Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.633
Filter
1.
Virology ; 598: 110192, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39106585

ABSTRACT

In vitro studies have shown that deletion of nef and deleterious mutation in the Nef dimerization interface attenuates HIV replication and associated pathogenesis. Humanized rodents with human immune cells and lymphoid tissues are robust in vivo models for investigating the interactions between HIV and the human immune system. Here, we demonstrate that nef deletion impairs HIV replication and HIV-induced immune dysregulation in the blood and human secondary lymphoid tissue (human spleen) in bone marrow-liver-thymus-spleen (BLTS) humanized mice. Furthermore, we also show that nef defects (via deleterious mutations in the dimerization interface) impair HIV replication and HIV-induced immune dysregulation in the blood and human spleen in BLTS-humanized mice. We demonstrate that the reduced replication of nef-deleted and nef-defective HIV is associated with robust antiviral innate immune response, and T helper 1 response. Our results support the proposition that Nef may be a therapeutic target for adjuvants in HIV cure strategies.


Subject(s)
Disease Models, Animal , HIV Infections , HIV-1 , Liver , Spleen , Viremia , Virus Replication , nef Gene Products, Human Immunodeficiency Virus , Animals , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/immunology , HIV Infections/immunology , HIV Infections/virology , Mice , Humans , Viremia/immunology , Spleen/immunology , Spleen/virology , HIV-1/immunology , HIV-1/genetics , HIV-1/physiology , Liver/virology , Liver/immunology , Liver/pathology , Bone Marrow/virology , Bone Marrow/immunology , Thymus Gland/immunology , Thymus Gland/virology , Immunity, Innate
2.
Immunohorizons ; 8(8): 538-549, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39109956

ABSTRACT

Perfluorohexane sulfonate (PFHxS) is a member of the per- and polyfluoroalkyls (PFAS) superfamily of molecules, characterized by their fluorinated carbon chains and use in a wide range of industrial applications. PFHxS and perfluorooctane sulfonate are able to accumulate in the environment and in humans with the approximated serum elimination half-life in the range of several years. More recently, some PFAS compounds have also been suggested as potential immunosuppressants. In this study, we analyze immune cell numbers in mice following 28-d repeated oral exposure to potassium PFHxS at 12, 120, 1,200, and 12,000 ng/kg/d, with resulting serum levels ranging up to ∼1,600 ng/ml, approximating ranges found in the general population and at higher levels in PFAS workers. The immunosuppressant cyclophosphamide was analyzed as a positive control. B cells, T cells, and granulocytes from the bone marrow, liver, spleen, lymph nodes, and thymus were evaluated. We found that at these exposures, there was no effect of PFHxS on major T or B cell populations, macrophages, dendritic cells, basophils, mast cells, eosinophils, neutrophils, or circulating Ab isotypes. By contrast, mice exposed to cyclophosphamide exhibited depletion of several granulocyte and T and B cell populations in the thymus, bone marrow, and spleen, as well as reductions in IgG1, IgG2b, IgG2c, IgG3, IgE, and IgM. These data indicate that exposures of up to 12,000 ng/kg of PFHxS for 28 d do not affect immune cell numbers in naive mice, which provides valuable information for assessing the risks and health influences of exposures to this compound.


Subject(s)
Fluorocarbons , Animals , Mice , B-Lymphocytes/immunology , B-Lymphocytes/drug effects , Sulfonic Acids , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Female , Spleen/immunology , Spleen/drug effects , Spleen/cytology , Thymus Gland/drug effects , Thymus Gland/immunology , Granulocytes/drug effects , Granulocytes/immunology , Male
3.
Sci Immunol ; 9(97): eado5295, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996008

ABSTRACT

αß T cell receptor (TCR) V(D)J genes code for billions of TCR combinations. However, only some appear on peripheral T cells in any individual because, to mature, thymocytes must react with low affinity but not high affinity with thymus expressed major histocompatibility (MHC)/peptides. MHC proteins are very polymorphic. Different alleles bind different peptides. Therefore, any individual might express many different MHC alleles to ensure that some peptides from an invader are bound to MHC and activate T cells. However, most individuals express limited numbers of MHC alleles. To explore this, we compared the TCR repertoires of naïve CD4 T cells in mice expressing one or two MHC alleles. Unexpectedly, the TCRs in heterozygotes were less diverse that those in the sum of their MHC homozygous relatives. Our results suggest that thymus negative selection cancels out the advantages of increased thymic positive selection in the MHC heterozygotes.


