation impedes crystal cell formation. Overall, nearly twenty percent of all Drosophila Serine/Threonine kinases were studied in two assays, global and hemocyte-specific overexpression and downregulation, respectively. Unexpectedly, the majority of kinases influenced crystal cell numbers, albeit only a few were related to hematopoiesis so far. Four kinases appeared essential for crystal cell formation, whereas most kinases restrained crystal cell development. This group comprises all kinase classes, indicative of the complex regulatory network underlying blood cell homeostasis. The rather indiscriminative response we observed opens the possibility that blood cells measure their overall phospho-status as a proxy for stress-signals, and activate an adaptive immune response accordingly.


Subject(s)
Drosophila Proteins , Protein Serine-Threonine Kinases , Animals , Protein Serine-Threonine Kinases/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Blood Cells/metabolism , Homeostasis , Serine/metabolism , Threonine/metabolism
14.
Poult Sci ; 103(6): 103714, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636202

ABSTRACT

We investigated the effects of supplementing low protein diets with methionine (Met) or threonine (Thr) during a mixed Eimeria (consisting of E. acervulina, E. maxima and E. tenella) challenge in broilers. All birds were fed the same starter diet (d1-9) and finisher diet (d28-35) which met Cobb 500 nutrient specifications. Birds were allocated to 1 of 4 dietary treatments from d9 to 28: a standard protein diet (19% CP); a low protein diet (16% CP); or the low protein diet supplemented with Met or Thr at 50% above recommendations. On d14, half of the birds were challenged, and half of the birds were unchallenged. From d14 to 28, feed intake was recorded daily and BW every 3 or 4 d. Oocyst excretion was measured daily from d18 to 27. On d21 and 28, 3 birds per pen were euthanized to assess nutrient digestibility, cytokine expression and intestinal histology. During the acute stage of the challenge, challenged birds reduced ADFI and ADG (P < 0.05). In the pre-patent and recovery stages, birds given the 16% CP diets increased ADFI (P < 0.05), meanwhile there were no differences in ADG in these stages (P > 0.05). Nutrient digestibility was reduced in challenged birds in the acute stage (P < 0.05) but tended to be greater than in unchallenged birds during the recovery stage. There was no significant effect of diet on oocyst excretion or intestinal histology (P > 0.05). Interactions were observed between diet and challenge on IL-10 and IL-21 expression in the cecal tonsils during the acute stage of the challenge (P < 0.05), due to reduced IL-10 expression in challenged Thr birds and greater IL-21 expression in challenged Met birds. Supplementation with Thr or Met had limited effects on the outcomes of a mixed Eimeria challenge but provides benefits to the host by enhancing their immune response.


Subject(s)
Animal Feed , Chickens , Coccidiosis , Diet, Protein-Restricted , Dietary Supplements , Eimeria , Methionine , Poultry Diseases , Threonine , Animals , Methionine/administration & dosage , Coccidiosis/veterinary , Coccidiosis/parasitology , Eimeria/physiology , Animal Feed/analysis , Threonine/administration & dosage , Poultry Diseases/parasitology , Dietary Supplements/analysis , Diet, Protein-Restricted/veterinary , Male , Diet/veterinary , Random Allocation
15.
Microbiol Res ; 284: 127720, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38640767

ABSTRACT

Imbalance in carbon flux distribution is one of the most important factors affecting the further increase in the yield of high value-added natural products in microbial metabolic engineering. Meanwhile, the most common inducible expression systems are difficult to achieve industrial-scale production due to the addition of high-cost or toxic inducers during the fermentation process. Quorum sensing system, as a typical model for density-dependent induction of gene expression, has been widely applied in synthetic biology. However, there are currently few reports for efficient production of microbial natural products by using quorum sensing system to self-regulate carbon flux distribution. Here, we designed an artificial quorum sensing system to achieve efficient production of L-threonine in engineered Escherichia coli by altering the carbon flux distribution of the central metabolic pathways at specific periods. Under the combination of switch module and production module, the system was applied to divide the microbial fermentation process into two stages including growth and production, and improve the production of L-threonine by self-inducing the expression of pyruvate carboxylase and threonine extracellular transporter protease after a sufficient amount of cell growth. The final strain TWF106/pST1011, pST1042pr could produce 118.2 g/L L-threonine with a yield of 0.57 g/g glucose and a productivity of 2.46 g/(L· h). The establishment of this system has important guidance and application value for the production of other high value-added chemicals in microorganisms by self-regulation.


