Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.123
Filter
1.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891934

ABSTRACT

Despite the significant changes that unfold during the subacute phase of stroke, few studies have examined recovery abilities during this critical period. As neuroinflammation subsides and tissue degradation diminishes, the processes of neuroplasticity and angiogenesis intensify. An important factor in brain physiology and pathology, particularly neuroplasticity, is matrix metalloproteinase 9 (MMP-9). Its activity is modulated by tissue inhibitors of metalloproteinases (TIMPs), which impede substrate binding and activity by binding to its active sites. Notably, TIMP-1 specifically targets MMP-9 among other matrix metalloproteinases (MMPs). Our present study examines whether MMP-9 may play a beneficial role in psychological functions, particularly in alleviating depressive symptoms and enhancing specific cognitive domains, such as calculation. It appears that improvements in depressive symptoms during rehabilitation were notably linked with baseline MMP-9 plasma levels (r = -0.36, p = 0.025), and particularly so with the ratio of MMP-9 to TIMP-1, indicative of active MMP-9 (r = -0.42, p = 0.008). Furthermore, our findings support previous research demonstrating an inverse relationship between pre-rehabilitation MMP-9 serum levels and post-rehabilitation motor function. Crucially, our study emphasizes a positive correlation between cognition and motor function, highlighting the necessity of integrating both aspects into rehabilitation planning. These findings demonstrate the potential utility of MMP-9 as a prognostic biomarker for delineating recovery trajectories and guiding personalized treatment strategies for stroke patients during the subacute phase.


Subject(s)
Matrix Metalloproteinase 9 , Stroke , Tissue Inhibitor of Metalloproteinase-1 , Matrix Metalloproteinase 9/blood , Matrix Metalloproteinase 9/metabolism , Humans , Tissue Inhibitor of Metalloproteinase-1/blood , Tissue Inhibitor of Metalloproteinase-1/metabolism , Male , Stroke/metabolism , Stroke/blood , Female , Prospective Studies , Aged , Recovery of Function , Middle Aged , Stroke Rehabilitation , Biomarkers/blood
2.
PLoS One ; 19(6): e0304185, 2024.
Article in English | MEDLINE | ID: mdl-38857261

ABSTRACT

OBJECTIVE: The present study aims to investigate the specific protective effects and underlying mechanisms of Ganshuang granule (GSG) on dimethylnitrosamine (DMN)-induced hepatic fibrosis in rat models. METHODS: Hepatic fibrosis was experimentally evoked in rats by DMN administration, and varying dosages of GSG were employed as an intervention. Hepatocellular damage was assessed by measuring serum levels of aminotransferase and bilirubin, accompanied by histopathological examinations of hepatic tissue. The hepatic concentrations of platelet-derived growth factor (PDGF) and transforming growth factor-ß1 (TGF-ß1) were quantitated via enzyme-linked immunosorbent assay (ELISA). The expression of α-smooth muscle actin (α-SMA) within hepatic tissue was evaluated using immunohistochemical techniques. The levels of hepatic interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and a spectrum of interleukins (IL-2, IL-4, IL-6, IL-10) were quantified by quantitative real-time PCR (qRT-PCR). Additionally, hepatic stellate cells (HSCs) were cultured in vitro and exposed to TNF-α in the presence of naringin, a principal component of GSG. The gene expression levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) and matrix metallopeptidase-1 (MMP-1) in these cells were also quantified by qRT-PCR. Proliferative activity of HSCs was evaluated by the Cell Counting Kit-8 assay. Finally, alterations in Smad protein expression were analyzed through Western blotting. RESULTS: Administration of GSG in rats with fibrosis resulted in reduced levels of serum aminotransferases and bilirubin, along with alleviation of histopathological liver injury. Furthermore, the fibrosis rats treated with GSG exhibited significant downregulation of hepatic TGF-ß1, PDGF, and TNF-α levels. Additionally, GSG treatment led to increased mRNA levels of IFN-γ, IL-2, and IL-4, as well as decreased expression of α-SMA in the liver. Furthermore, treatment with naringin, a pivotal extract of GSG, resulted in elevated expression of MMP-1 and decreased levels of TIMP-1 in TNF-α-stimulated HSCs when compared to the control group. Additionally, naringin administration led to a reduction in Smad expression within the HSCs. CONCLUSION: GSG has the potential to mitigate fibrosis induced by DMN in rat models through the regulation of inflammatory and fibrosis factors. Notably, naringin, the primary extract of GSG, may exert a pivotal role in modulating the TGF-ß-Smad signaling pathway.


Subject(s)
Drugs, Chinese Herbal , Flavanones , Hepatic Stellate Cells , Liver Cirrhosis , Signal Transduction , Smad Proteins , Animals , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/chemically induced , Signal Transduction/drug effects , Flavanones/pharmacology , Flavanones/therapeutic use , Male , Rats , Smad Proteins/metabolism , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Rats, Sprague-Dawley , Dimethylnitrosamine , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Transforming Growth Factor beta1/metabolism , Platelet-Derived Growth Factor/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Actins/metabolism
3.
Sci Rep ; 14(1): 12716, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830933