Subject(s)
CD4-Positive T-Lymphocytes , Heterozygote , Animals , Mice , CD4-Positive T-Lymphocytes/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Major Histocompatibility Complex/immunology , Major Histocompatibility Complex/genetics , Mice, Inbred C57BL , Thymus Gland/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , Mice, Transgenic
4.
J Exp Med ; 221(10)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-38980292

ABSTRACT

In the vertebrate immune system, thymus stromal microenvironments support the generation of αßT cells from immature thymocytes. Thymic epithelial cells are of particular importance, and the generation of cortical and medullary epithelial lineages from progenitor stages controls the initiation and maintenance of thymus function. Here, we discuss the developmental pathways that regulate thymic epithelial cell diversity during both the embryonic and postnatal periods. We also examine how thymus microenvironments respond to injury, with particular focus on mechanisms that ensure regeneration of thymic epithelial cells for the restoration of thymus function.


Subject(s)
Epithelial Cells , Thymus Gland , Thymus Gland/cytology , Thymus Gland/immunology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Animals , Humans , Cell Differentiation , Regeneration/physiology , Thymocytes/cytology , Thymocytes/metabolism , Thymocytes/immunology
5.
Sci Immunol ; 9(97): eadp1139, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058762

ABSTRACT

Type I and III interferons (IFNs) are robustly induced during infections and protect cells against viral infection. Both type I and III IFNs are also produced at low levels in the thymus at steady state; however, their role in T cell development and immune tolerance is unclear. Here, we found that both type I and III IFNs were constitutively produced by a very small number of AIRE+ murine thymic epithelial cells, independent of microbial stimulation. Antigen-presenting cells were highly responsive to thymic IFNs, and IFNs were required for the activation and maturation of thymic type 1 conventional dendritic cells, macrophages, and B cells. Loss of IFN sensing led to reduced regulatory T cell selection, reduced T cell receptor (TCR) repertoire diversity, and enhanced autoreactive T cell responses to self-antigens expressed during peripheral IFN signaling. Thus, constitutive exposure to IFNs in the thymus is required for generating a tolerant and diverse TCR repertoire.


Subject(s)
Interferons , Mice, Inbred C57BL , Thymus Gland , Animals , Thymus Gland/immunology , Mice , Interferons/immunology , Mice, Knockout , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology
6.
J Exp Med ; 221(10)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-38980291

ABSTRACT

During thymic development, thymocytes adjust their TCR response based on the strength of their reactivity to self-peptide MHC complexes. This tuning process allows thymocytes with a range of self-reactivities to survive positive selection and contribute to a diverse T cell pool. In this review, we will discuss recent advances in our understanding of how thymocytes tune their responsiveness during positive selection, and we present a "sequential selection" model to explain how MHC specificity influences lineage choice. We also discuss recent evidence for cell type diversity in the medulla and discuss how this heterogeneity may contribute to medullary niches for negative selection and regulatory T cell development.


Subject(s)
Cell Lineage , T-Lymphocytes, Regulatory , Thymus Gland , Animals , Thymus Gland/immunology , Thymus Gland/cytology , Humans , T-Lymphocytes, Regulatory/immunology , Cell Lineage/immunology , Cell Differentiation/immunology , CD8-Positive T-Lymphocytes/immunology , Thymocytes/immunology , Thymocytes/cytology , Thymocytes/metabolism , CD4-Positive T-Lymphocytes/immunology
7.
mBio ; 15(8): e0031524, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38953352

