Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.492
Filter
1.
ScientificWorldJournal ; 2024: 8991384, 2024.
Article in English | MEDLINE | ID: mdl-38957454

ABSTRACT

The medicinal plant Bredemeyera floribunda Willd. is used to treat cardiovascular disease, chronic fatigue, low libido, as well as increased diuresis. However, studies considering the toxicity of this plant are scarce. Develop an aqueous extract of B. floribunda considering traditional use and determine the average lethality (LD50), signs, and symptoms of toxicity. The B. floribunda extract was obtained by immersing the root bark in ultrapure water for 18 hours at 4°C, under constant stirring. The test extract was administered in a single dose of 2.000 mg/kg by gavage to rats. Signs and symptoms of toxicity were determined according to the Hippocratic screening test and compared with the control group. In addition, a necropsy was performed for macroscopic evaluation of the organs in the abdominal cavity. A powder was obtained from aqueous extracts that showed the same organoleptic characteristics and emulsification capacity as those presented by the fresh root when prepared according to popular tradition. The LD50 was greater than the test dose with three animals surviving. On the other hand, necropsy of dead rats showed necrosis and reduction in lung mass, in addition to the presence of foam and excessive distension of the stomach and intestines. The main symptoms of toxicity were anesthesia, ataxia, sedation, loss of muscle strength, and excessive drowsiness in the first 24 hours. There was no difference between the control and extract groups with regard to body mass, food, and water intake, as well as in macroscopy of the heart, liver, lungs, intestines, spleen, pancreas, and kidneys. The aqueous extract of the B. floribunda was considered nontoxic or of very low toxicity. However, it is capable of altering the activity of the central nervous system and causing disorders in the respiratory and digestive systems.


Subject(s)
Plant Bark , Plant Extracts , Plant Roots , Animals , Plant Extracts/toxicity , Plant Extracts/chemistry , Rats , Plant Bark/chemistry , Male , Plant Roots/chemistry , Lethal Dose 50 , Female , Toxicity Tests, Acute , Rats, Wistar , Models, Animal
2.
Molecules ; 29(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39064822

ABSTRACT

Chysobalanus icaco L. (C. icaco) is a plant that is native to tropical America and Africa. It is also found in the southeast region of Mexico, where it is used as food and to treat certain diseases. This study aimed to carry out a phytochemical analysis of an aqueous extract of C. icaco seed (AECS), including its total phenol content (TPC), total flavonoid content (TFC), and condensed tannins (CT). It also aimed to examine the antioxidant and metal-ion-reducing potential of the AECS in vitro, as well as its toxicity and anti-inflammatory effect in mice. Antioxidant and metal-ion-reducing potential was examined by inhibiting DPPH, ABTS, and FRAP. The acute toxicity test involved a single administration of different doses of the AECS (0.5, 1, and 2 g/kg body weight). Finally, a single administration at doses of 150, 300, and 600 mg/kg of the AECS was used in the carrageenan-induced model of subplantar acute edema. The results showed that the AECS contained 124.14 ± 0.32 mg GAE, 1.65 ± 0.02 mg EQ, and 0.910 ± 0.01 mg of catechin equivalents/g dried extract (mg EC/g de extract) for TPC, TFC and CT, respectively. In the antioxidant potential assays, the values of the median inhibition concentration (IC50) of the AECS were determined with DPPH (0.050 mg/mL), ABTS (0.074 mg/mL), and FRAP (0.49 mg/mL). Acute toxicity testing of the AECS revealed no lethality, with a median lethal dose (LD50) value of >2 g/kg by the intragastric route. Finally, for inhibition of acute edema, the AECS decreased inflammation by 55%, similar to indomethacin (59%, p > 0.05). These results demonstrated that C. icaco seed could be considered a source of bioactive molecules for therapeutic purposes due to its antioxidant potential and anti-inflammatory activity derived from TPC, with no lethal effect from a single intragastric administration in mice.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Edema , Plant Extracts , Seeds , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Mice , Antioxidants/pharmacology , Antioxidants/chemistry , Seeds/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Edema/drug therapy , Edema/chemically induced , Carrageenan/toxicity , Flavonoids/pharmacology , Flavonoids/chemistry , Disease Models, Animal , Toxicity Tests, Acute , Phytochemicals/pharmacology , Phytochemicals/chemistry , Male , Phenols/chemistry , Phenols/pharmacology
3.
Sci Total Environ ; 946: 174403, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38960198