Subject(s)
Escherichia coli , Fermentation , Gene Expression Regulation, Bacterial , Metabolic Engineering , Quorum Sensing , Threonine , Quorum Sensing/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering/methods , Threonine/metabolism , Threonine/biosynthesis , Metabolic Networks and Pathways/genetics , Glucose/metabolism
16.
Genome Biol Evol ; 16(4)2024 04 02.
Article in English | MEDLINE | ID: mdl-38547507

ABSTRACT

The recently isolated bacterium "Candidatus Uabimicrobium amorphum" is the only known prokaryote that can engulf other bacterial cells. Its proteome contains a high fraction of proteins involved in signal transduction systems, which is a feature normally associated with multicellularity in eukaryotes. Here, we present a protein-based phylogeny which shows that "Ca. Uabimicrobium amorphum" represents an early diverging lineage that clusters with the Saltatorellus clade within the phylum Planctomycetota. A gene flux analysis indicated a gain of 126 protein families for signal transduction functions in "Ca. Uabimicrobium amorphum", of which 66 families contained eukaryotic-like Serine/Threonine kinases with Pkinase domains. In total, we predicted 525 functional Serine/Threonine kinases in "Ca. Uabimicrobium amorphum", which represent 8% of the proteome and is the highest fraction of Serine/Threonine kinases in a bacterial proteome. The majority of Serine/Threonine kinases in this species are membrane proteins and 30% contain long, tandem arrays of WD40 or TPR domains. The pKinase domain was predicted to be located in the cytoplasm, while the WD40 and TPR domains were predicted to be located in the periplasm. Such domain combinations were also identified in the Serine/Threonine kinases of other species in the Planctomycetota, although in much lower abundances. A phylogenetic analysis of the Serine/Threonine kinases in the Planctomycetota inferred from the Pkinase domain alone provided support for lineage-specific expansions of the Serine/Threonine kinases in "Ca. Uabimicrobium amorphum". The results imply that expansions of eukaryotic-like signal transduction systems are not restricted to multicellular organisms, but have occurred in parallel in prokaryotes with predatory lifestyles and phagocytotic-like behaviors.


Subject(s)
Planctomycetes , Protein Serine-Threonine Kinases , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Phylogeny , Proteome/genetics , Bacteria/genetics , Bacteria/metabolism , Threonine/genetics , Serine/genetics
17.
Addict Biol ; 29(3): e13388, 2024 03.
Article in English | MEDLINE | ID: mdl-38497285

ABSTRACT

Protein kinase C epsilon (PKCε) regulates behavioural responses to ethanol and plays a role in anxiety-like behaviour, but knowledge is limited on downstream substrates of PKCε that contribute to these behaviours. We recently identified brain-specific serine/threonine-protein kinase 1 (BRSK1) as a substrate of PKCε. Here, we test the hypothesis that BRSK1 mediates responses to ethanol and anxiety-like behaviours that are also PKCε dependent. We used in vitro kinase assays to further validate BRSK1 as a substrate of PKCε and used Brsk1-/- mice to assess the role of BRSK1 in ethanol- and anxiety-related behaviours and in physiological responses to ethanol. We found that BRSK1 is phosphorylated by PKCε at a residue identified in a chemical genetic screen of PKCε substrates in mouse brain. Like Prkce-/- mice, male and female Brsk1-/- mice were more sensitive than wild-type to the acute sedative-hypnotic effect of alcohol. Unlike Prkce-/- mice, Brsk1-/- mice responded like wild-type to ataxic doses of ethanol. Although in Prkce-/- mice ethanol consumption and reward are reduced in both sexes, they were reduced only in female Brsk1-/- mice. Ex vivo slice electrophysiology revealed that ethanol-induced facilitation of GABA release in the central amygdala was absent in male Brsk1-/- mice similar to findings in male Prkce-/- mice. Collectively, these results indicate that BRSK1 is a target of PKCε that mediates some PKCε-dependent responses to ethanol in a sex-specific manner and plays a role distinct from PKCε in anxiety-like behaviour.


Subject(s)
Ethanol , Protein Kinase C-epsilon , Animals , Female , Male , Mice , Anxiety , Brain/metabolism , Ethanol/pharmacology , Mice, Inbred C57BL , Phenotype , Protein Kinase C-epsilon/genetics , Protein Kinase C-epsilon/metabolism , Serine , Threonine/genetics
18.
Nat Cancer ; 5(7): 1024-1044, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38519786

ABSTRACT

Cancers commonly reprogram translation and metabolism, but little is known about how these two features coordinate in cancer stem cells. Here we show that glioblastoma stem cells (GSCs) display elevated protein translation. To dissect underlying mechanisms, we performed a CRISPR screen and identified YRDC as the top essential transfer RNA (tRNA) modification enzyme in GSCs. YRDC catalyzes the formation of N6-threonylcarbamoyladenosine (t6A) on ANN-decoding tRNA species (A denotes adenosine, and N denotes any nucleotide). Targeting YRDC reduced t6A formation, suppressed global translation and inhibited tumor growth both in vitro and in vivo. Threonine is an essential substrate of YRDC. Threonine accumulated in GSCs, which facilitated t6A formation through YRDC and shifted the proteome to support mitosis-related genes with ANN codon bias. Dietary threonine restriction (TR) reduced tumor t6A formation, slowed xenograft growth and augmented anti-tumor efficacy of chemotherapy and anti-mitotic therapy, providing a molecular basis for a dietary intervention in cancer treatment.