ABSTRACT

To explore the molecular pathogenesis of pulmonary arterial hypertension (PAH) and identify potential therapeutic targets, we performed transcriptome sequencing of lung tissue from mice with hypoxia-induced pulmonary hypertension. Our Gene Ontology analysis revealed that "extracellular matrix organization" ranked high in the biological process category, and matrix metallopeptidases (MMPs) and other proteases also played important roles in it. Moreover, compared with those in the normoxia group, we confirmed that MMPs expression was upregulated in the hypoxia group, while the hub gene Timp1 was downregulated. Crocin, a natural MMP inhibitor, was found to reduce inflammation, decrease MMPs levels, increase Timp1 expression levels, and attenuate hypoxia-induced pulmonary hypertension in mice. In addition, analysis of the cell distribution of MMPs and Timp1 in the human lung cell atlas using single-cell RNAseq datasets revealed that MMPs and Timp1 are mainly expressed in a population of fibroblasts. Moreover, in vitro experiments revealed that crocin significantly inhibited myofibroblast proliferation, migration, and extracellular matrix deposition. Furthermore, we demonstrated that crocin inhibited TGF-ß1-induced fibroblast activation and regulated the pulmonary arterial fibroblast MMP2/TIMP1 balance by inhibiting the TGF-ß1/Smad3 signaling pathway. In summary, our results indicate that crocin attenuates hypoxia-induced pulmonary hypertension in mice by inhibiting TGF-ß1-induced myofibroblast activation.


Subject(s)
Carotenoids , Hypertension, Pulmonary , Hypoxia , Matrix Metalloproteinase 2 , Tissue Inhibitor of Metalloproteinase-1 , Animals , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Mice , Hypoxia/metabolism , Hypoxia/complications , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Carotenoids/pharmacology , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Male , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Disease Models, Animal , Cell Proliferation/drug effects , Mice, Inbred C57BL , Smad3 Protein/metabolism , Cell Movement/drug effects , Lung/pathology , Lung/metabolism , Lung/drug effects
4.
Mol Biol Rep ; 51(1): 734, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874773

ABSTRACT

BACKGROUND: Liver cirrhosis, a prevalent chronic liver disease, is characterized by liver fibrosis as its central pathological process. Recent advancements highlight the clinical efficacy of umbilical cord mesenchymal stem cell (UC-MSC) therapy in the treatment of liver cirrhosis. METHODS AND RESULTS: We investigated the pharmacodynamic effects of UC-MSCs and MSC conditional medium (MSC-CM) in vivo, utilizing a carbon tetrachloride (CCl4)-induced fibrotic rat model. Concurrently, we assessed the in vitro impact of MSCs and MSC-CM on various cellular process of hepatic stellate cells (HSCs), including proliferation, apoptosis, activation, immunomodulatory capabilities, and inflammatory factor secretion. Our results indicate that both MSCs and MSC-CM significantly ameliorate the pathological extent of fibrosis in animal tissues, reducing the collagen content, serum biochemical indices and fibrosis biomarkers. In vitro, MSC-CM significantly inhibited the activation of the HSC line LX-2. Notably, MSC-CM modulated the expression of type I procollagen and TGFß-1 while increasing MMP1 expression. This modulation restored the MMP1/TIMP1 ratio imbalance and extracellular matrix deposition in TGFß-1 induced fibrosis. Both MSCs and MSC-CM not only induced apoptosis in HSCs but also suppressed proliferation and inflammatory cytokine release from activated HSCs. Furthermore, MSCs and MSC-CM exerted a suppressive effect on total lymphocyte activation. CONCLUSIONS: UC-MSCs and MSC-CM primarily modulate liver fibrosis severity by regulating HSC activation. This study provides both in vivo and in vitro pharmacodynamic evidence supporting the use of MSCs in liver fibrosis treatment.


Subject(s)
Apoptosis , Cell Proliferation , Hepatic Stellate Cells , Liver Cirrhosis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Umbilical Cord , Hepatic Stellate Cells/metabolism , Mesenchymal Stem Cells/metabolism , Animals , Humans , Liver Cirrhosis/pathology , Liver Cirrhosis/therapy , Liver Cirrhosis/metabolism , Umbilical Cord/cytology , Rats , Mesenchymal Stem Cell Transplantation/methods , Male , Carbon Tetrachloride , Disease Models, Animal , Culture Media, Conditioned/pharmacology , Rats, Sprague-Dawley , Tissue Inhibitor of Metalloproteinase-1/metabolism , Cell Line , Cytokines/metabolism
5.
Int J Mol Sci ; 25(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38928311

ABSTRACT

Aneurysms pose life-threatening risks due to the dilatation of the arteries and carry a high risk of rupture. Despite continuous research efforts, there are still no satisfactory or clinically effective pharmaceutical treatments for this condition. Accelerated inflammatory processes during aneurysm development lead to increased levels of matrix metalloproteinases (MMPs) and destabilization of the vessel wall through the degradation of the structural components of the extracellular matrix (ECM), mainly collagen and elastin. Tissue inhibitors of metalloproteinases (TIMPs) directly regulate MMP activity and consequently inhibit ECM proteolysis. In this work, the synthesis of TIMP-1 protein was increased by the exogenous delivery of synthetic TIMP-1 encoding mRNA into aortic vessel tissue in an attempt to inhibit MMP-9. In vitro, TIMP-1 mRNA transfection resulted in significantly increased TIMP-1 protein expression in various cells. The functionality of the expressed protein was evaluated in an appropriate ex vivo aortic vessel model. Decreased MMP-9 activity was detected using in situ zymography 24 h and 48 h post microinjection of 5 µg TIMP-1 mRNA into the aortic vessel wall. These results suggest that TIMP-1 mRNA administration is a promising approach for the treatment of aneurysms.