ABSTRACT

Conventional plastics have become a major environmental concern due to their persistence and accumulation in marine ecosystems. The development of potential degradable polymers (PBP), such as polyhydroxyalkanoates (PHAs) and polylactic acid (PLA), has gained attention as an alternative to mitigate plastic pollution, since they have the potential to biodegrade under certain conditions, and their production is increasing as replacement of conventional polyolefins. This study aimed to assess and compare the toxicity of leachates of pre-compounding PBP (PLA and the PHA, polyhydroxybutyrate-covalerate (PHBv)) and polypropylene (PP) on five marine planktonic species. A battery of standard bioassays using bacteria, microalgae, sea urchin embryos, mussel embryos and copepod nauplii was conducted to assess the toxicity of leachates from those polymers. Additionally, the presence of chemical additives in the leachates was also verified through GC-MS and LC-HRMS analysis. Results showed that PHBv leachates exhibited higher toxicity compared to other polymers, with the microalgae Rhodomonas salina, being the most sensitive species to the tested leachates. On the other hand, PP and PLA generally displayed minimal to no toxicity in the studied species. Estimated species sensitivity distribution curves (SSD) show that PHBv leachates can be 10 times more hazardous to marine plankton than PP or PLA leachates, as demonstrated by the calculated Hazardous Concentration for 5 % of species (HC5). Qualitative chemical analysis supports the toxicological results, with 80 % of compounds being identified in PHBv leachates of which 2,4,6-trichlorophenol is worth mentioning due to the deleterious effects to aquatic biota described in literature. These findings underscore the fact that whereas environmental persistence can be targeted using PBP, the issue of chemical safety remains unsolved by some alternatives, such as PHBv. Gaining a comprehensive understanding of the toxicity profiles of PBP materials through a priori toxicological risk assessment is vital for their responsible application as alternatives to conventional plastics.


Subject(s)
Plankton , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Plankton/drug effects , Animals , Polymers/toxicity , Polyesters/toxicity , Toxicity Tests, Acute , Aquatic Organisms/drug effects , Biodegradation, Environmental
4.
Pharm Biol ; 62(1): 577-591, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39016037

ABSTRACT

CONTEXT: The botanical species Bauhinia guianensis Aublet (Leguminosae-Cercidoideae) is traditionally used in the Amazon for medicinal purposes. OBJECTIVE: The acute toxicity of the hydroethanolic extracts from B. guianensis leaves and stems (HELBg and HESBg) was evaluated in zebrafish (Danio rerio), with emphasis on the embryonic developmental stage and adult alterations. MATERIALS AND METHODS: Extracts were analyzed on LC-DAD-MS/MS. Zebrafish eggs were inoculated individually with concentrations of HELBg and HESBg (0.25, 0.5, 0.75, 1.0, and 1.5 µg/mL), observed for 96 h. Adult zebrafish were treated with a single oral dose (100, 200, 500, 1000, and 2000 mg/kg) of HELBg and HESBg, observed for 48 h. RESULTS: HELBg and HESBg analysis detected 55 compounds. Both extracts exhibited toxicity, including embryo coagulation at higher doses of HELBg and absence of heartbeats in embryos at all doses of HESBg. Behavioral variations were observed; tissue alterations in adult zebrafish were found at the highest doses, primarily in the liver, intestine, and kidneys because of HELBg and HESBg effects. The LD50 of HESBg was 1717 mg/kg, while HELBg exceeded the limit dose of 2000 mg/kg. CONCLUSIONS: The study on acute toxicity of B. guianensis extracts exhibits significant toxic potential, emphasizing effects on embryonic and adult zebrafish. The results suggest relative safety of the species preparations, encouraging further clinical trials on potential biological activities.


Subject(s)
Bauhinia , Embryo, Nonmammalian , Plant Extracts , Plant Leaves , Toxicity Tests, Acute , Zebrafish , Animals , Plant Extracts/toxicity , Plant Extracts/isolation & purification , Bauhinia/chemistry , Embryo, Nonmammalian/drug effects , Lethal Dose 50 , Dose-Response Relationship, Drug , Plant Stems , Ethanol/toxicity , Tandem Mass Spectrometry , Male , Solvents/chemistry , Female
5.
ScientificWorldJournal ; 2024: 3607396, 2024.
Article in English | MEDLINE | ID: mdl-39050386