Subject(s)
Glioblastoma , Threonine , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/metabolism , Humans , Animals , Mice , Threonine/metabolism , Threonine/genetics , Protein Biosynthesis , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Codon/genetics , RNA, Transfer/genetics , Xenograft Model Antitumor Assays , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism
19.
Appl Microbiol Biotechnol ; 108(1): 255, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446219

ABSTRACT

Monascus spp. are commercially important fungi due to their ability to produce beneficial secondary metabolites such as the cholesterol-lowering agent lovastatin and natural food colorants azaphilone pigments. Although hyphal branching intensively influenced the production of these secondary metabolites, the pivotal regulators of hyphal development in Monascus spp. remain unclear. To identify these important regulators, we developed an artificial intelligence (AI)-assisted image analysis tool for quantification of hyphae-branching and constructed a random T-DNA insertion library. High-throughput screening revealed that a STE kinase, MpSTE1, was considered as a key regulator of hyphal branching based on the hyphal phenotype. To further validate the role of MpSTE1, we generated an mpSTE1 gene knockout mutant, a complemented mutant, and an overexpression mutant (OE::mpSTE1). Microscopic observations revealed that overexpression of mpSTE1 led to a 63% increase in branch number while deletion of mpSTE1 reduced the hyphal branching by 68% compared to the wild-type strain. In flask cultures, the strain OE::mpSTE1 showed accelerated growth and glucose consumption. More importantly, the strain OE::mpSTE1 produced 9.2 mg/L lovastatin and 17.0 mg/L azaphilone pigments, respectively, 47.0% and 30.1% higher than those of the wild-type strain. Phosphoproteomic analysis revealed that MpSTE1 directly phosphorylated 7 downstream signal proteins involved in cell division, cytoskeletal organization, and signal transduction. To our best knowledge, MpSTE1 is reported as the first characterized regulator for tightly regulating the hyphal branching in Monascus spp. These findings significantly expanded current understanding of the signaling pathway governing the hyphal branching and development in Monascus spp. Furthermore, MpSTE1 and its analogs were demonstrated as promising targets for improving production of valuable secondary metabolites. KEY POINTS: • MpSTE1 is the first characterized regulator for tightly regulating hyphal branching • Overexpression of mpSTE1 significantly improves secondary metabolite production • A high-throughput image analysis tool was developed for counting hyphal branching.


Subject(s)
Hyphae , Monascus , Monascus/genetics , Artificial Intelligence , Protein Serine-Threonine Kinases , Lovastatin , Threonine , Serine
20.
J Inorg Biochem ; 254: 112521, 2024 May.
Article in English | MEDLINE | ID: mdl-38471286

ABSTRACT

Ferredoxins (Fds) are small proteins which shuttle electrons to pathways like biological nitrogen fixation. Physical properties tune the reactivity of Fds with different pathways, but knowledge on how these properties can be manipulated to engineer new electron transfer pathways is lacking. Recently, we showed that an evolved strain of Rhodopseudomonas palustris uses a new electron transfer pathway for nitrogen fixation. This pathway involves a variant of the primary Fd of nitrogen fixation in R. palustris, Fer1, in which threonine at position 11 is substituted for isoleucine (Fer1T11I). To understand why this substitution in Fer1 enables more efficient electron transfer, we used in vivo and in vitro methods to characterize Fer1 and Fer1T11I. Electrochemical characterization revealed both Fer1 and Fer1T11I have similar redox transitions (-480 mV and - 550 mV), indicating the reduction potential was unaffected despite the proximity of T11 to an iron­sulfur (FeS) cluster of Fer1. Additionally, disruption of hydrogen bonding around an FeS cluster in Fer1 by substituting threonine with alanine (T11A) or valine (T11V) did not increase nitrogenase activity, indicating that disruption of hydrogen bonding does not explain the difference in activity observed for Fer1T11I. Electron paramagnetic resonance spectroscopy studies revealed key differences in the electronic structure of Fer1 and Fer1T11I, which indicate changes to the high spin states and/or spin-spin coupling between the FeS clusters of Fer1. Our data implicates these electronic structure differences in facilitating electron flow and sets a foundation for further investigations to understand the connection between these properties and intermolecular electron transfer.


Subject(s)
Electrons , Ferredoxins , Ferredoxins/metabolism , Nitrogen Fixation , Oxidation-Reduction , Electron Transport , Electron Spin Resonance Spectroscopy , Threonine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL