Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.878
1.
Sci Rep ; 14(1): 14468, 2024 06 24.
Article En | MEDLINE | ID: mdl-38914630

Coagulopathy, microvascular alterations and concomitant organ dysfunctions are hallmarks of sepsis. Attempts to attenuate coagulation activation with an inhibitor of tissue factor (TF), i.e. tissue factor pathway inhibitor (TFPI), revealed no survival benefit in a heterogenous group of sepsis patients, but a potential survival benefit in patients with an international normalized ratio (INR) < 1.2. Since an increased TF/TFPI ratio determines the procoagulant activity specifically on microvascular endothelial cells in vitro, we investigated whether TF/TFPI ratio in blood is associated with INR alterations, organ dysfunctions, disseminated intravascular coagulation (DIC) and outcome in septic shock. Twenty-nine healthy controls (HC) and 89 patients with septic shock admitted to a tertiary ICU were analyzed. TF and TFPI in blood was analyzed and related to organ dysfunctions, DIC and mortality. Patients with septic shock had 1.6-fold higher levels of TF and 2.9-fold higher levels of TFPI than HC. TF/TFPI ratio was lower in septic shock compared to HC (0.003 (0.002-0.005) vs. 0.006 (0.005-0.008), p < 0.001). Non-survivors had higher TFPI levels compared to survivors (43038 (29354-54023) vs. 28041 (21675-46582) pg/ml, p = 0.011). High TFPI levels were associated with acute kidney injury, liver dysfunction, DIC and disease severity. There was a positive association between TF/TFPI ratio and troponin T (b = 0.531 (0.309-0.754), p < 0.001). A high TF/TFPI ratio is exclusively associated with myocardial injury but not with other organ dysfunctions. Systemic TFPI levels seem to reflect disease severity. These findings point towards a pathophysiologic role of TF/TFPI in sepsis-induced myocardial injury.


Lipoproteins , Shock, Septic , Thromboplastin , Humans , Shock, Septic/blood , Shock, Septic/metabolism , Thromboplastin/metabolism , Male , Female , Lipoproteins/blood , Lipoproteins/metabolism , Middle Aged , Aged , Multiple Organ Failure/blood , Multiple Organ Failure/etiology , Disseminated Intravascular Coagulation/blood , Case-Control Studies , Adult , Biomarkers/blood
2.
Front Immunol ; 15: 1345199, 2024.
Article En | MEDLINE | ID: mdl-38911855

Background: The intimal hyperplasia (IH) and vascular remodelling that follows endovascular injury, for instance after post-angioplasty re-stenosis, results in downstream ischaemia and progressive end organ damage. Interferon gamma (IFNγ) is known to play a critical role in this process. In mouse models we have previously shown that fibrocytes expressing tissue factor (TF) are recruited early to the site of injury. Through thrombin generation and protease activated receptor-1 (PAR-1) activation, fibrocytes secrete angiopoietin-2, stimulate neointimal cell proliferation, inhibit apoptosis and induce CXCL-12 production, all of which contribute to the progressive IH that then develops. In this study we investigated the relationship between TF, angiopoietin-2 and IFNγ. Methods and results: IH developing in carotid arteries of wild-type mice 4 weeks after endoluminal injury contained a significant proportion of IFNγ+ fibrocytes and macrophages, which we show, using a previously defined adoptive transfer model, were derived from circulating CD34+ cells. IH did not develop after injury in IFNγ-deficient mice, except after transplantation of WT bone marrow or adoptive transfer of WT CD34+ cells. In vitro, CD34+ cells isolated from post-injury mice did not express IFNγ, but this was induced when provided with FVIIa and FX, and enhanced when prothrombin was also provided: In both cases IFNγ secretion was TF-dependent and mediated mainly through protease activated PAR-1. IFNγ was predominantly expressed by fibrocytes. In vivo, all IFNγ+ neointimal cells in WT mice co-expressed angiopoietin-2, as did the small numbers of neointimal cells recruited in IFNγ-/- mice. Adoptively transferred WT CD34+ cells treated with either an anti-TIE-2 antibody, or with siRNA against angiopoetin-2 inhibited the expression of IFNγ and the development of IH. Conclusion: TF-dependent angiopoietin-2 production by newly recruited fibrocytes, and to a lesser extent macrophages, switches on IFNγ expression, and this is necessary for the IH to develop. These novel findings enhance our understanding of the pathophysiology of IH and expose potential targets for therapeutic intervention.


Angiopoietin-2 , Hyperplasia , Interferon-gamma , Macrophages , Mice, Knockout , Neointima , Thromboplastin , Animals , Mice , Interferon-gamma/metabolism , Angiopoietin-2/metabolism , Neointima/pathology , Neointima/immunology , Macrophages/immunology , Macrophages/metabolism , Thromboplastin/metabolism , Thromboplastin/genetics , Mice, Inbred C57BL , Disease Models, Animal , Male , Fibroblasts/metabolism , Carotid Artery Injuries/immunology , Carotid Artery Injuries/pathology , Carotid Artery Injuries/metabolism
3.
Sci Rep ; 14(1): 10582, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719932

Thromboembolic events are complications in cancer patients and hypercoagulability has been linked to the tissue factor (TF) pathway, making this an attractive target. Here, we investigated the effects of chemotherapeutics and CDK inhibitors (CDKI) abemaciclib/palbociclib (CDK4/6), THZ-1 (CDK7/12/13), and dinaciclib (CDK1/2/5/9) alone and in combination regimens on TF abundance and coagulation. The human colorectal cancer (CRC) cell line HROC173 was treated with 5-FU or gemcitabine to stimulate TF expression. TF+ cells were sorted, recultured, and re-analyzed. The effect of treatment alone or in combination was assessed by functional assays. Low-dose chemotherapy induced a hypercoagulable state and significantly upregulated TF, even after reculture without treatment. Cells exhibited characteristics of epithelial-mesenchymal transition, including high expression of vimentin and mucin. Dinaciclib and THZ-1 also upregulated TF, while abemaciclib and palbociclib downregulated it. Similar results were observed in coagulation assays. The same anticoagulant activity of abemaciclib was seen after incubation with peripheral immune cells from healthy donors and CRC patients. Abemaciclib reversed 5-FU-induced TF upregulation and prolonged clotting times in second-line treatment. Effects were independent of cytotoxicity, senescence, and p27kip1 induction. TF-antibody blocking experiments confirmed the importance of TF in plasma coagulation, with Factor XII playing a minor role. Short-term abemaciclib counteracts 5-FU-induced hypercoagulation and eventually even prevents thromboembolic events.


Colonic Neoplasms , Cyclin-Dependent Kinases , Fluorouracil , Thromboplastin , Up-Regulation , Humans , Thromboplastin/metabolism , Thromboplastin/genetics , Cell Line, Tumor , Fluorouracil/pharmacology , Colonic Neoplasms/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Up-Regulation/drug effects , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Aminopyridines/pharmacology , Benzimidazoles/pharmacology , Pyridinium Compounds/pharmacology , Cyclic N-Oxides/pharmacology , Indolizines/pharmacology , Epithelial-Mesenchymal Transition/drug effects
4.
Neurol India ; 72(2): 285-291, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38691471

BACKGROUND: Microparticles (MPs) have been implicated in thrombosis and endothelial dysfunction. Their involvement in early coagulopathy and in worsening of outcomes in isolated severe traumatic brain injury (sTBI) patients remains ill defined. OBJECTIVE: We sought to quantify the circulatory MP subtypes derived from platelets (PMPs; CD42), endothelial cells (EMPs; CD62E), and those bearing tissue factor (TFMP; CD142) and analyze their correlation with early coagulopathy, thrombin generation, and in-hospital mortality. MATERIALS AND METHODS: Prospective screening of sTBI patients was done. Blood samples were collected before blood and fluid transfusion. MP enumeration and characterization were performed using flow cytometry, and thrombin-antithrombin complex (TAT) levels were determined using enzyme-linked immunosorbent assay (ELISA). Circulating levels of procoagulant MPs were compared between isolated sTBI patients and age- and gender-matched healthy controls (HC). Patients were stratified according to their PMP, EMP, and TFMP levels, respectively (high ≥HC median and low < HC median). RESULTS: Isolated sTBI resulted in an increased generation of PMPs (456.6 [228-919] vs. 249.1 [198.9-404.5]; P = 0.01) and EMPs (301.5 [118.8-586.7] vs. 140.9 [124.9-286]; P = 0.09) compared to HCs. Also, 5.3% of MPs expressed TF (380 [301-710]) in HCs, compared to 6.6% MPs (484 [159-484]; P = 0.87) in isolated sTBI patients. Early TBI-associated coagulopathy (TBI-AC) was seen in 50 (41.6%) patients. PMP (380 [139-779] vs. 523.9 [334-927]; P = 0.19) and EMP (242 [86-483] vs. 344 [168-605]; P = 0.81) counts were low in patients with TBI-AC, compared to patients without TBI-AC. CONCLUSION: Our results suggest that enhanced cellular activation and procoagulant MP generation are predominant after isolated sTBI. TBI-AC was associated with low plasma PMPs count compared to the count in patients without TBI-AC. Low PMPs may be involved with the development of TBI-AC.


Blood Coagulation Disorders , Brain Injuries, Traumatic , Cell-Derived Microparticles , Humans , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/mortality , Cell-Derived Microparticles/metabolism , Female , Male , Adult , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/blood , Middle Aged , Prospective Studies , Thromboplastin/metabolism , Blood Platelets/metabolism , Hospital Mortality , Endothelial Cells/metabolism
5.
Biochem Pharmacol ; 225: 116314, 2024 Jul.
Article En | MEDLINE | ID: mdl-38797271

Atherosclerosis, a chronic inflammatory disease, is the most relevant cause of carotid artery stenosis. Vascular endothelial cells (ECs) play a significant role in the development of atherosclerosis. In this chronic inflammatory environment, we aimed to investigate whether PCSK9 could mitigate atherosclerosis progression by reducing tissue factor expression in ECs via in vivo and in vitro assays. In vivo, we investigated the effect of PCSK9 inhibition on preventing atherosclerotic lesion formation in ApoE-/- mice fed a western diet. The results showed that inhibiting PCSK9 could significantly downregulate the protein expression of tissue factor (TF) in ECs to reduce the area of atherosclerotic plaques. In vitro, we incubated human umbilical vein endothelial cells (HUVECs) with lipopolysaccharide (LPS). We found that LPS-induced TF elevation was suppressed by a PCSK9 inhibitor at both the mRNA and protein levels and that the TLR4/NF-κB pathway was also suppressed by a PCSK9 inhibitor. With respect to plasma samples from patients with carotid artery stenosis, we also demonstrated that the expression of TF was positively correlated with that of PCSK9. Thus, in addition to regulating lipid metabolism, the regulation of endothelial cell TF expression through the TLR4/NF-κB pathway may be a potential mechanism of PCSK9 in promoting atherosclerotic carotid stenosis.


Apolipoproteins E , Carotid Stenosis , Human Umbilical Vein Endothelial Cells , Mice, Inbred C57BL , NF-kappa B , Proprotein Convertase 9 , Signal Transduction , Thromboplastin , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Mice , NF-kappa B/metabolism , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Humans , Carotid Stenosis/metabolism , Male , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Apolipoproteins E/deficiency , Human Umbilical Vein Endothelial Cells/metabolism , Thromboplastin/metabolism , Thromboplastin/genetics , Thromboplastin/biosynthesis , Signal Transduction/physiology , Mice, Knockout, ApoE , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Mice, Knockout , PCSK9 Inhibitors , Female
6.
Haemophilia ; 30 Suppl 3: 70-77, 2024 Apr.
Article En | MEDLINE | ID: mdl-38575518

Despite rapid technological advancement in factor and nonfactor products in the prevention and treatment of bleeding in haemophilia patients, it is imperative that we acknowledge gaps in our understanding of how hemostasis is achieved. The authors will briefly review three unresolved issues in persons with haemophilia (PwH) focusing on the forgotten function that red blood cells play in hemostasis, the critical role of extravascular (outside circulation) FIX in hemostasis in the context of unmodified and extended half-life FIX products and finally on the role that skeletal muscle myosin plays in prothrombinase assembly and subsequent thrombin generation that could mitigate breakthrough muscle hematomas.


Hemophilia A , Humans , Hemophilia A/therapy , Hemostasis , Thrombin , Hemorrhage , Thromboplastin , Factor VIII
7.
Clin Appl Thromb Hemost ; 30: 10760296241246002, 2024.
Article En | MEDLINE | ID: mdl-38591954

Background: Although hepatocellular carcinoma (HCC) is frequently associated with thrombosis, it is also associated with liver cirrhosis (LC) which causes hemostatic abnormalities. Therefore, hemostatic abnormalities in patients with HCC were examined using a clot waveform analysis (CWA). Methods: Hemostatic abnormalities in 88 samples from HCC patients, 48 samples from LC patients and 153 samples from patients with chronic liver diseases (CH) were examined using a CWA-activated partial thromboplastin time (APTT) and small amount of tissue factor induced FIX activation (sTF/FIXa) assay. Results: There were no significant differences in the peak time on CWA-APTT among HCC, LC, and CH, and the peak heights of CWA-APTT were significantly higher in HCC and CH than in HVs and LC. The peak heights of the CWA-sTF/FIXa were significantly higher in HCC than in LC. The peak times of the CWA-APTT were significantly longer in stages B, C, and D than in stage A or cases of response. In the receiver operating characteristic (ROC) curve, the fibrin formation height (FFH) of the CWA-APTT and CWA-sTF/FIXa showed the highest diagnostic ability for HCC and LC, respectively. Thrombosis was observed in 13 HCC patients, and arterial thrombosis and portal vein thrombosis were frequently associated with HCC without LC and HCC with LC, respectively. In ROC, the peak time×peak height of the first derivative on the CWA-sTF/FIXa showed the highest diagnostic ability for thrombosis. Conclusion: The CWA-APTT and CWA-sTF/FIXa can increase the evaluability of HCC including the association with LC and thrombotic complications.


Carcinoma, Hepatocellular , Hemostatics , Liver Neoplasms , Thrombosis , Humans , Carcinoma, Hepatocellular/complications , Liver Neoplasms/complications , Thrombosis/etiology , Thromboplastin , Liver Cirrhosis/complications
8.
Sci Rep ; 14(1): 9225, 2024 04 22.
Article En | MEDLINE | ID: mdl-38649717

Thrombin generation (TG) and fibrin clot formation represent the central process of blood coagulation. Up to 95% of thrombin is considered to be generated after the clot is formed. However, this was not investigated in depth. In this study, we conducted a quantitative analysis of the Thrombin at Clot Time (TCT) parameter in 5758 simultaneously recorded TG and clot formation assays using frozen plasma samples from commercial sources under various conditions of activation. These samples were supplemented with clotting factor concentrates, procoagulant lipid vesicles and a fluorogenic substrate and triggered with tissue factor (TF). We found that TCT is often close to a 10% of thrombin peak height (TPH) yet it can be larger or smaller depending on whether the sample has low or high TPH value. In general, the samples with high TPH are associated with elevated TCT. TCT appeared more sensitive to some procoagulant phenotypes than other commonly used parameters such as clotting time, TPH or Thrombin Production Rate (TPR). In a minority of cases, TCT were not predicted from TG parameters. For example, elevated TCT (above 15% of TPH) was associated with either very low or very high TPR values. We conclude that clotting and TG assays may provide complementary information about the plasma sample, and that the TCT parameter may serve as an additional marker for the procoagulant potential in plasma sample.