ABSTRACT

Syzygium polyanthum is known for its capacity to regulate blood glucose levels in individuals with diabetes, while Muntingia calabura leaves have a traditional history as an alternative therapy due to their antidiabetic compounds. The combination of these two plants is expected to yield more optimized antidiabetic agents. This study aims to assess the antidiabetic activity of the combined ethanolic extract of S. polyanthum and M. calabura leaves by measuring the in vitro inhibition of the α-glucosidase enzyme and the blood glucose level in streptozotocin-induced rats and to determine the phytochemical contents of total phenolics, total flavonoids, and quercetine as marker compounds. Acute oral toxicity test was also evaluated. Both plants were extracted by maceration using 96% ethanol. Various combinations of S. polyanthum and M. calabura leaves extracts (1 : 1, 2 : 1, 3 : 1, 1 : 3, and 1 : 2) were prepared. The in vitro test, along with the total phenolic and total flavonoid content, were measured by using UV-Vis spectrophotometry, while quercetine levels were quantified through high-performance liquid chromatography (HPLC). The in vivo and acute toxicity tests were performed on rats as an animal model. The findings demonstrated that the 1 : 1 combination of S. polyanthum and M. calabura leaves ethanolic extract displayed the highest enzyme inhibitory activity with IC50 value of 36.43 µg/mL. Moreover, the combination index (CI) was found <1 that indicates the synergism effect. This combination also decreases the blood glucose level in rats after 28 days of treatments without significant difference with positive control glibenclamide (p > 0.005), and it had medium lethal doses (LD50) higher than 2000 mg/kg BW. Phytochemical analysis showed that the levels of total phenolics, total flavonoids, and quercetine were 30.81% w/w, 1.37% w/w, and 3.25 mg/g, respectively. These findings suggest the potential of combined ethanolic extracts of S. polyanthum and M. calabura leaves (1 : 1) as raw materials for herbal antidiabetic medication.


Subject(s)
Diabetes Mellitus, Experimental , Ethanol , Hypoglycemic Agents , Phytochemicals , Plant Extracts , Plant Leaves , Syzygium , Animals , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/toxicity , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/toxicity , Plant Leaves/chemistry , Rats , Syzygium/chemistry , Phytochemicals/chemistry , Phytochemicals/analysis , Phytochemicals/toxicity , Ethanol/chemistry , Diabetes Mellitus, Experimental/drug therapy , Male , Blood Glucose/drug effects , Flavonoids/analysis , Toxicity Tests, Acute , Rats, Wistar
6.
Environ Sci Technol ; 58(31): 13678-13686, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39047073

ABSTRACT

Benzalkonium chlorides (BACs) have been of environmental concern due to their widespread use and potential harm. However, challenges arise in defining and controlling the exposure concentration (Cw) in aquatic toxicity tests involving BACs with a long alkyl chain (i.e., #C > 14). To address this, a novel passive dosing method was introduced in the 48 h-acute ecotoxicity test on Daphnia magna and compared to the conventional solvent-spiking method in terms of Cw stability and toxicity results. Among 13 sorbent materials tested for their sorption capacity, poly(ether sulfone) (PES) membrane was an optimal passive dosing reservoir, with equilibrium desorption of BACs to water achieved within 24 h. The Cw of BACs remained constant in both applied dosing methods during the test period. However, the Cw in solvent-spiking tests was lower than the nominal concentration for long-chain BACs, particularly at low exposure concentrations. Notably, the solvent-spiking tests indicated that the toxicity of BACs increased with alkyl chain length from C6 to 14, followed by a decline in toxicity from C14 to 18. In contrast, the passive dosing method displayed similar or slightly increasing toxicity levels of BACs from C14 to C18, indicating higher toxicity of C16 and C18-BACs than that inferred by the solvent spiking test. These findings emphasize the potential of applying this innovative passive dosing approach in aquatic toxicity tests to generate reliable and accurate toxicity data and support a comprehensive risk assessment of cationic surfactants.


Subject(s)
Benzalkonium Compounds , Daphnia , Surface-Active Agents , Water Pollutants, Chemical , Animals , Benzalkonium Compounds/toxicity , Surface-Active Agents/toxicity , Daphnia/drug effects , Water Pollutants, Chemical/toxicity , Toxicity Tests, Acute , Cations
7.
BMC Complement Med Ther ; 24(1): 243, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909225

ABSTRACT

BACKGROUND: Cucurbita pepo cv Dayangua (CPD) is an edible plant with diverse pharmacological properties. The current research on CPD has primarily focused on initial investigations of its chemical composition and pharmacological effects, and no comprehensive toxicity assessment has been conducted to date. METHODS: In the present study, the toxicity of CPD was evaluated through both acute and sub-chronic oral toxicity tests in mice. 16S rDNA sequencing was used to analyze the composition of the gut microbiota of mice at different time points to observe the effect of CPD on these microbial communities. RESULTS: In the acute toxicity test, CPD exhibited low toxicity, with a median lethal dose (LD50) > 2000 mg/kg. The sub-chronic toxicity test indicated that CPD administration at doses of 200, 400, and 600 mg/kg did not cause mortality or significant organ damage in mice. Furthermore, analysis of the gut microbiota after gavage administration of CPD at 400 and 600 mg/kg revealed an improved abundance of some beneficial gut bacteria. CONCLUSIONS: In summary, no acute or sub-chronic toxic effects were observed in mice following the oral administration of CPD. CPD did not affect the structure and diversity of the gut microbiota and may contribute to an increase in the number of beneficial gut bacteria.