ABSTRACT

Marek's disease virus (MDV) is an oncogenic alphaherpesvirus that causes deadly lymphomas in chickens. In chickens, up to 50% of all peripheral T cells are gamma delta (γδ) T cells. Until now, their role in MDV pathogenesis and tumor formation remains poorly understood. To investigate the role of γδ T cells in MDV pathogenesis, we infected recently generated γδ T cell knockout chickens with very virulent MDV. Strikingly, disease and tumor incidence were highly increased in the absence of γδ T cells, indicating that γδ T cells play an important role in the immune response against MDV. In the absence of γδ T cells, virus replication was drastically increased in the thymus and spleen, which are potential sites of T cell transformation. Taken together, our data provide the first evidence that γδ T cells play an important role in the pathogenesis and tumor formation of this highly oncogenic herpesvirus.IMPORTANCEGamma delta (γδ) T cells are the most abundant T cells in chickens, but their role in fighting pathogens remains poorly understood. Marek's disease virus (MDV) is an important veterinary pathogen, that causes one of the most frequent cancers in animals and is used as a model for virus-induced tumor formation. Our study revealed that γδ T cells play a crucial role in combating MDV, as disease and tumor incidence drastically increased in the absence of these cells. γδ T cells restricted virus replication in the key lymphoid organs, thereby decreasing the likelihood of causing tumors and disease. This study provides novel insights into the role of γδ T cells in the pathogenesis of this highly oncogenic virus.


Subject(s)
Chickens , Herpesvirus 2, Gallid , Marek Disease , Virus Replication , Animals , Chickens/virology , Marek Disease/virology , Marek Disease/immunology , Herpesvirus 2, Gallid/pathogenicity , Herpesvirus 2, Gallid/immunology , Herpesvirus 2, Gallid/genetics , Spleen/immunology , Spleen/virology , Spleen/pathology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/genetics , Intraepithelial Lymphocytes/immunology , Thymus Gland/immunology , Thymus Gland/virology , Thymus Gland/pathology , T-Lymphocytes/immunology , Poultry Diseases/virology , Poultry Diseases/immunology
8.
Am J Physiol Heart Circ Physiol ; 327(2): H533-H544, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38995212

ABSTRACT

The thymus, where T lymphocytes develop and mature, is sensitive to insults such as tissue ischemia or injury. The insults can cause thymic atrophy and compromise T-cell development, potentially impairing adaptive immunity. The objective of this study was to investigate whether myocardial infarction (MI) induces thymic injury to impair T lymphopoiesis and to uncover the underlying mechanisms. When compared with sham controls, MI mice at day 7 post-MI exhibited smaller thymus, lower cellularity, as well as less thymocytes at different developmental stages, indicative of T-lymphopoiesis impairment following MI. Accordingly, the spleen of MI mice has less T cells and recent thymic emigrants (RTEs), implying that the thymus of MI mice releases fewer mature thymocytes than sham controls. Interestingly, the secretory function of splenic T cells was not affected by MI. Further experiments showed that the reduction of thymocytes in MI mice was due to increased thymocyte apoptosis. Removal of adrenal glands by adrenalectomy (ADX) prevented MI-induced thymic injury and dysfunction, whereas corticosterone supplementation in ADX + MI mice reinduced thymic injury and dysfunction, indicating that glucocorticoids mediate thymic damage triggered by MI. Eosinophils play essential roles in thymic regeneration postirradiation, and eosinophil-deficient mice exhibit impaired thymic recovery after sublethal irradiation. Interestingly, the thymus was fully regenerated in both wild-type and eosinophil-deficient mice at day 14 post-MI, suggesting that eosinophils are not critical for thymus regeneration post-MI. In conclusion, our study demonstrates that MI-induced glucocorticoids trigger thymocyte apoptosis and impair T lymphopoiesis, resulting in less mature thymocyte release to the spleen.NEW & NOTEWORTHY The thymus is essential for maintaining whole body T-cell output. Thymic injury can adversely affect T lymphopoiesis and T-cell immune response. This study demonstrates that MI induces thymocyte apoptosis and compromises T lymphopoiesis, resulting in fewer releases of mature thymocytes to the spleen. This process is mediated by glucocorticoids secreted by adrenal glands. Therefore, targeting glucocorticoids represents a novel approach to attenuate post-MI thymic injury.


Subject(s)
Adrenalectomy , Apoptosis , Lymphopoiesis , Mice, Inbred C57BL , Myocardial Infarction , Thymus Gland , Animals , Thymus Gland/pathology , Thymus Gland/immunology , Thymus Gland/drug effects , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Myocardial Infarction/immunology , Myocardial Infarction/physiopathology , Male , Thymocytes/metabolism , Thymocytes/pathology , Thymocytes/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Glucocorticoids/pharmacology , Eosinophils/metabolism , Eosinophils/immunology , Spleen/immunology , Spleen/metabolism , Spleen/pathology , Disease Models, Animal , Mice , Corticosterone/blood
10.
Front Immunol ; 15: 1423488, 2024.
Article in English | MEDLINE | ID: mdl-39072332

ABSTRACT

T cell development in the thymus is dependent on the thymic microenvironment, in which thymic epithelial cells (TECs) are the major component. However, TECs undergo both a qualitative and quantitative loss during aging, which is believed to be the major factor responsible for age-dependent thymic atrophy. FOXN1 plays a critical role in TEC development and adult TECs maintenance. We have previously reported that intrathymic injection of a recombinant (r) protein containing murine FOXN1 and a protein transduction domain increases the number of TECs in mice, leading to enhanced thymopoiesis. However, intrathymic injection may not be an ideal choice for clinical applications. In this study, we produced a rFOXN1 fusion protein containing the N-terminal of CCR9, human FOXN1 and a protein transduction domain. When injected intravenously into 14-month-old mice, the rFOXN1 fusion protein enters the thymus and TECs, and enhances thymopoiesis, resulting in increased T cell generation in the thymus and increased number of T cells in peripheral lymphoid organ. Our results suggest that the rFOXN1 fusion protein has the potential to be used in preventing and treating T cell immunodeficiency in older adults.


Subject(s)
Forkhead Transcription Factors , Recombinant Fusion Proteins , T-Lymphocytes , Thymus Gland , Animals , Mice , Recombinant Fusion Proteins/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Thymus Gland/immunology , Thymus Gland/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Humans , Aging/immunology , Mice, Inbred C57BL , Epithelial Cells/metabolism , Epithelial Cells/immunology , Cell Differentiation
11.
Immunohorizons ; 8(7): 492-499, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39008056

ABSTRACT

The transcription factor FOXN1 plays an established role in thymic epithelial development to mediate selection of maturing thymocytes. Patients with heterozygous loss-of-function FOXN1 variants are associated with T cell lymphopenia at birth and low TCR excision circles that can ultimately recover. Although CD4+ T cell reconstitution in these patients is not completely understood, a lower proportion of naive T cells in adults has suggested a role for homeostatic proliferation. In this study, we present an immunophenotyping study of fraternal twins with low TCR excision circles at birth. Targeted primary immunodeficiency testing revealed a heterozygous variant of uncertain significance in FOXN1 (c.1205del, p.Pro402Leufs*148). We present the immune phenotypes of these two patients, as well as their father who carries the same FOXN1 variant, to demonstrate an evolving immune environment over time. While FOXN1 haploinsufficiency may contribute to thymic defects and T cell lymphopenia, we characterized the transcriptional activity and DNA binding of the heterozygous FOXN1 variant in 293T cells and found the FOXN1 variant to have different effects across several target genes. These data suggest multiple mechanisms for similar FOXN1 variants pathogenicity that may be mutation specific. Increased understanding of how these variants drive transcriptional regulation to impact immune cell populations will guide the potential need for therapeutics, risk for infection or autoimmunity over time, and help inform clinical decisions for other variants that might arise.


Subject(s)
Forkhead Transcription Factors , Heterozygote , Immunophenotyping , Humans , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Male , Female , Lymphopenia/genetics , Lymphopenia/immunology , Mutation , Adult , Haploinsufficiency , T-Lymphocytes/immunology , HEK293 Cells , Infant, Newborn , Thymus Gland/immunology , Thymus Gland/metabolism
12.
Immunohorizons ; 8(7): 500-510, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39018546

ABSTRACT

The critical importance of the thymus for generating new naive T cells that protect against novel infections and are tolerant to self-antigens has led to a recent revival of interest in monitoring thymic function in species other than humans and mice. Nonhuman primates such as rhesus macaques (Macaca mulatta) provide particularly useful animal models for translational research in immunology. In this study, we tested the performance of a 15-marker multicolor Ab panel for flow cytometric phenotyping of lymphocyte subsets directly from rhesus whole blood, with validation by thymectomy and T cell depletion. Immunohistochemical and multiplex RNA expression analysis of thymus tissue biopsies and molecular assays on PBMCs were used to further validate thymus function. Results identify Ab panels that can accurately classify rhesus naive T cells (CD3+CD45RA+CD197+ or CD3+CD28+CD95-) and recent thymic emigrants (CD8+CD28+CD95-CD103+CD197+) using just 100 µl of whole blood and commercially available fluorescent Abs. An immunohistochemical panel reactive with pan-cytokeratin (CK), CK14, CD3, Ki-67, CCL21, and TdT provides histologic evidence of thymopoiesis from formalin-fixed, paraffin-embedded thymus tissues. Identification of mRNAs characteristic of both functioning thymic epithelial cells and developing thymocytes and/or molecular detection of products of TCR gene rearrangement provide additional complementary methods to evaluate thymopoiesis, without requiring specific Abs. Combinations of multiparameter flow cytometry, immunohistochemistry, multiplex gene expression, and TCR excision circle assays can comprehensively evaluate thymus function in rhesus macaques while requiring only minimal amounts of peripheral blood or biopsied thymus tissue.


Subject(s)
Flow Cytometry , Macaca mulatta , Thymus Gland , Animals , Thymus Gland/immunology , Thymus Gland/metabolism , Thymus Gland/cytology , Immunohistochemistry , Immunophenotyping , Male , Female , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Thymectomy
13.
Nat Immunol ; 25(8): 1367-1382, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38992254

ABSTRACT

Upregulation of diverse self-antigens that constitute components of the inflammatory response overlaps spatially and temporally with the emergence of pathogen-derived foreign antigens. Therefore, discrimination between these inflammation-associated self-antigens and pathogen-derived molecules represents a unique challenge for the adaptive immune system. Here, we demonstrate that CD8+ T cell tolerance to T cell-derived inflammation-associated self-antigens is efficiently induced in the thymus and supported by redundancy in cell types expressing these molecules. In addition to thymic epithelial cells, this included thymic eosinophils and innate-like T cells, a population that expressed molecules characteristic for all major activated T cell subsets. We show that direct T cell-to-T cell antigen presentation by minute numbers of innate-like T cells was sufficient to eliminate autoreactive CD8+ thymocytes. Tolerance to such effector molecules was of critical importance, as its breach caused by decreased thymic abundance of a single model inflammation-associated self-antigen resulted in autoimmune elimination of an entire class of effector T cells.


Subject(s)
Antigen Presentation , Autoantigens , CD8-Positive T-Lymphocytes , Inflammation , Thymocytes , Thymus Gland , Animals , Autoantigens/immunology , CD8-Positive T-Lymphocytes/immunology , Mice , Thymus Gland/immunology , Inflammation/immunology , Antigen Presentation/immunology , Thymocytes/immunology , Thymocytes/metabolism , Mice, Inbred C57BL , Immunity, Innate , Autoimmunity/immunology , Immune Tolerance/immunology , Mice, Transgenic , Mice, Knockout , Lymphocyte Activation/immunology , Eosinophils/immunology
14.
Clin Immunol ; 265: 110302, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38942161

ABSTRACT

Pediatric hematopoietic stem cell transplantation (HSCT) is challenged by chronic graft-versus-host disease (cGvHD) significantly affecting survival and long-term morbidity, but underlying mechanisms including the impact of post-HSCT CMV infection are sparsely studied. We first investigated the impact of CMV infection for development of cGvHD in 322 children undergoing standard myeloablative HSCT between 2000 and 2018. Clinically significant CMV infection (n = 61) was an independent risk factor for chronic GvHD in a multivariable Cox regression analysis (HR = 2.17, 95% CI = 1.18-3.97, P = 0.013). We next explored the underlying mechanisms in a subcohort of 39 children. CMV infection was followed by reduced concentration of recent thymic emigrants (17.5 vs. 51.9 × 106/L, P = 0.048) and naïve CD4+ and CD8+ T cells at 6 months post-HSCT (all P < 0.05). Furthermore, CD25highFOXP3+ Tregs tended to be lower in patients with CMV infection (2.9 vs. 9.6 × 106/L, P = 0.055), including Tregs expressing the naivety markers CD45RA and Helios. CD8+ T-cell numbers rose after CMV infection and was dominated by exhausted PD1-expressing cells (66% vs. 39%, P = 0.023). These findings indicate that post-HSCT CMV infection is a main risk factor for development of chronic GvHD after pediatric HSCT and suggest that this effect is caused by reduced thymic function with a persistently impaired production of naïve and regulatory T cells in combination with increased peripheral T-cell exhaustion.


Subject(s)
Cytomegalovirus Infections , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Thymus Gland , Humans , Graft vs Host Disease/immunology , Cytomegalovirus Infections/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , Child , Male , Female , Child, Preschool , Thymus Gland/immunology , Adolescent , Chronic Disease , Infant , Cytomegalovirus/immunology , CD8-Positive T-Lymphocytes/immunology , T-Lymphocytes, Regulatory/immunology , Risk Factors , CD4-Positive T-Lymphocytes/immunology , Bronchiolitis Obliterans Syndrome
15.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200251, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838284

ABSTRACT

BACKGROUND AND OBJECTIVES: Multiple sclerosis (MS) is considered a prototypic autoimmune disease of the CNS. It is the leading cause of chronic neurologic disability in young adults. Proinflammatory B cells and autoreactive T cells both play important roles in its pathogenesis. We aimed to study alterations of regulatory T cells (Tregs), which likely also contribute to the disease, but their involvement is less clear. METHODS: By combining multiple experimental approaches, we examined the Treg compartments in 41 patients with relapsing-remitting MS and 17 healthy donors. RESULTS: Patients with MS showed a reduced frequency of CD4+ T cells and Foxp3+ Tregs and age-dependent alterations of Treg subsets. Treg suppressive function was compromised in patients, who were treated with natalizumab, while it was unaffected in untreated and anti-CD20-treated patients. The changes in natalizumab-treated patients included increased proinflammatory cytokines and an altered transcriptome in thymus-derived (t)-Tregs, but not in peripheral (p)-Tregs. DISCUSSION: Treg dysfunction in patients with MS might be related to an altered transcriptome of t-Tregs and a proinflammatory environment. Our findings contribute to a better understanding of Tregs and their subtypes in MS.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Natalizumab , T-Lymphocytes, Regulatory , Humans , T-Lymphocytes, Regulatory/immunology , Adult , Female , Male , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Natalizumab/pharmacology , Middle Aged , Thymus Gland/immunology , Immunologic Factors/pharmacology , Young Adult
16.
Front Immunol ; 15: 1375508, 2024.
Article in English | MEDLINE | ID: mdl-38895117

ABSTRACT

Introduction: Herpesviruses, including the roseoloviruses, have been linked to autoimmune disease. The ubiquitous and chronic nature of these infections have made it difficult to establish a causal relationship between acute infection and subsequent development of autoimmunity. We have shown that murine roseolovirus (MRV), which is highly related to human roseoloviruses, induces thymic atrophy and disruption of central tolerance after neonatal infection. Moreover, neonatal MRV infection results in development of autoimmunity in adult mice, long after resolution of acute infection. This suggests that MRV induces durable immune dysregulation. Methods: In the current studies, we utilized single-cell RNA sequencing (scRNAseq) to study the tropism of MRV in the thymus and determine cellular processes in the thymus that were disrupted by neonatal MRV infection. We then utilized tropism data to establish a cell culture system. Results: Herein, we describe how MRV alters the thymic transcriptome during acute neonatal infection. We found that MRV infection resulted in major shifts in inflammatory, differentiation and cell cycle pathways in the infected thymus. We also observed shifts in the relative number of specific cell populations. Moreover, utilizing expression of late viral transcripts as a proxy of viral replication, we identified the cellular tropism of MRV in the thymus. This approach demonstrated that double negative, double positive, and CD4 single positive thymocytes, as well as medullary thymic epithelial cells were infected by MRV in vivo. Finally, by applying pseudotime analysis to viral transcripts, which we refer to as "pseudokinetics," we identified viral gene transcription patterns associated with specific cell types and infection status. We utilized this information to establish the first cell culture systems susceptible to MRV infection in vitro. Conclusion: Our research provides the first complete picture of roseolovirus tropism in the thymus after neonatal infection. Additionally, we identified major transcriptomic alterations in cell populations in the thymus during acute neonatal MRV infection. These studies offer important insight into the early events that occur after neonatal MRV infection that disrupt central tolerance and promote autoimmune disease.