Blood Coagulation , Fibrin , Thrombin , Thrombin/metabolism , Humans , Fibrin/metabolism , Blood Coagulation Tests/methods , Thromboplastin/metabolism , Thromboplastin/analysis
9.
J Appl Physiol (1985) ; 136(5): 1284-1290, 2024 May 01.
Article En | MEDLINE | ID: mdl-38572538

Despite the prognostic effect of physical activity, acute bouts of high-volume endurance exercise can induce cardiac stress and postexercise hypercoagulation associated with increased thrombotic risk. The aim of this study was to explore the effect of high-volume endurance exercise on coagulation and thrombotic activity in recreational cyclists. Thirty-four recreational cyclists completed 4.8 ± 0.3 h of cycling at 45 ± 5% of maximal power output on a bicycle ergometer. Intravenous blood samples were collected preexercise, immediately postexercise, 24 and 48 h postexercise, and analyzed for brain natriuretic peptide (BNP), cardiac troponin (cTn), C-reactive protein (CRP), D-dimer, thrombin-antithrombin (TAT) complex, tissue factor (TF), tissue factor pathway inhibitor (TFPI), and TF-to-TFPI ratio (TF:TFPI). An increase in cTn was observed postexercise (P < 0.001). CRP concentrations were increased at 24 and 48 h postexercise compared with preexercise concentrations (P ≤ 0.001). TF was elevated at 24 h postexercise (P < 0.031) and TFPI was higher immediately postexercise (P < 0.044) compared with all other time points. TF:TFPI was increased at 24 and 48 h postexercise compared with preexercise (P < 0.025). TAT complex was reduced at 48 h postexercise compared with preexercise (P = 0.015), D-dimer was higher immediately postexercise compared with all other time points (P ≤ 0.013). No significant differences were observed in BNP (P > 0.05). High-volume endurance cycling induced markers of cardiac stress among recreational cyclists. However, plasma coagulation and fibrinolytic activity suggest no increase in thrombotic risk after high-volume endurance exercise.NEW & NOTEWORTHY In this study, a high-volume endurance exercise protocol induced markers of cardiac stress and altered plasma coagulation and fibrinolytic activity for up to 48 h in recreationally active cyclists. However, analysis of coagulation biomarkers indicates no increase in thrombotic risk when appropriate hydration and rest protocols are implemented.


Bicycling , Blood Coagulation , Physical Endurance , Thromboplastin , Thrombosis , Humans , Bicycling/physiology , Male , Blood Coagulation/physiology , Adult , Thrombosis/physiopathology , Thrombosis/blood , Thrombosis/etiology , Physical Endurance/physiology , Thromboplastin/metabolism , C-Reactive Protein/metabolism , Fibrin Fibrinogen Degradation Products/metabolism , Exercise/physiology , Natriuretic Peptide, Brain/blood , Young Adult , Lipoproteins/blood , Biomarkers/blood , Antithrombin III/metabolism , Risk Factors , Peptide Hydrolases/blood
10.
Transfusion ; 64 Suppl 2: S185-S190, 2024 May.
Article En | MEDLINE | ID: mdl-38587089

BACKGROUND: Thromboelastogram testing is increasingly being used to manage patients with massive bleeding. An earlier study found that the test results were influenced by the hematocrit (Hct) and platelet (PLT) concentrations. This study sought to determine if these factors confounded the results of a different manufacturer's thromboelastography testing. METHODS: Using freshly collected whole blood from volunteers and stored red blood cells (RBC) and plasma, the whole blood was manipulated to achieve different Hct values and PLT concentrations. Each reconstituted whole blood sample was tested in triplicate on the ROTEM Delta device and the ExTEM results were recorded. RESULTS: Many of the ExTEM results varied according to the Hct and PLT concentration. In particular, the ExTEM clot formation time (CFT) was abnormally long when the Hct was 45% and the PLT concentration was ≤75 × 109/L, normalizing only when the PLT count was ≥100 × 109/L. CFT samples with Hct 25% and 35% were also abnormal with low PLT concentrations but normalized at lower PLT concentrations compared to the Hct 45% samples. The ExTEM angle also demonstrated abnormal results when the Hct was 45% and the PLT concentration was ≤50 × 109/L. The ExTEM A10 and maximum clot firmness (MCF) tests tended to also be abnormal when the Hct was between 25% and 45% and the platelet concentrations were below 75 × 109/L. CONCLUSION: While thromboelastogram testing is gaining popularity for managing bleeding patients, clinicians should be aware of these confounding factors when making transfusion decisions based on their results.


Thrombelastography , Humans , Thrombelastography/methods , Hematocrit , Platelet Count , Thromboplastin/analysis , Thromboplastin/metabolism , Female , Blood Coagulation/physiology , Male
11.
J Trauma Acute Care Surg ; 97(1): 57-64, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38605437

BACKGROUND: Prior literature has implicated red blood cells (RBCs) in the initiation of thrombosis and suggests that posttransfusion hypercoagulability may occur secondary to the effects of RBCs. Elevated serum tissue factor is a known sequelae of acute trauma. Phosphatidylserine (PS) is a prothrombotic phospholipid present within the RBC cell membrane. We hypothesized that RBC aggregation is dependent on the interaction between RBC membrane bound (exposed) PS, extracellular calcium, and tissue factor. METHODS: Human whole blood (WB) was separated into components, including RBCs and platelet-rich plasma (PRP). Whole blood, PRP, and RBCs underwent impedance aggregometry utilizing arachidonic acid (AA), ADP, collagen, calcium, and tissue factor (TF)-based agonists. Red blood cells then underwent impedance aggregometry utilizing combined calcium and TF agonists. Red blood cells were pretreated with Annexin V, a known PS blocking agent, and underwent impedance aggregometry with combined calcium and TF agonists to determine if the mechanism of calcium/TF-induced RBC aggregability is dependent on PS. Red blood cells treated with calcium, TF, calcium+TF, and pre-treated with Annexin V followed by calcium+TF were perfused through an in vitro model of pulmonary microcirculatory flow. RESULTS: Red blood cell aggregation was significantly higher than that of WB and PRP when utilizing a TF agonist, an effect unique to TF. The combination of calcium and TF demonstrated significantly higher RBC aggregation than either agonist alone. Pretreatment with Annexin V resulted in a significantly reduced aggregability of RBC following treatment with TF + calcium. Red blood cells aged to 42 days did not exhibit significant change in aggregation. Exposure to calcium and TF significantly reduced time to thrombosis of RBCs perfused through a pulmonary microcirculatory model. CONCLUSION: Treatment with both TF and calcium synergistically induces RBC aggregation. Phosphatidylserine appears to play an integral role in the TF/calcium-based, age-independent RBC aggregation response. Red blood cells treated with TF + calcium exhibit more rapid thrombus formation in an in vitro model of pulmonary microcirculatory perfusion.


Calcium , Erythrocytes , Phosphatidylserines , Thromboplastin , Thrombosis , Humans , Phosphatidylserines/metabolism , Thromboplastin/metabolism , Calcium/metabolism , Thrombosis/metabolism , Thrombosis/etiology , Erythrocytes/metabolism , Erythrocyte Aggregation/drug effects , Erythrocyte Membrane/metabolism , Platelet-Rich Plasma/metabolism
12.
Oncogene ; 43(21): 1631-1643, 2024 May.
Article En | MEDLINE | ID: mdl-38589675

Androgen deprivation therapy (ADT) is the first line of treatment for metastatic prostate cancer (PCa) that effectively delays the tumor progression. However, it also increases the risk of venous thrombosis event (VTE) in patients, a leading cause of mortality. How a pro-thrombotic cascade is induced by ADT remains poorly understood. Here, we report that protein disulfide isomerase A2 (PDIA2) is upregulated in PCa cells to promote VTE formation and enhance PCa cells resistant to ADT. Using various in vitro and in vivo models, we demonstrated a dual function of PDIA2 that enhances tumor-mediated pro-coagulation activity via tumor-derived extracellular vehicles (EVs). It also stimulates PCa cell proliferation, colony formation, and xenograft growth androgen-independently. Mechanistically, PDIA2 activates the tissue factor (TF) on EVs through its isomerase activity, which subsequently triggers a pro-thrombotic cascade in the blood. Additionally, TF-containing EVs can activate the Src kinase inside PCa cells to enhance the AR signaling ligand independently. Androgen deprivation does not alter PDIA2 expression in PCa cells but enhances PDIA2 translocation to the cell membrane and EVs via suppressing the clathrin-dependent endocytic process. Co-recruitment of AR and FOXA1 to the PDIA2 promoter is required for PDIA2 transcription under androgen-deprived conditions. Importantly, blocking PDIA2 isomerase activity suppresses the pro-coagulation activity of patient plasma, PCa cell, and xenograft samples as well as castrate-resistant PCa xenograft growth. These results demonstrate that PDIA2 promotes VTE and tumor progression via activating TF from tumor-derived EVs. They rationalize pharmacological inhibition of PDIA2 to suppress ADT-induced VTE and castrate-resistant tumor progression.


Disease Progression , Prostatic Neoplasms, Castration-Resistant , Protein Disulfide-Isomerases , Venous Thrombosis , Animals , Humans , Male , Mice , Androgen Antagonists/pharmacology , Androgen Antagonists/adverse effects , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Thromboplastin/metabolism , Thromboplastin/genetics , Venous Thrombosis/metabolism , Venous Thrombosis/chemically induced , Venous Thrombosis/pathology , Venous Thrombosis/genetics , Venous Thrombosis/etiology , Xenograft Model Antitumor Assays
13.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article En | MEDLINE | ID: mdl-38473827

Alternatively spliced tissue factor (asTF) promotes the progression of pancreatic ductal adenocarcinoma (PDAC) by activating ß1-integrins on PDAC cell surfaces. hRabMab1, a first-in-class humanized inhibitory anti-asTF antibody we recently developed, can suppress PDAC primary tumor growth as a single agent. Whether hRabMab1 has the potential to suppress metastases in PDAC is unknown. Following in vivo screening of three asTF-proficient human PDAC cell lines, we chose to make use of KRAS G12V-mutant human PDAC cell line PaCa-44, which yields aggressive primary orthotopic tumors with spontaneous spread to PDAC-relevant anatomical sites, along with concomitant severe leukocytosis. The experimental design featured orthotopic tumors formed by luciferase labeled PaCa-44 cells; administration of hRabMab1 alone or in combination with gemcitabine/paclitaxel (gem/PTX); and the assessment of the treatment outcomes on the primary tumor tissue as well as systemic spread. When administered alone, hRabMab1 exhibited poor penetration of tumor tissue; however, hRabMab1 was abundant in tumor tissue when co-administered with gem/PTX, which resulted in a significant decrease in tumor cell proliferation; leukocyte infiltration; and neovascularization. Gem/PTX alone reduced primary tumor volume, but not metastatic spread; only the combination of hRabMab1 and gem/PTX significantly reduced metastatic spread. RNA-seq analysis of primary tumors showed that the addition of hRabMab1 to gem/PTX enhanced the downregulation of tubulin binding and microtubule motor activity. In the liver, hRabMab1 reduced liver metastasis as a single agent. Only the combination of hRabMab1 and gem/PTX eliminated tumor cell-induced leukocytosis. We here demonstrate for the first time that hRabMab1 may help suppress metastasis in PDAC. hRabMab1's ability to improve the efficacy of chemotherapy is significant and warrants further investigation.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Thromboplastin , Gemcitabine , Antibodies, Monoclonal, Humanized/therapeutic use , Leukocytosis/drug therapy , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Deoxycytidine/pharmacology , Paclitaxel/therapeutic use
14.
Basic Res Cardiol ; 119(2): 291-307, 2024 Apr.
Article En | MEDLINE | ID: mdl-38430261

The coronary perivascular adipose tissue (cPVAT) has been associated to the burden of cardiovascular risk factors and to the underlying vessel atherosclerotic plaque severity. Although the "outside to inside" hypothesis of PVAT-derived-adipokine regulation of vessel function is currently accepted, whether the resident mesenchymal stem cells (ASCs) in PVAT have a regulatory role on the underlying vascular arterial smooth muscle cells (VSMCs) is not known. Here, we investigated the interactions between resident PVAT-ASCs and VSMCs. ASCs were obtained from PVAT overlying the left anterior descending (LAD) coronary artery of hearts removed at heart transplant operations. PVAT was obtained both from patients with non-ischemic and ischemic heart disease as the cause of heart transplant. ASCs were isolated from PVAT, phenotypically characterized by flow cytometry, functionally tested for proliferation, and differentiation. Crosstalk between ASCs and VSMCs was investigated by co-culture studies. ASCs were detected in the adventitia of the LAD-PVAT showing differentiation capacity and angiogenic potential. ASCs obtained from PVAT of non-ischemic and ischemic hearts showed different tissue factor (TF) expression levels, different VSMCs recruitment capacity through the axis ERK1/2-ETS1 signaling and different angiogenic potential. Induced upregulation of TF in ASCs isolated from ischemic PVAT rescued their angiogenic capacity in subcutaneously implanted plugs in mice, whereas silencing TF in ASCs decreased the proangiogenic capacity of non-ischemic ASCs. The results indicate for the first time a novel mechanism of regulation of VSMCs by PVAT-ASCs in angiogenesis, mediated by TF expression in ASCs. Regulation of TF in ASCs may become a therapeutic intervention to increase cardiac protection.


Adipocytes , Thromboplastin , Humans , Mice , Animals , Thromboplastin/metabolism , Adipocytes/metabolism , Adipose Tissue/metabolism , Heart , Stem Cells
15.
Blood ; 143(12): 1065-1066, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38512263
16.
Sci Rep ; 14(1): 6419, 2024 03 17.
Article En | MEDLINE | ID: mdl-38494537

Extracellular vesicles (EVs) have crucial roles in hemostasis and coagulation. They sustain coagulation by exposing phosphatidylserine and initiate clotting by surface expression of tissue factor (TF) under inflammatory conditions. As their relevance as biomarkers of coagulopathy is increasingly recognized, there is a need for the sensitive and reliable detection of TF+ EVs, but their flow cytometric analysis is challenging and has yielded controversial findings for TF expression on EVs in the vascular system. We investigated the effect of different fluorochrome-to-protein (F/P) ratios of anti-TF-fluorochrome conjugates on the flow cytometric detection of TF+ EVs from activated monocytes, mesenchymal stem cells (MSCs), and in COVID-19 plasma. Using a FITC-labeled anti-TF antibody (clone VD8), we show that the percentage of TF+ EVs declined with decreasing F/P ratios. TF was detected on 7.6%, 5.4%, and 1.1% of all EVs derived from activated monocytes at F/P ratios of 7.7:1, 6.6:1, and 5.2:1. A similar decline was observed for EVs from MSCs and for EVs in plasma, whereas the detection of TF on cells remained unaffected by different F/P ratios. We provide clear evidence that next to the antibody clone, the F/P ratio affects the flow cytometric detection of TF+ EVs and should be carefully controlled.


Extracellular Vesicles , Thromboplastin , Thromboplastin/metabolism , Fluorescent Dyes/metabolism , Blood Coagulation , Extracellular Vesicles/metabolism
17.
Liver Int ; 44(7): 1610-1623, 2024 Jul.
Article En | MEDLINE | ID: mdl-38517208

BACKGROUND: Extracellular vesicles (EVs) modulate inflammation, coagulation and vascular homeostasis in decompensated cirrhosis. AIM: To characterize the profile of plasmatic EVs in patients with decompensated cirrhosis and bacterial infections and evaluate the association between EVs and the development of hemostatic complications. METHODS: We measured the levels of EVs using high-sensitivity flow cytometry and phospholipid-dependent clotting time (PPL) in a prospective cohort of hospitalized patients with acutely decompensated cirrhosis with versus without bacterial infections. A separate cohort of patients with bacterial infections without cirrhosis was also enrolled. We measured endothelium-, tissue factor (TF)-bearing, platelet- and leukocyte-derived EVs. In patients with infections, EVs were reassessed upon resolution of infection. Bleeding and thrombotic complications were recorded during 1-year follow-up. RESULTS: Eighty patients with decompensated cirrhosis were recruited (40 each with and without bacterial infections). Electron microscopy confirmed the presence of plasma EVs. Despite no difference in total EVs and PPL, patients with cirrhosis and infection had significantly higher TF+ EVs, P-Selectin+ EVs (activated platelet-derived), CD14+ EVs (monocyte/macrophages derived) and CD14+ TF+ EVs versus those with cirrhosis without infection. Upon infection resolution, levels of these EVs returned to those without infection. Patients with infections showed a significant association between reduced P-Selectin+ EVs and bleeding complications (HR 8.0 [95%CI 1.3-48.1]), whereas high levels of leukocyte-derived EVs (CD45+) and CD14+ EVs were significantly associated with thrombotic complications (HR 16.4 [95%CI 1.7-160] and 10.9 [95%CI 1.13-106], respectively). Results were confirmed in a validation cohort. CONCLUSION: Bacterial infections are associated with particular alterations of plasma EVs profile in decompensated cirrhosis. Bacterial infections trigger the release of EVs originating from various cell types, which may tip the precarious hemostatic balance of patients with acutely decompensated cirrhosis towards hyper- or hypocoagulability.


Bacterial Infections , Extracellular Vesicles , Liver Cirrhosis , Humans , Liver Cirrhosis/blood , Liver Cirrhosis/complications , Male , Extracellular Vesicles/metabolism , Female , Bacterial Infections/blood , Middle Aged , Prospective Studies , Aged , Thromboplastin/metabolism , Thromboplastin/analysis , Flow Cytometry , Blood Platelets/metabolism , Thrombosis/blood , Blood Coagulation , P-Selectin/blood
18.
Arterioscler Thromb Vasc Biol ; 44(5): 1124-1134, 2024 May.
Article En | MEDLINE | ID: mdl-38511328

BACKGROUND: SARS-CoV-2 infections cause COVID-19 and are associated with inflammation, coagulopathy, and high incidence of thrombosis. Myeloid cells help coordinate the initial immune response in COVID-19. Although we appreciate that myeloid cells lie at the nexus of inflammation and thrombosis, the mechanisms that unite the two in COVID-19 remain largely unknown. METHODS: In this study, we used systems biology approaches including proteomics, transcriptomics, and mass cytometry to define the circulating proteome and circulating immune cell phenotypes in subjects with COVID-19. RESULTS: In a cohort of subjects with COVID-19 (n=35), circulating markers of inflammation (CCL23 [C-C motif chemokine ligand 23] and IL [interleukin]-6) and vascular dysfunction (ACE2 [angiotensin-converting enzyme 2] and TF [tissue factor]) were elevated in subjects with severe compared with mild COVID-19. Additionally, although the total white blood cell counts were similar between COVID-19 groups, CD14+ (cluster of differentiation) monocytes from subjects with severe COVID-19 expressed more TF. At baseline, transcriptomics demonstrated increased IL-6, CCL3, ACOD1 (aconitate decarboxylase 1), C5AR1 (complement component 5a receptor), C5AR2, and TF in subjects with severe COVID-19 compared with controls. Using stress transcriptomics, we found that circulating immune cells from subjects with severe COVID-19 had evidence of profound immune paralysis with greatly reduced transcriptional activation and release of inflammatory markers in response to TLR (Toll-like receptor) activation. Finally, sera from subjects with severe (but not mild) COVID-19 activated human monocytes and induced TF expression. CONCLUSIONS: Taken together, these observations further elucidate the pathological mechanisms that underlie immune dysfunction and coagulation abnormalities in COVID-19, contributing to our growing understanding of SARS-CoV-2 infections that could also be leveraged to develop novel diagnostic and therapeutic strategies.


COVID-19 , Monocytes , Thromboplastin , Thrombosis , Adult , Aged , Female , Humans , Male , Middle Aged , Biomarkers/blood , COVID-19/immunology , COVID-19/blood , COVID-19/complications , Monocytes/immunology , Monocytes/metabolism , Proteomics/methods , SARS-CoV-2/physiology , Thromboplastin/metabolism , Thromboplastin/genetics , Thrombosis/immunology , Thrombosis/blood , Thrombosis/etiology
19.
Arterioscler Thromb Vasc Biol ; 44(4): 954-968, 2024 Apr.
Article En | MEDLINE | ID: mdl-38385292

BACKGROUND: Venous thromboembolism is a major health problem. After thrombus formation, its resolution is essential to re-establish blood flow, which is crucially mediated by infiltrating neutrophils and monocytes in concert with activated platelets and endothelial cells. Thus, we aimed to modulate leukocyte function during thrombus resolution post-thrombus formation by blocking P-selectin/CD62P-mediated cell interactions. METHODS: Thrombosis was induced by inferior vena cava stenosis through ligation in mice. After 1 day, a P-selectin-blocking antibody or isotype control was administered and thrombus composition and resolution were analyzed. RESULTS: Localizing neutrophils and macrophages in thrombotic lesions of wild-type mice revealed that these cells enter the thrombus and vessel wall from the caudal end. Neutrophils were predominantly present 1 day and monocytes/macrophages 3 days after vessel ligation. Blocking P-selectin reduced circulating platelet-neutrophil and platelet-Ly6Chigh monocyte aggregates near the thrombus, and diminished neutrophils and Ly6Chigh macrophages in the cranial thrombus part compared with isotype-treated controls. Depletion of neutrophils 1 day after thrombus initiation did not phenocopy P-selectin inhibition but led to larger thrombi compared with untreated controls. In vitro, P-selectin enhanced human leukocyte function as P-selectin-coated beads increased reactive oxygen species production by neutrophils and tissue factor expression of classical monocytes. Accordingly, P-selectin inhibition reduced oxidative burst in the thrombus and tissue factor expression in the adjacent vessel wall. Moreover, blocking P-selectin reduced thrombus density determined by scanning electron microscopy and increased urokinase-type plasminogen activator levels in the thrombus, which accelerated caudal fibrin degradation from day 3 to day 14. This accelerated thrombus resolution as thrombus volume declined more rapidly after blocking P-selectin. CONCLUSIONS: Inhibition of P-selectin-dependent activation of monocytes and neutrophils accelerates venous thrombosis resolution due to reduced infiltration and activation of innate immune cells at the site of thrombus formation, which prevents early thrombus stabilization and facilitates fibrinolysis.


Monocytes , Thrombosis , Mice , Humans , Animals , Monocytes/pathology , P-Selectin , Endothelial Cells , Thromboplastin , Neutrophil Infiltration , Neutrophils
20.
Arterioscler Thromb Vasc Biol ; 44(4): 843-865, 2024 Apr.
Article En | MEDLINE | ID: mdl-38385286

BACKGROUND: Accumulating evidence implicates the activation of G-protein-coupled PARs (protease-activated receptors) by coagulation proteases in the regulation of innate immune responses. METHODS: Using mouse models with genetic alterations of the PAR2 signaling platform, we have explored contributions of PAR2 signaling to infection with coxsackievirus B3, a single-stranded RNA virus provoking multiorgan tissue damage, including the heart. RESULTS: We show that PAR2 activation sustains correlates of severe morbidity-hemodynamic compromise, aggravated hypothermia, and hypoglycemia-despite intact control of the virus. Following acute viral liver injury, canonical PAR2 signaling impairs the restoration process associated with exaggerated type I IFN (interferon) signatures in response to viral RNA recognition. Metabolic profiling in combination with proteomics of liver tissue shows PAR2-dependent reprogramming of liver metabolism, increased lipid droplet storage, and gluconeogenesis. PAR2-sustained hypodynamic compromise, reprograming of liver metabolism, as well as imbalanced IFN responses are prevented in ß-arrestin coupling-deficient PAR2 C-terminal phosphorylation mutant mice. Thus, wiring between upstream proteases and immune-metabolic responses results from biased PAR2 signaling mediated by intracellular recruitment of ß-arrestin. Importantly, blockade of the TF (tissue factor)-FVIIa (coagulation factor VIIa) complex capable of PAR2 proteolysis with the NAPc2 (nematode anticoagulant protein c2) mitigated virus-triggered pathology, recapitulating effects seen in protease cleavage-resistant PAR2 mice. CONCLUSIONS: These data provide insights into a TF-FVIIa signaling axis through PAR2-ß-arrestin coupling that is a regulator of inflammation-triggered tissue repair and hemodynamic compromise in coxsackievirus B3 infection and can potentially be targeted with selective coagulation inhibitors.


Multiple Organ Failure , Thromboplastin , Animals , Mice , Thromboplastin/metabolism , beta-Arrestins/metabolism , Receptor, PAR-2/genetics , Factor VIIa/metabolism , Endopeptidases/metabolism
...