Subject(s)
Cucurbita , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/drug effects , Mice , Male , Plant Extracts/pharmacology , Plant Extracts/toxicity , Female , Toxicity Tests, Acute
8.
Chemosphere ; 361: 142542, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844104

ABSTRACT

This study aimed to understand the effects of freshwater acidification, driven by industrial runoff, agricultural activities, and atmospheric deposition, on the freshwater mollusk Bellamya bengalensis. By systematically investigating the impact of two common carboxylic acids, acetic acid (AA) and benzoic acid (BA), this research employed diverse toxicological, pathological, and ecological assessments. We explored survival predictions through the generic unified threshold model of survival (GUTS-SD), examined oxidative stress responses, and investigated hepatopancreatic alterations. In the experimental design, Bellamya bengalensis were subjected to environmentally relevant sublethal concentrations (10%, 20% LC50) of AA (39.77 and 79.54 mg/l) and BA (31.41 and 62.82 mg/l) over 28 days. Acute toxicity tests revealed increased LC50 values, indicating heightened toxicity with prolonged exposure, particularly due to the greater potency of benzoic acid compared to acetic acid. The GUTS-SD model provided accurate predictions of time-specific effects on populations, presenting long-term exposure (100 days) LC50 values for AA (263.7 mg/l) and BA (330.9 mg/l). Sequentially, the integrated biomarker response (IBR) analysis across study intervals highlighted the 28-day interval as the most sensitive, with GST emerging as the most responsive enzyme to oxidative stress induced by AA and BA. Histopathological and ultrastructural assessments of the hepatopancreas showed severe alterations, including necrosis, vacuolation and disrupted micro-villi, which were especially pronounced in higher BA exposure concentrations. These findings highlight the health and survival impacts of carboxylic acid toxicity on Bellamya bengalensis, emphasizing the need for proactive measures to mitigate acidification in aquatic ecosystems. The broader ecological implications underscore the importance of effective management and conservation strategies to address ongoing environmental challenges.


Subject(s)
Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Oxidative Stress/drug effects , Hepatopancreas/drug effects , Hepatopancreas/ultrastructure , Hepatopancreas/pathology , Carboxylic Acids/toxicity , Gastropoda/drug effects , Acetic Acid/toxicity , Benzoic Acid/toxicity , Toxicity Tests, Acute , Fresh Water/chemistry
9.
Aquat Toxicol ; 272: 106979, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823072

ABSTRACT

Tris(2-chloroethyl) phosphate (TCEP) and tris(1­chloro-2-propyl) phosphate (TCPP) are widely used as chlorinated organophosphate flame retardants (OPFRs) due to their fire-resistance capabilities. However, their extensive use has led to their permeation and pollution in aquatic environments. Using amphibians, which are non-model organisms, to test the toxic effects of OPFRs is relatively uncommon. This study examined the acute and chronic toxicity differences between TCEP and TCPP on Polypedates megacephalus tadpoles and evaluated the potential ecological risks to tadpoles in different aquatic environments using the risk quotient (RQ). In acute toxicity assay, the tadpole survival rates decreased with increased exposure time and concentrations, with TCEP exhibiting higher LC50 values than TCPP, at 305.5 mg/L and 70 mg/L, respectively. In the chronic assay, prolonged exposure to 300 µg/L of both substances resulted in similar adverse effects on tadpole growth, metamorphosis, and hepatic antioxidant function. Based on RQ values, most aquatic environments did not pose an ecological risk to tadpoles. However, the analysis showed that wastewater presented higher risks than rivers and drinking water, and TCPP posed a higher potential risk than TCEP in all examined aquatic environments. These findings provide empirical evidence to comprehend the toxicological effects of OPFRs on aquatic organisms and to assess the safety of aquatic environments.


Subject(s)
Anura , Flame Retardants , Larva , Organophosphates , Organophosphorus Compounds , Water Pollutants, Chemical , Animals , Flame Retardants/toxicity , Larva/drug effects , Larva/growth & development , Water Pollutants, Chemical/toxicity , Organophosphorus Compounds/toxicity , Risk Assessment , Organophosphates/toxicity , Anura/growth & development , Metamorphosis, Biological/drug effects , Toxicity Tests, Acute , Lethal Dose 50
10.
J Ethnopharmacol ; 333: 118460, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38878840

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The bark of Canarium schweinfurthii is used in ethnomedicine for the treatment of diabetes, pain, malaria, fever and diarrhoea. AIM OF THE STUDY: The chemical phytoconstituents, antidiarrheal, anti-inflammatory and antinociceptive effects and safety profile of the aqueous extract of Canarium schweinfurthii bark (AECSB) were investigated. MATERIALS AND METHODS: Gas chromatography-mass spectrometry (GC-MS) was used to analyse the phytochemical composition. In the acute toxicity test, AECSB were administered up to 2 g/kg by oral gavage. For the subacute toxicity test (28 days), rats in group 1 (control) received no AECSB, while rats in groups 2-4 were administered different doses of AECSB. Charcoal meal transit and castor oil-induced diarrhoea models were used to study the antidiarrheal effect, while egg albumin/carrageenan and acetic acid/tail immersion models were used for the anti-inflammatory and antinociceptive studies, respectively. With the exception of the acute toxicity experiment, AECSB was administered orally at doses of 200, 400 and 800 mg/kg. RESULTS: Bioactive phytoconstituents identified include p-cymene, δ-terpinene, linalool and phytol. No adverse effects or mortality were observed in acute and subacute studies. Treatment with AECSB (28 days) had no significant effect on organ weight, biochemical, hematologic and histopathologic parameters compared to the control groups (p > 0.05). Comparable antidiarrheal and antinociceptive effects were observed in both AECSB- and standard drug-treated groups, while the 400 and 800 mg/kg AECSB-treated groups showed remarkable anti-inflammatory effects compared to the standard drug-treated and control groups (p < 0.05). CONCLUSION: AECSB has antidiarrheal, antinociceptive and anti-inflammatory effects and can be safely used for therapeutic purposes.


Subject(s)
Analgesics , Anti-Inflammatory Agents , Antidiarrheals , Burseraceae , Diarrhea , Plant Bark , Plant Extracts , Animals , Analgesics/pharmacology , Analgesics/toxicity , Plant Bark/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/toxicity , Plant Extracts/pharmacology , Plant Extracts/toxicity , Plant Extracts/chemistry , Male , Antidiarrheals/pharmacology , Antidiarrheals/toxicity , Antidiarrheals/therapeutic use , Diarrhea/drug therapy , Diarrhea/chemically induced , Rats , Female , Burseraceae/chemistry , Rats, Wistar , Toxicity Tests, Acute , Toxicity Tests, Subacute , Pain/drug therapy , Pain/chemically induced , Phytochemicals/analysis , Phytochemicals/pharmacology , Phytochemicals/toxicity , Mice
11.
Ecotoxicology ; 33(6): 653-661, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851654

ABSTRACT

Rapid evaluation of the toxicity of metals using fish embryo acute toxicity is facilitative to ecological risk assessment of aquatic organisms. However, this approach has seldom been utilized for the comparative study on the effects of different metals to fish. In this study, acute and sub-chronic tests were used to compare the toxicity of Se(IV) and Cd in the embryos and larvae of Japanese medaka (Oryzias latipes). The embryos with different levels of dechorionation and/or pre-exposure were also exposed to Se(IV) and Cd at various concentrations. The results showed that the LC50-144 h of Cd was 1.3-5.2 folds higher than that of Se(IV) for the embryos. In contrast, LC50-96 h of Se(IV) were 200-400 folds higher than that of Cd for the larvae. Meanwhile, dechorionated embryos were more sensitive to both Se and Cd than the intact embryos. At elevated concentrations, both Se and Cd caused mortality and deformity in the embryos and larvae. In addition, pre-exposure to Cd at the embryonic stages enhanced the resistance to Cd in the larvae. However, pre-exposure to Se(IV) at the embryonic stages did not affect the toxicity of Se(IV) to the larvae. This study has distinguished the nuance differences in effects between Se(IV) and Cd after acute and sub-chronic exposures with/without chorion. The approach might have a potential in the comparative toxicology of metals (or other pollutants) and in the assessment of their risks to aquatic ecosystems.


Subject(s)
Embryo, Nonmammalian , Larva , Oryzias , Water Pollutants, Chemical , Animals , Oryzias/embryology , Water Pollutants, Chemical/toxicity , Larva/drug effects , Embryo, Nonmammalian/drug effects , Cadmium/toxicity , Toxicity Tests, Acute
12.
Altern Ther Health Med ; 30(6): 16-25, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843420

ABSTRACT

Background: Camphora officinarum (CO) is a commonly used homeopathic remedy for treating colds, collapse, and recurrent eruptive illnesses. Objective: Due to the non-availability of safety data on CO, the current study intended to determine the oral toxicity of CO in its ethanol-potentized dilutions 6C, 30C, and 200C in Wistar albino rats as per OECD guidelines. Materials and methods: A single oral dose of CO-6C, 30C, and 200C (2000 µl/kg) was administered, and the animals were monitored for behavior and mortality for up to 14 days in an acute toxicity study. In the subacute study, the effects of daily oral administration of CO-6C, 30C, and 200C (200 µl/kg) for 28 days were observed for clinical signs, change in body weight, and mortality. Hematological, biochemical, and histopathological analyses were assessed and organ weights were determined. Results: Results indicate no mortality of CO in its potencies in the acute toxicity study and was found to be safe at 2000 µl/kg dosage in the subacute toxicity study. CO (200 µl/kg/day) did not show any signs of toxicity in the hematological, biochemical, and histopathological analyses, along with organ weights. Conclusion: In conclusion, the findings suggest that CO in potencies of 6C, 30C, and 200C is safe up to a single oral dose of 2000 µl/kg body weight, and the No Observed Adverse Effect Level (NOAEL) was determined to be greater than 200 µl/kg/day.


Subject(s)
Plant Extracts , Rats, Wistar , Animals , Rats , Plant Extracts/pharmacology , Plant Extracts/toxicity , Male , Toxicity Tests, Acute , Female , Homeopathy/methods , Dose-Response Relationship, Drug
13.
J Ethnopharmacol ; 333: 118496, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38936643

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: Schinus terebinthifolia Raddi (Anacardiaceae), known as Brazilian pepper tree, stands out as a medicinal plant widely used in traditional medicine. The leaves are popularly used as anti-inflammatory agent and to relieve inflammatory conditions such as bronchitis, ulcers, and wounds, for example. AIM OF THE STUDY: The present study evaluated the acute toxicity, genotoxicity, and anti-inflammatory activity of S. terebinthifolia leaf lectin (SteLL) in mice (Mus musculus). MATERIALS AND METHODS: In the acute toxicity assay, the animals were treated intraperitoneally (i.p.) or orally (per os) with a single dose of 100 mg/kg. Genotoxicity was assessed by the comet and micronucleus assays. Carrageenan-induced peritonitis and paw edema models were used to evaluate the anti-inflammatory effects of SteLL (1, 5 and 10 mg/kg, i.p.). RESULTS: No animal died and no signs of intoxication or histopathological damage were observed in the acute toxicity assay. Genotoxic effect was not detected. In peritonitis assay, SteLL reduced in 56-69% leukocyte migration to the peritoneal cavity; neutrophil count decreased by 25-32%, while mononuclear cell count increased by 67-74%. SteLL promoted a notable reduction of paw edema after 4 h (61.1-63.4%). Morphometric analysis showed that SteLL also decreased the thickness of epidermal edema (30.2-40.7%). Furthermore, SteLL decreased MPO activity, plasma leakage, NO release, and modulated cytokines in both peritoneal fluid and paw homogenate. CONCLUSION: SteLL did not induce acute toxicity or genotoxicity in mice and stands out as a promising candidate in the development of new phytopharmaceuticals with anti-inflammatory action.


Subject(s)
Anacardiaceae , Anti-Inflammatory Agents , Edema , Plant Extracts , Plant Leaves , Animals , Anacardiaceae/chemistry , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Male , Edema/drug therapy , Edema/chemically induced , Plant Extracts/pharmacology , Plant Lectins/pharmacology , Plant Lectins/isolation & purification , Toxicity Tests, Acute , Peritonitis/drug therapy , Peritonitis/chemically induced , Micronucleus Tests , Female , Carrageenan , Comet Assay , DNA Damage/drug effects , Dose-Response Relationship, Drug , Schinus
14.
J Ethnopharmacol ; 333: 118499, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38936645

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Schinus molle L. is a medicinal species belonging to the Anacardiaceae family. It is commonly referred to as "aroeira" and its leaves and roots are utilized for treating different pathological conditions. However, despite its widespread use in traditional medicine, there is a lack of in-depth toxicological studies. AIM: To evaluate the acute toxicity and genotoxicity of S. molle aqueous extract/ethanol-soluble fraction in rats. MATERIAL AND METHODS: First, a purified aqueous extract was obtained from the leaves of S. mole through infusion (referred to as EESM) and its compounds were identified using LC-DAD-MS data. Female rats were then subjected to acute oral toxicity tests using doses of 5, 50, 300, and 2000 mg/kg of ESSM. Studies on genetic material, including the micronucleus test and comet assay, were conducted on male and female Wistar rats using the same doses as in the acute toxicity test. For both assays, ESSM was administered orally. RESULTS: The main metabolites annotated from ESSM were dimeric proanthocyanidins, phenylpropanoids acids, flavan-3-ols, simple organic acids (C6-C1), a flavonol di-O-glycosylated (rutin), and O-glycosylated megastigmane. The ESSM did not exhibit any acute toxic effects, such as changes in biochemical, hematologic, or histopathological analysis. Furthermore, no changes were observed in comet assay or micronucleus tests when rats were given doses of 5, 50, 300, or 2000 mg/kg of ESSM. CONCLUSION: The results showed that the ESSM does not induce acute toxicity or exhibit genotoxicity up to a dose of 2000 mg/kg.