Subject(s)
Animals, Newborn , Gene Expression Profiling , Thymus Gland , Transcriptome , Viral Tropism , Thymus Gland/virology , Thymus Gland/immunology , Animals , Mice , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Mice, Inbred C57BL , Humans
17.
Blood Cancer J ; 14(1): 96, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871704

ABSTRACT

Childhood acute lymphoblastic leukemia (cALL) survivors suffer early-onset chronic diseases classically associated with aging. Normal aging is accompanied by organ dysfunctions, including immunological ones. We hypothesize that thymic immunosenescence occurs in cALL survivors and that its severity may correlate with early-onset chronic diseases. The PETALE study is a cALL survivor cohort with an extensive cardiovascular and metabolic evaluation. The thymic immunosenescence biomarker, signal joint T-cell receptor excision circles (TREC), was evaluated and was highly correlated with age in healthy participants (n = 281) and cALL survivors (n = 248). We observed a systematic thymic immunoage accentuation in each cALL survivor compared to controls ranging from 5.9 to 88.3 years. The immunoage gain was independent of age at diagnosis and treatment modalities and was more severe for females. Thymic aging was associated with several pathophysiological parameters, was greater in survivors suffering from metabolic syndrome, but there was no significant association with global physical condition. The decrease in TREC was independent from blood cell counts, which were normal, suggesting a segmental aging of the thymic compartment. Indeed, increased plasmatic T cell regulatory cytokines IL-6, IL-7 and GM-CSF accompanied high immunoage gain. Our data reveal that cALL or its treatment trigger a rapid immunoage gain followed by further gradual thymic immunosenescence, similar to normal aging. This leads to an enduring shift in accentuated immunoage compared to chronological age. Thus, accentuated thymic immunosenescence is a hallmark of cALL survivorship and TREC levels could be useful immunosenescence biomarkers to help monitoring the health of cancer survivors.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Thymus Gland , Humans , Female , Male , Child , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Adolescent , Adult , Thymus Gland/pathology , Thymus Gland/immunology , Child, Preschool , Young Adult , Aged , Middle Aged , Aged, 80 and over , Cancer Survivors , Immunosenescence , Survivorship
18.
Microb Pathog ; 192: 106723, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823465

ABSTRACT

The Hedgehog (Hh) signaling pathway is involved in T cell differentiation and development and plays a major regulatory part in different stages of T cell development. A previous study by us suggested that prenatal exposure to staphylococcal enterotoxin B (SEB) changed the percentages of T cell subpopulation in the offspring thymus. However, it is unclear whether prenatal SEB exposure impacts the Hh signaling pathway in thymic T cells. In the present study, pregnant rats at gestational day 16 were intravenously injected once with 15 µg SEB, and the thymi of both neonatal and adult offspring rats were aseptically acquired to scrutinize the effects of SEB on the Hh signaling pathway. It firstly found that prenatal SEB exposure clearly caused the increased expression of Shh and Dhh ligands of the Hh signaling pathway in thymus tissue of both neonatal and adult offspring rats, but significantly decreased the expression levels of membrane receptors of Ptch1 and Smo, transcription factor Gli1, as well as target genes of CyclinD1, C-myc, and N-myc in Hh signaling pathway of thymic T cells. These data suggest that prenatal SEB exposure inhibits the Hh signaling pathway in thymic T lymphocytes of the neonatal offspring, and this effect can be maintained in adult offspring via the imprinting effect.


Subject(s)
Enterotoxins , Hedgehog Proteins , Signal Transduction , T-Lymphocytes , Thymus Gland , Animals , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Female , Pregnancy , Rats , Thymus Gland/metabolism , Thymus Gland/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Patched-1 Receptor/metabolism , Patched-1 Receptor/genetics , Smoothened Receptor/metabolism , Smoothened Receptor/genetics , Prenatal Exposure Delayed Effects/immunology , Cell Differentiation/drug effects , Rats, Sprague-Dawley , Male
19.
J Reprod Immunol ; 164: 104288, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38924811

ABSTRACT

Thymic atrophy affects T cell generation and migration to the periphery, thereby affecting T cell pool diversity. However, the mechanisms underlying thymic atrophy have not been fully elucidated. Here, gonadotropin-releasing hormone (GnRH) immunization and surgical castration did not affect thymocyte proliferation, but significantly reduced the apoptosis and increased the survival rate of CD4-CD8-, CD4+CD8+, CD4+CD8-, and CD4-CD8+ thymocytes. Following testosterone supplementation in rats subjected to GnRH immunization and surgical castration, thymocyte proliferation remained unchange, but the apoptosis of CD4-CD8-, CD4+CD8+, CD4+CD8-, and CD4-CD8+ thymocytes significantly increased. Transcriptome analyses of the thymus after GnRH immunization and surgical castration showed a significant reduction in the thymus's response to corticosterone. Cholesterol metabolism and the synthesis and secretion of corticosterone were significantly reduced. Analysis of the enzyme levels involved in the corticosterone synthesis pathway revealed that corticosterone synthesis in thymocytes was significantly reduced after GnRH immunization and surgical castration, whereas exogenous testosterone supplementation relieved this process. Testosterone promoted thymocyte apoptosis in a concentration-dependent manner, and induced corticosterone secretion in vitro. Blocking the intracellular androgen receptor (AR) signaling pathway did not significantly affect thymocyte apoptosis, but blocking the glucocorticoid receptor (GR) signaling pathway significantly reduced it. Our findings indicate that testosterone regulates thymus remodeling by affecting corticosterone synthesis in thymocytes, which activates GR signal transduction and promotes thymocyte apoptosis.


Subject(s)
Apoptosis , Receptors, Glucocorticoid , Signal Transduction , Testosterone , Thymocytes , Thymus Gland , Animals , Male , Testosterone/metabolism , Apoptosis/immunology , Rats , Signal Transduction/immunology , Signal Transduction/drug effects , Thymus Gland/immunology , Thymus Gland/metabolism , Thymus Gland/pathology , Receptors, Glucocorticoid/metabolism , Thymocytes/immunology , Thymocytes/metabolism , Gonadotropin-Releasing Hormone/metabolism , Corticosterone/metabolism , Corticosterone/blood , Cells, Cultured , Rats, Sprague-Dawley , Receptors, Androgen/metabolism , Orchiectomy
20.
Cell Mol Immunol ; 21(8): 807-825, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38839915

ABSTRACT

Acute systemic inflammation critically alters the function of the immune system, often promoting myelopoiesis at the expense of lymphopoiesis. In the thymus, systemic inflammation results in acute thymic atrophy and, consequently, impaired T-lymphopoiesis. The mechanism by which systemic inflammation impacts the thymus beyond suppressing T-cell development is still unclear. Here, we describe how the synergism between TL1A and IL-18 suppresses T-lymphopoiesis to promote thymic myelopoiesis. The protein levels of these two cytokines were elevated in the thymus during viral-induced thymus atrophy infection with murine cytomegalovirus (MCMV) or pneumonia virus of mice (PVM). In vivo administration of TL1A and IL-18 induced acute thymic atrophy, while thymic neutrophils expanded. Fate mapping with Ms4a3-Cre mice demonstrated that thymic neutrophils emerge from thymic granulocyte-monocyte progenitors (GMPs), while Rag1-Cre fate mapping revealed a common developmental path with lymphocytes. These effects could be modeled ex vivo using neonatal thymic organ cultures (NTOCs), where TL1A and IL-18 synergistically enhanced neutrophil production and egress. NOTCH blockade by the LY411575 inhibitor increased the number of neutrophils in the culture, indicating that NOTCH restricted steady-state thymic granulopoiesis. To promote myelopoiesis, TL1A, and IL-18 synergistically increased GM-CSF levels in the NTOC, which was mainly produced by thymic ILC1s. In support, TL1A- and IL-18-induced granulopoiesis was completely prevented in NTOCs derived from Csf2rb-/- mice and by GM-CSFR antibody blockade, revealing that GM-CSF is the essential factor driving thymic granulopoiesis. Taken together, our findings reveal that TL1A and IL-18 synergism induce acute thymus atrophy while  promoting extramedullary thymic granulopoiesis in a NOTCH and GM-CSF-controlled manner.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Interleukin-18 , Thymus Gland , Tumor Necrosis Factor Ligand Superfamily Member 15 , Animals , Interleukin-18/metabolism , Thymus Gland/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Mice , Tumor Necrosis Factor Ligand Superfamily Member 15/metabolism , Mice, Inbred C57BL , Granulocytes/metabolism , Myelopoiesis , Neutrophils/immunology , Neutrophils/metabolism , Receptors, Notch/metabolism , Lymphopoiesis , Atrophy
SELECTION OF CITATIONS
SEARCH DETAIL