Subject(s)
Matrix Metalloproteinase 9 , RNA, Messenger , Tissue Inhibitor of Metalloproteinase-1 , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Animals , Humans , Rats , Aneurysm/therapy , Aneurysm/genetics , Aorta/metabolism , Male , Arteries/metabolism , Matrix Metalloproteinase Inhibitors/pharmacology
6.
Int J Mol Sci ; 25(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38928320

ABSTRACT

Bosentan, an endothelin receptor antagonist (ERA), has potential anti-atherosclerotic properties. We investigated the complementary effects of bosentan and atorvastatin on the progression and composition of the atherosclerotic lesions in diabetic mice. Forty-eight male ApoE-/- mice were fed high-fat diet (HFD) for 14 weeks. At week 8, diabetes was induced with streptozotocin, and mice were randomized into four groups: (1) control/COG: no intervention; (2) ΒOG: bosentan 100 mg/kg/day per os; (3) ATG: atorvastatin 20 mg/kg/day per os; and (4) BO + ATG: combined administration of bosentan and atorvastatin. The intra-plaque contents of collagen, elastin, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-a (TNF-a), matrix metalloproteinases (MMP-2, -3, -9), and TIMP-1 were determined. The percentage of lumen stenosis was significantly lower across all treated groups: BOG: 19.5 ± 2.2%, ATG: 12.8 ± 4.8%, and BO + ATG: 9.1 ± 2.7% compared to controls (24.6 ± 4.8%, p < 0.001). The administration of both atorvastatin and bosentan resulted in significantly higher collagen content and thicker fibrous cap versus COG (p < 0.01). All intervention groups showed lower relative intra-plaque concentrations of MCP-1, MMP-3, and MMP-9 and a higher TIMP-1concentration compared to COG (p < 0.001). Importantly, latter parameters presented lower levels when bosentan was combined with atorvastatin compared to COG (p < 0.05). Bosentan treatment in diabetic, atherosclerotic ApoE-/- mice delayed the atherosclerosis progression and enhanced plaques' stability, showing modest but additive effects with atorvastatin, which are promising in atherosclerotic cardiovascular diseases.


Subject(s)
Atherosclerosis , Atorvastatin , Bosentan , Endothelin Receptor Antagonists , Animals , Bosentan/pharmacology , Bosentan/therapeutic use , Atorvastatin/pharmacology , Atorvastatin/therapeutic use , Mice , Male , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/pathology , Endothelin Receptor Antagonists/pharmacology , Endothelin Receptor Antagonists/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Drug Therapy, Combination , Collagen/metabolism , Diet, High-Fat/adverse effects , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Tumor Necrosis Factor-alpha/metabolism , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/metabolism , Mice, Knockout , Tissue Inhibitor of Metalloproteinase-1/metabolism
7.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928407

ABSTRACT

Radiotherapy (RT) may have a cardiotoxic effect on the heart and cardiovascular system. Postulated mechanisms mediating these complications include vascular endothelium damage and myocardial fibrosis. The aim of our study was to assess endothelial damage and myocardial fibrosis in the early period after RT on the basis of cardiac biomarkers and in relation to the radiation dose applied to individual heart structures in patients treated for non-small-cell lung cancer. This single-center prospective study included consecutive patients with lung cancer (LC) who were referred for treatment with radiochemotherapy (study group) or chemotherapy (control group). The study protocol included performing an echocardiographic examination, a standard ECG examination, and collecting blood samples for laboratory tests before starting treatment for lung cancer in the first week after completing RT (after four cycles of chemotherapy in the control group) and after 12 weeks from the end of treatment. The study included 23 patients in the study group and 20 patients in the control group. Compared to the baseline values, there was a significant increase in total cholesterol concentration in the study group immediately after the end of RT, which persisted for three months after the end of therapy. After taking into account the use of statins in the analysis, it was found that an increase in total cholesterol concentration after oncological treatment was observed only among patients who did not use statins. Taking into account the assessment of myocardial fibrosis markers, there were no significant changes in the concentration of matrix metallopeptidase 9 (MMP-9) and tissue inhibitors of metalloproteinases 1 (TIMP-1) in the study group. In patients treated with radiochemotherapy, there was a significant increase in the concentration of intercellular adhesion molecule 1 (ICAM-1) immediately after RT, when compared to the baseline. After taking into account the use of statins, an increase in ICAM-1 concentration immediately after RT was observed only in patients who did not use statins. There was also a significant correlation between the radiation dose received by the left anterior descending coronary artery (LAD) and left circumferential coronary artery, and vascular cell adhesion protein 1 (VCAM-1) concentration measured at three months after the end of RT. Immediately after completion of radiotherapy, a significant increase in the level of ICAM-1 is observed indicating endothelial damage. The radiation dose to coronary arteries should be minimized, as it correlates with the concentration of VCAM-1. The use of statins may prevent the increase in total cholesterol and ICAM-1 concentration after irradiation for lung cancer; however, further studies designed for this specific purpose are necessary to confirm the effectiveness of statins in this area.


Subject(s)
Fibrosis , Lung Neoplasms , Humans , Male , Female , Lung Neoplasms/radiotherapy , Lung Neoplasms/pathology , Middle Aged , Aged , Prospective Studies , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/pathology , Endothelium, Vascular/radiation effects , Endothelium, Vascular/pathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/drug effects , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/blood , Myocardium/pathology , Myocardium/metabolism , Radiotherapy/adverse effects , Tissue Inhibitor of Metalloproteinase-1/blood , Tissue Inhibitor of Metalloproteinase-1/metabolism , Cardiomyopathies/etiology , Cardiomyopathies/pathology , Cholesterol/blood , Biomarkers/blood
8.
Life Sci ; 351: 122768, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38851417

ABSTRACT

AIMS: Cancer-associated fibroblasts (CAFs) have been shown to promote the metastasis of head and neck squamous cell carcinoma (HNSCC), but the underlying mechanisms remain unclear. The purpose of this study is to identify gene in CAFs that are associated with metastasis and to preliminarily validate its impact on the metastasis of HNSCC. MATERIALS AND METHODS: Scissor analysis was utilized to process single-cell and bulk RNA sequencing datasets, identifying genes associated with the metastasis of HNSCC through differential gene expression analysis. A risk model was constructed using LASSO regression analysis. Quantitative real time-PCR and Western blot were employed to measure mRNA and protein expressions, respectively. Multiplex immunohistochemistry (mIHC) was used to assess protein expression in CAFs. siRNA was utilized to achieve gene knockdown. CCK-8 and Transwell assays were employed to evaluate the biological characteristics of HNSCC cells. KEY FINDINGS: Compare to the nonmetastatic primary CAFs (nmCAFs), tissue inhibitors of metalloproteinase-1 (TIMP1) was founded to be overexpressed in the cells and tissues of metastatic primary CAFs (mCAFs). Knocking down TIMP1 in CAFs can signifucantly inhibit the proliferation, invasion, and migration of HNSCC cells. SIGNIFICANCE: CAFs facilitate HNSCC cell metastasis by upregulating TIMP1, highlighting TIMP1 as a potential therapeutic target in HNSCC metastasis management.


Subject(s)
Cancer-Associated Fibroblasts , Head and Neck Neoplasms , Single-Cell Analysis , Squamous Cell Carcinoma of Head and Neck , Tissue Inhibitor of Metalloproteinase-1 , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/secondary , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Single-Cell Analysis/methods , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Neoplasm Metastasis/genetics , Cell Movement/genetics , Sequence Analysis, RNA/methods , Male , Female
9.
Arch Oral Biol ; 165: 106011, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38815450

ABSTRACT

OBJECTIVE: This study aims to evaluate the effects of intermittent compressive force (ICF) on the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) by human periodontal ligament cells (hPDLCs). DESIGN: hPDLCs were subjected to ICF with a magnitude of 1.5 g/cm2 and loaded for 24 h. mRNA and protein expression of several MMPs and TIMPs were assessed using RT-PCR and ELISA analyses. An inhibitor of TGF-ß (SB431542) was used to assess a possible role of TGF-ß in the expression of MMPs and TIMPs under ICF. RESULTS: mRNA and protein analyses showed that ICF significantly induced expression of TIMP1 and TIMP3, but decreased expression of MMP1. Incubation with the TGF-ß inhibitor and applied to ICF showed a downregulation of TIMP3, but expression of MMP1 was not affected. CONCLUSION: ICF is likely to affect ECM homeostasis by hPDLCs by regulating the expression of MMP1 and TIMPs. Moreover, TGF-ß1 regulated expression of TIMP3. These findings suggest ICF may decrease the degradation of ECM and may thus be essential for maintaining PDL homeostasis.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Matrix Metalloproteinases , Periodontal Ligament , Tissue Inhibitor of Metalloproteinases , Humans , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Tissue Inhibitor of Metalloproteinases/metabolism , Matrix Metalloproteinases/metabolism , Cells, Cultured , Matrix Metalloproteinase 1/metabolism , Transforming Growth Factor beta1/metabolism , RNA, Messenger/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tissue Inhibitor of Metalloproteinase-3/metabolism , Real-Time Polymerase Chain Reaction , Stress, Mechanical
10.
Genes Immun ; 25(3): 188-200, 2024 06.
Article in English | MEDLINE | ID: mdl-38777826

ABSTRACT

Immune checkpoint therapies (ICT) for advanced solid tumors mark a new milestone in cancer therapy. Yet their efficacy is often limited by poor immunogenicity, attributed to inadequate priming and generation of antitumor T cells by dendritic cells (DCs). Identifying biomarkers to enhance DC functions in such tumors is thus crucial. Tissue Inhibitor of Metalloproteinases-1 (TIMP-1), recognized for its influence on immune cells, has an underexplored relationship with DCs. Our research reveals a correlation between high TIMP1 levels in metastatic melanoma and increased CD8 + T cell infiltration and survival. Network studies indicate a functional connection with HLA genes. Spatial transcriptomic analysis of a national melanoma cohort revealed that TIMP1 expression in immune compartments associates with an HLA-A/MHC-I peptide loading signature in lymph nodes. Primary human and bone-marrow-derived DCs secrete TIMP-1, which notably increases MHC-I expression in classical type 1 dendritic cells (cDC1), especially under melanoma antigen exposure. TIMP-1 affects the immunoproteasome/TAP complex, as seen by upregulated PSMB8 and TAP-1 levels of myeloid DCs. This study uncovers the role of TIMP-1 in DC-mediated immunogenicity with insights into CD8 + T cell activation, providing a foundation for mechanistic exploration and highlighting its potential as a new target for combinatorial immunotherapy to enhance ICT effectiveness.


Subject(s)
Dendritic Cells , Melanoma , Tissue Inhibitor of Metalloproteinase-1 , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Melanoma/immunology , Melanoma/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Myeloid Cells/immunology , Myeloid Cells/metabolism , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics
11.
Aging (Albany NY) ; 16(9): 8260-8278, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38728374

ABSTRACT

RATIONALE: Myocardial fibrosis is an important pathological change that occurs during ventricular remodeling in patients with hypertension and is an important pathophysiological basis of cardiovascular disease. However, the molecular mechanism underlying this ventricular remodeling is unclear. METHODS: Bioinformatics analysis identified HLA-B and TIMP1 as hub genes in the process of myocardial fibrosis. Expression and correlation analyses of significant hub genes with ventricular remodeling were performed. Weighted gene co-expression network analysis (WGCNA) was performed to verify the role of HLA-B. ceRNA network was constructed to identify the candidate molecule drugs. Receiver operating characteristic (ROC) curves were analyzed. RESULTS: RT-qPCR was performed to verify the roles of HLA-B and TIMP1 in seven control individuals with hypertension and seven patients with hypertension and ventricular remodeling. The WGCNA showed that HLA-B was in the brown module and the correlation coefficient between HLA-B and ventricular remodeling was 0.67. Based on univariate logistic proportional regression analysis, HLA-B influences ventricular remodeling (P<0.05). RT-qPCR showed that the relative expression levels of HLA-B and TIMP1 were significantly higher in HLVR samples compared with their expression in the control group. CONCLUSIONS: HLA-B and TIMP1 might provide novel research targets for the diagnosis and treatment of HLVR.


Subject(s)
HLA-B Antigens , Hypertension , Tissue Inhibitor of Metalloproteinase-1 , Ventricular Remodeling , Humans , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Ventricular Remodeling/genetics , HLA-B Antigens/genetics , Hypertension/genetics , Male , Female , Middle Aged , Gene Regulatory Networks , Computational Biology , Aged , Fibrosis/genetics
12.
Gene ; 922: 148557, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38740354

ABSTRACT

The primary aim of this study was to explore the impact of diabetes on matrix metalloproteases and tissue inhibitors, crucial factors for successful implantation, and to elucidate the molecular mechanisms that undergo changes in the endometrium and the embryo during diabetic pregnancies. In this investigation, we established a streptozotocin-induced diabetic pregnant rat model. Microarray analysis followed by RT-PCR was utilized to identify gene regions exhibiting expression alterations. Subsequently, we assessed the effects of MMPs and tissue inhibitors using ELISA and immunohistochemistry techniques, in addition to analyzing changes at the genetic level. Diabetes led to the upregulation of MMP3, MMP9, and MMP20 on the 6.5th day of pregnancy, while causing the downregulation of MMP3, MMP9, and MMP11 on the 8.5th day of pregnancy. TIMP1 expression was downregulated on the 8.5th day compared to the control group. No statistically significant differences were observed between the groups regarding other TIMP expressions. KEGG pathway analysis revealed that diabetes induced alterations in the expression of genes associated with certain microRNAs, as well as signaling pathways such as cAMP, calcium, BMP, p53, MAPK, PI3K-Akt, Jak-STAT, Hippo, Wnt, and TNF. Additionally, gene ontology analysis unveiled changes in membrane structures, extracellular matrix, signaling pathways, ion binding, protein binding, cell adhesion molecule binding, and receptor-ligand activity. This study serves as a valuable guide for investigating the mechanisms responsible for complications in diabetic pregnancies. By revealing the early-stage effects of diabetes, it offers insight into the development of new diagnostic and treatment approaches, ultimately contributing to improved patient care.


Subject(s)
Diabetes Mellitus, Experimental , Endometrium , Animals , Female , Pregnancy , Endometrium/metabolism , Rats , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Signal Transduction , Embryo, Mammalian/metabolism , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Pregnancy in Diabetics/metabolism , Pregnancy in Diabetics/genetics , Embryo Implantation/genetics , Rats, Sprague-Dawley , MicroRNAs/genetics , MicroRNAs/metabolism
13.
Mol Biol Rep ; 51(1): 667, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780696

ABSTRACT

BACKGROUND: The extracellular matrix (ECM) of skeletal muscle plays a pivotal role in tissue repair and growth, and its remodeling tightly regulated by matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), and inflammatory cytokines. This study aimed to investigate changes in the mRNA expression of MMPs (Mmp-2 and Mmp-14), TIMPs (Timp-1 and Timp-2), and inflammatory cytokines (Il-1ß, Tnf-α, and Tgfß1) in the soleus (SOL) and extensor digitorum longus (EDL) muscles of rats following acute treadmill exercise. Additionally, muscle morphology was examined using hematoxylin and eosin (H&E) staining. METHODS AND RESULTS: Male rats were subjected to acute treadmill exercise at 25 m/min for 60 min with a %0 slope. The mRNA expression of ECM components and muscle morphology in the SOL and EDL were assessed in both sedentary and exercise groups at various time points (immediately (0) and 1, 3, 6, 12, and 24 h post-exercise). Our results revealed a muscle-specific response, with early upregulation of the mRNA expression of Mmp-2, Mmp-14, Timp-1, Timp-2, Il-1ß, and Tnf-α observed in the SOL compared to the EDL. A decrease in Tgfß1 mRNA expression was evident in the SOL at all post-exercise time points. Conversely, Tgfß1 mRNA expression increased at 0 and 3 h post-exercise in the EDL. Histological analysis also revealed earlier cell infiltration in the SOL than in the EDL following acute exercise. CONCLUSIONS: Our results highlight how acute exercise modulates ECM components and muscle structure differently in the SOL and EDL muscles, leading to distinct muscle-specific responses.


Subject(s)
Cytokines , Matrix Metalloproteinases , Muscle, Skeletal , Physical Conditioning, Animal , Animals , Physical Conditioning, Animal/physiology , Male , Rats , Muscle, Skeletal/metabolism , Cytokines/metabolism , Cytokines/genetics , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Extracellular Matrix/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Tissue Inhibitor of Metalloproteinase-2/genetics , Tissue Inhibitor of Metalloproteinase-2/metabolism , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 14/genetics , Gene Expression Regulation
14.
Clin Exp Nephrol ; 28(7): 599-607, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38587753

ABSTRACT

The time for diabetic nephropathy (DN) to progress from mild to severe is long. Thus, methods to continuously repress DN are required to exert long-lasting effects mediated through epigenetic regulation. In this study, we demonstrated the ability of nicotinamide adenine dinucleotide (NAD) and its metabolites to reduce albuminuria through Sirt1- or Nampt-dependent epigenetic regulation. We previously reported that proximal tubular Sirt1 was lowered before glomerular Sirt1. Repressed glomerular Sirt1 was found to epigenetically elevate Claudin-1. In addition, we reported that proximal tubular Nampt deficiency epigenetically augmented TIMP-1 levels in Sirt6-mediated pathways, leading to type-IV collagen deposition and diabetic fibrosis. Altogether, we propose that the Sirt1/Claudin-1 axis may be crucial in the onset of albuminuria at the early stages of DN and that the Nampt/Sirt6/TIMP-1 axis promotes diabetic fibrosis in the middle to late stages of DN. Finally, administration of NMN, an NAD precursor, epigenetically potentiates the regression of the onset of DN to maintain Sirt1 and repress Claudin-1 in podocytes, suggesting the potential use of NAD metabolites as epigenetic medications for DN.


Subject(s)
Albuminuria , Claudin-1 , Diabetic Nephropathies , Epigenesis, Genetic , NAD , Sirtuin 1 , Tissue Inhibitor of Metalloproteinase-1 , Animals , Humans , Albuminuria/genetics , Claudin-1/genetics , Claudin-1/metabolism , Cytokines/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Fibrosis , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/drug effects , Mice, Inbred C57BL , Mice, Knockout , NAD/metabolism , Nicotinamide Mononucleotide/pharmacology , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Podocytes/metabolism , Sirtuin 1/metabolism , Sirtuin 1/genetics , Sirtuins/genetics , Sirtuins/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics
15.
J Transl Med ; 22(1): 352, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622667

ABSTRACT

BACKGROUND: Quinic acid (QA) and its derivatives have good lipid-lowering and hepatoprotective functions, but their role in atherosclerosis remains unknown. This study attempted to investigate the mechanism of QA on atherogenesis in Apoe-/- mice induced by HFD. METHODS: HE staining and oil red O staining were used to observe the pathology. The PCSK9, Mac-3 and SM22a expressions were detected by IHC. Cholesterol, HMGB1, TIMP-1 and CXCL13 levels were measured by biochemical and ELISA. Lipid metabolism and the HMGB1-SREBP2-SR-BI pathway were detected by PCR and WB. 16 S and metabolomics were used to detect gut microbiota and serum metabolites. RESULTS: QA or low-frequency ABX inhibited weight gain and aortic tissue atherogenesis in HFD-induced Apoe-/- mice. QA inhibited the increase of cholesterol, TMA, TMAO, CXCL13, TIMP-1 and HMGB1 levels in peripheral blood of Apoe-/- mice induced by HFD. Meanwhile, QA or low-frequency ABX treatment inhibited the expression of CAV-1, ABCA1, Mac-3 and SM22α, and promoted the expression of SREBP-1 and LXR in the vascular tissues of HFD-induced Apoe-/- mice. QA reduced Streptococcus_danieliae abundance, and promoted Lactobacillus_intestinalis and Ileibacterium_valens abundance in HFD-induced Apoe-/- mice. QA altered serum galactose metabolism, promoted SREBP-2 and LDLR, inhibited IDOL, FMO3 and PCSK9 expression in liver of HFD-induced Apoe-/- mice. The combined treatment of QA and low-frequency ABX regulated microbe-related Glycoursodeoxycholic acid and GLYCOCHENODEOXYCHOLATE metabolism in HFD-induced Apoe-/- mice. QA inhibited TMAO or LDL-induced HCAECs damage and HMGB1/SREBP2 axis dysfunction, which was reversed by HMGB1 overexpression. CONCLUSIONS: QA regulated the gut-liver lipid metabolism and chronic vascular inflammation of TMA/TMAO through gut microbiota to inhibit the atherogenesis in Apoe-/- mice, and the mechanism may be related to the HMGB1/SREBP2 pathway.


Subject(s)
Atherosclerosis , Gastrointestinal Microbiome , HMGB1 Protein , Methylamines , Mice , Animals , Proprotein Convertase 9 , HMGB1 Protein/metabolism , Quinic Acid , Sterol Regulatory Element Binding Protein 1/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Lipid Metabolism , Mice, Knockout, ApoE , Atherosclerosis/pathology , Inflammation , Cholesterol , Apolipoproteins E/metabolism , Mice, Inbred C57BL
16.
J Mol Neurosci ; 74(2): 48, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662286

ABSTRACT

We aimed to develop and validate a predictive model for identifying long-term survivors (LTS) among glioblastoma (GB) patients, defined as those with an overall survival (OS) of more than 3 years. A total of 293 GB patients from CGGA and 169 from TCGA database were assigned to training and validation cohort, respectively. The differences in expression of immune checkpoint genes (ICGs) and immune infiltration landscape were compared between LTS and short time survivor (STS) (OS<1.5 years). The differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA) were used to identify the genes differentially expressed between LTS and STS. Three different machine learning algorithms were employed to select the predictive genes from the overlapping region of DEGs and WGCNA to construct the nomogram. The comparison between LTS and STS revealed that STS exhibited an immune-resistant status, with higher expression of ICGs (P<0.05) and greater infiltration of immune suppression cells compared to LTS (P<0.05). Four genes, namely, OSMR, FMOD, CXCL14, and TIMP1, were identified and incorporated into the nomogram, which possessed good potential in predicting LTS probability among GB patients both in the training (C-index, 0.791; 0.772-0.817) and validation cohort (C-index, 0.770; 0.751-0.806). STS was found to be more likely to exhibit an immune-cold phenotype. The identified predictive genes were used to construct the nomogram with potential to identify LTS among GB patients.


Subject(s)
Brain Neoplasms , Glioblastoma , Machine Learning , Humans , Glioblastoma/genetics , Glioblastoma/immunology , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Cancer Survivors , Algorithms , Nomograms , Male , Female , Transcriptome , Middle Aged
17.
Cancer Sci ; 115(5): 1505-1519, 2024 May.
Article in English | MEDLINE | ID: mdl-38476010

ABSTRACT

The fibrotic tumor microenvironment is a pivotal therapeutic target. Nintedanib, a clinically approved multikinase antifibrotic inhibitor, is effective against lung adenocarcinoma (ADC) but not squamous cell carcinoma (SCC). Previous studies have implicated the secretome of tumor-associated fibroblasts (TAFs) in the selective effects of nintedanib in ADC, but the driving factor(s) remained unidentified. Here we examined the role of tissue inhibitor of metalloproteinase-1 (TIMP-1), a tumor-promoting cytokine overproduced in ADC-TAFs. To this aim, we combined genetic approaches with in vitro and in vivo preclinical models based on patient-derived TAFs. Nintedanib reduced TIMP-1 production more efficiently in ADC-TAFs than SCC-TAFs through a SMAD3-dependent mechanism. Cell culture experiments indicated that silencing TIMP1 in ADC-TAFs abolished the therapeutic effects of nintedanib on cancer cell growth and invasion, which were otherwise enhanced by the TAF secretome. Consistently, co-injecting ADC cells with TIMP1-knockdown ADC-TAFs into immunocompromised mice elicited a less effective reduction of tumor growth and invasion under nintedanib treatment compared to tumors bearing unmodified fibroblasts. Our results unveil a key mechanism underlying the selective mode of action of nintedanib in ADC based on the excessive production of TIMP-1 in ADC-TAFs. We further pinpoint reduced SMAD3 expression and consequent limited TIMP-1 production in SCC-TAFs as key for the resistance of SCC to nintedanib. These observations strongly support the emerging role of TIMP-1 as a critical regulator of therapy response in solid tumors.


Subject(s)
Adenocarcinoma of Lung , Cancer-Associated Fibroblasts , Indoles , Lung Neoplasms , Smad3 Protein , Tissue Inhibitor of Metalloproteinase-1 , Animals , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/drug effects , Humans , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Mice , Indoles/pharmacology , Indoles/therapeutic use , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/genetics , Smad3 Protein/metabolism , Cell Line, Tumor , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Female
18.
PLoS One ; 19(3): e0300258, 2024.
Article in English | MEDLINE | ID: mdl-38457458

ABSTRACT

There has been limited research on assessing metalloproteinases (MMPs) 1, 2, and 7, as well as their tissue inhibitors (TIMPs) 1, 2, 3, and 4 in the context of polytrauma. These proteins play crucial roles in various physiological and pathological processes and could be a reliable tool in polytrauma care. We aimed to determine their clinical relevance. We assessed 24 blunt polytrauma survivors and 12 fatalities (mean age, 44.2 years, mean ISS, 45) who were directly admitted to our Level I trauma center and spent at least one night in the intensive care unit. We measured serum levels of the selected proteins on admission (day 0) and days 1, 3, 5, 7, and 10. The serum levels of the seven proteins varied considerably among individuals, resulting in similar median trend curves for TIMP1 and TIMP4 and for MMP1, MMP2, TIMP2, and TIMP3. We also found a significant interrelationship between the MMP2, TIMP2, and TIMP3 levels at the same measurement points. Furthermore, we calculated significant cross-correlations between MMP7 and MMP1, TIMP1 and MMP7, TIMP3 and MMP1, TIMP3 and MMP2, and TIMP4 and TIMP3 and an almost significant correlation between MMP7 and TIMP1 for a two-day-lag. The autocorrelation coefficient reached statistical significance for MMP1 and TIMP3. Finally, lower TIMP1 serum levels were associated with in-hospital mortality upon admission. The causal effects and interrelationships between selected proteins might provide new insights into the interactions of MMPs and TIMPs. Identifying the underlying causes might help develop personalized therapies for patients with multiple injuries. Administering recombinant TIMP1 or increasing endogenous production could improve outcomes for those with multiple injuries. However, before justifying further investigations into basic research and clinical relevance, our findings must be validated in a multicenter study using independent cohorts to account for clinical and biological variability.


Subject(s)
Multiple Trauma , Tissue Inhibitor of Metalloproteinases , Humans , Adult , Tissue Inhibitor of Metalloproteinases/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 7 , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinases/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism
19.
Mol Biol Rep ; 51(1): 428, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499842

ABSTRACT

BACKGROUND: Vascular endothelial growth factor (VEGF) signaling pathway plays an important role in the progression of diabetic retinopathy (DR). The glycosylation modification process of many key functional proteins in DR patients is abnormal. However, the potential involvement of abnormal N-glycoproteins in DR progression remains unclear. METHODS: Glycoproteomic profiling of the vitreous humor was performed. The level of protein and N-glycoprotein was confirmed by Western blot and Lectin blot, respectively. The cell viability and migration efficiency were detected by CCK-8 and Transwell assay. Flow cytometry was conducted to analyze the level of cell apoptosis and reactive oxygen specie. Malondialdehyde, superoxide dismutase activity and VEGF content were detected by Enzyme linked immunosorbent assays. The interaction of metalloproteinase 1 (TIMP-1) with N-acetylglucosamine transferase V (GnT-V) was detected by GST pull-down. Hematoxylin and eosin staining and choroidal and retinal flat mount stained with fluorescein isothiocyanate-Dextran assay were used for functional research in vivo. RESULTS: We found that N-glycosylation was up-regulated in DR rats and high glucose (HG)-induced human retinal pigment epithelium cell line ARPE-19. HG-induced inhibited the viability of ARPE-19 cells and promoted cell apoptosis and oxidative stress (OS), but these effects were reversed with kifunensine treatment, GnT-V knockdown and TIMP-1 mutation. Additionally, GnT-V binds to TIMP-1 to promote N-glycosylation of TIMP-1. Over-expression of GnT-V inhibited the viability of ARPE-19 cells and promoted cell apoptosis, OS and VEGF release, which these effects were reversed with TIMP-1 mutation. Interestingly, over-expression of GnT-V promoted retinal microvascular endothelial cells (RMECs) angiogenesis but was revered with TIMP-1 mutation, which was terminally boosted by VEGF-A treatment. Finally, knockdown of GnT-V relieved DR progression. CONCLUSION: The findings indicate that GnT-V can promote RMECs angiogenesis and ARPE-19 cells injury through activation VEGF signaling pathway by increasing TIMP-1 N-glycosylation level, which provides a new theoretical basis for the prevention of DR.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Animals , Humans , Rats , Cell Movement , Diabetes Mellitus/metabolism , Diabetic Retinopathy/genetics , Diabetic Retinopathy/metabolism , Endothelial Cells/metabolism , Glucose/pharmacology , Glucose/metabolism , Glycosylation , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Vascular Endothelial Growth Factor A/metabolism
20.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474106

ABSTRACT

Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) play critical roles in regulating processes associated with malignant behavior. These endopeptidases selectively degrade components of the extracellular matrix (ECM), growth factors, and their receptors, contributing to cancer cell invasiveness and migratory characteristics by disrupting the basal membrane. However, the expression profile and role of various matrix metalloproteinases remain unclear, and only a few studies have focused on differences between diagnoses of brain tumors. Using quantitative real-time PCR analysis, we identified the expression pattern of ECM modulators (n = 10) in biopsies from glioblastoma (GBM; n = 20), astrocytoma (AST; n = 9), and meningioma (MNG; n = 19) patients. We found eight deregulated genes in the glioblastoma group compared to the benign meningioma group, with only MMP9 (FC = 2.55; p = 0.09) and TIMP4 (7.28; p < 0.0001) upregulated in an aggressive form. The most substantial positive change in fold regulation for all tumors was detected in matrix metalloproteinase 2 (MNG = 30.9, AST = 4.28, and GBM = 4.12). Notably, we observed an influence of TIMP1, demonstrating a positive correlation with MMP8, MMP9, and MMP10 in tumor samples. Subsequently, we examined the protein levels of the investigated MMPs (n = 7) and TIMPs (n = 3) via immunodetection. We confirmed elevated levels of MMPs and TIMPs in GBM patients compared to meningiomas and astrocytomas. Even when correlating glioblastomas versus astrocytomas, we showed a significantly increased level of MMP1, MMP3, MMP13, and TIMP1. The identified metalloproteases may play a key role in the process of gliomagenesis and may represent potential targets for personalized therapy. However, as we have not confirmed the relationship between mRNA expression and protein levels in individual samples, it is therefore natural that the regulation of metalloproteases will be subject to several factors.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioblastoma , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...