Subject(s)
Micronucleus Tests , Plant Extracts , Plant Leaves , Rats, Wistar , Toxicity Tests, Acute , Animals , Plant Extracts/toxicity , Plant Extracts/chemistry , Female , Male , Plant Leaves/chemistry , Rats , Anacardiaceae/chemistry , Ethanol/chemistry , Ethanol/toxicity , DNA Damage/drug effects , Comet Assay , Dose-Response Relationship, Drug , Mutagens/toxicity , Schinus
15.
Recent Pat Nanotechnol ; 18(3): 350-360, 2024.
Article in English | MEDLINE | ID: mdl-38847137

ABSTRACT

BACKGROUND: Lepidium sativum (LS) seed extract has various pharmacological properties, such as antioxidant, hepatoprotective, and anticancer activities. However, the translation of L. sativum seed extract to the clinical phase is still tedious due to its bioavailability and stability issues. This problem can be solved by encapsulating it in a nanodelivery system to improve its therapeutic potency. METHODS: In this study, we have determined and compared the in vivo toxicity of ethanolic extracts of L. sativum seeds (EELS) and solid lipid nanoparticles (SLNs). To conduct toxicity (acute and subacute toxicity) assessments, EELS and SLNs were orally administered to Swiss albino mice. Animal survival, body weight, the weight of vital organs in relation to body weight, haematological profile, biochemistry profile, and histopathological alterations were examined. RESULTS: Animals administered with 2000 mg/kg and 5000 mg/kg in an acute toxicity study exhibited no toxicological symptoms regarding behaviour, gross pathology, and body weight. As per a study on acute toxicity, the LD50 (lethal dose) for SLNs and EELS was over 400 mg/kg and over 5000 mg/kg, respectively. When animals were given SLNs (50 and 100 mg/kg, orally) and EELS (250, 500, and 1000 mg/kg, orally) for 28 days, subacute toxicity study did not exhibit any clinical changes. There were no differences in weight gain, haematological parameters, or biochemical parameters compared to the control groups (p > 0.05). The organs of the treated animals showed no abnormalities in the histological analysis (liver, heart, kidney, and spleen). CONCLUSION: The result confirms ethanolic extracts of L. sativum seeds and their SLNs to not have harmful effects following acute and subacute administration to mice. For further studies, patents available on Lepidium may be referred for its preclinical and clinical applications.


Subject(s)
Lepidium sativum , Nanoparticles , Plant Extracts , Seeds , Animals , Mice , Plant Extracts/toxicity , Plant Extracts/chemistry , Plant Extracts/administration & dosage , Seeds/chemistry , Administration, Oral , Nanoparticles/chemistry , Nanoparticles/toxicity , Toxicity Tests, Acute , Male , Female , Lethal Dose 50 , Toxicity Tests, Subacute
16.
J Food Sci ; 89(8): 5164-5178, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38922919

ABSTRACT

Enzymatically converted chicken bile (CB), prepared by converting taurine deoxycholic acid (TCDCA) to taurine ursodeoxycholic acid (TUDCA) in CB, possesses various functional activities. But their nutrient composition and safety assessment have not been fully investigated yet. CB was mainly composed of proteins and steroids. CB did not show genotoxic effects based on Ames test, mammalian erythrocyte micronucleus test, and in vitro mammalian chromosomal aberration test. There were no growth abnormalities or deaths in the acute toxicity test for mice, indicating that CB is nontoxic with an LD50 > 10 g/kg·body weight (BW). Subchronic toxicity test and genotoxicity test were performed based on intake of 0.5 g CB per person daily at expanded doses of 33.3, 100, and 300 times (278, 833, and 2500 mg/kg·BW). The result indicated that CB at 833 mg/kg·BW showed no toxicity on BW, body weight gain, food intake, hematological, serum biochemistry, absolute/relative organ weights, urinalysis, and pathological features of rats in the subchronic toxicity test, while CB at 833 mg/kg·BW induced maternal toxicity with no fetus teratogenicity or embryotoxicity in the teratogenicity test. In conclusion, CB did not show toxic effects and a long-term daily intake of CB at 0.5 g per person is considered safe, but pregnant women should avoid it. These findings could provide a reference for the safe use of CB in functional food.


Subject(s)
Bile , Chickens , Mutagenicity Tests , Toxicity Tests, Subchronic , Animals , Mice , Female , Male , Rats , Bile/metabolism , Bile/chemistry , Toxicity Tests, Acute , Chromosome Aberrations , Teratogens/toxicity , Micronucleus Tests , Rats, Sprague-Dawley
17.
World J Microbiol Biotechnol ; 40(7): 211, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38777956

ABSTRACT

Human nutrition and health rely on edible oils. Global demand for edible oils is expanding, necessitating the discovery of new natural oil sources subjected to adequate quality and safety evaluation. However, in contrast to other agricultural products, India's edible oil supply is surprisingly dependent on imports. The microbial oil is generated by fermentation of oleaginous yeast Rhodotorula mucilaginosa IIPL32 MTCC 25056 using biodiesel plant byproduct crude glycerol as a fermentable carbon source. Enriched with monounsaturated fatty acid, nutritional indices mapping based on the fatty acid composition of the yeast SCO, suggested its plausible use as an edible oil blend. In the present study, acute toxicity evaluation of the yeast SCO in C57BL/6 mice has been performed by randomly dividing the animals into 5 groups with 50, 300, 2000, and 5000 mg/Kg yeast SCO dosage, respectively, and predicted the median lethal dose (LD50). Detailed blood biochemistry and kidney and liver histopathology analyses were also reported. The functions of the liver enzymes were also evaluated to check and confirm the anticipated toxicity. To determine cell viability and in vitro biocompatibility, the 3T3-L1 cell line and haemolysis tests were performed. The results suggested the plausible use of yeast SCO as an edible oil blend due to its non-toxic nature in mice models.


Subject(s)
Liver , Mice, Inbred C57BL , Rhodotorula , Animals , Mice , Liver/metabolism , Liver/drug effects , Rhodotorula/metabolism , Fermentation , Lethal Dose 50 , Cell Survival/drug effects , Plant Oils/toxicity , Plant Oils/metabolism , Fatty Acids/metabolism , Glycerol/metabolism , Biofuels , Kidney/drug effects , Toxicity Tests, Acute , Male , Administration, Oral , India
18.
Aquat Toxicol ; 272: 106965, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781689

ABSTRACT

Acetamiprid is a neonicotinoid commonly detected in aquatic ecosystems, with residual concentrations of up to 0.41 mg/L in surface water, posing a threat to the health of nontarget aquatic organisms. However, studies on the potential toxicity and underlying mechanisms of action of acetamiprid on nontarget aquatic organisms are limited. This study investigated the acute and short-term toxicity of acetamiprid to Xenopus laevis tadpoles. A 96-h acute toxicity test determined the LC50 of acetamiprid to be 32.1 mg/L. After 28 days of exposure to 1/10 and 1/100 LC50 concentrations, tadpole samples were collected for bioconcentration elimination analysis, biochemical analyses, transcriptomics, and metabolomics studies to comprehensively evaluate the toxic effects of acetamiprid and its underlying mechanisms. The results, indicating bioconcentration factors (BCFs) < 1, suggest that acetamiprid has a low bioconcentration in tadpoles. Additionally, oxidative stress was observed in treated Xenopus laevis tadpoles. Transcriptomic and nontargeted metabolomic analyses identified 979 differentially expressed genes (DEGs) and 95 differentially metabolites in the 0.321 mg/L group. The integrated analysis revealed that disruption of purine and amino acid metabolic pathways potentially accounts for acetamiprid-induced toxic effects in tadpoles. The disruptive effects of acetamiprid on valine, leucine and isoleucine biosynthesis; and aminoacyl-tRNA biosynthesis metabolic pathways in tadpoles were validated through targeted metabolomics analysis. These findings are crucial for assessing the risk of acetamiprid to nontarget aquatic organisms.


Subject(s)
Larva , Neonicotinoids , Oxidative Stress , Water Pollutants, Chemical , Xenopus laevis , Animals , Neonicotinoids/toxicity , Larva/drug effects , Water Pollutants, Chemical/toxicity , Oxidative Stress/drug effects , Insecticides/toxicity , Toxicity Tests, Acute , Transcriptome/drug effects
19.
Regul Toxicol Pharmacol ; 150: 105650, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782233

ABSTRACT

Nanodrugs offer promising alternatives to conventionally used over the counter drugs. Compared to its free form, therapeutic benefits, and gastric tissue safety of naproxen sodium nanoformulation (NpNF) were recently demonstrated. Essential regulatory safety data for this formulation are, however, not available. To address this, male and female BALB/c mice were subjected to acute and 14-day repeated-oral dose assessments. Our data indicate that NpNF was well tolerated up to 2000 mg/kg b.w. A 14-day subacute toxicity testing revealed that the oral administration of low dose (30 mg/kg) NpNF did not produce any adverse effects on blood profile and serum biochemical parameters. Levels of oxidative stress markers and antioxidant enzymes neared normal. Histology of selected tissues also showed no evidence of toxicity. In contrast, a ten-fold increase in NpNF dosage (300 mg/kg), demonstrated, irrespective of gender, mild to moderate toxicity (p < 0.05) in the brain, stomach, and heart tissues, while ROS, LPO, CAT, SOD, POD, and GSH levels remained unaffected in the liver, kidney, spleen, testis, and seminal vesicles. No effect on serum biochemical parameters, overall indicated a no-observed-adverse-effect level (NOAEL) is 300 mg/kg. Further increase in dosage (1000 mg/kg) significantly altered all parameters demonstrating that high dose is toxic.


Subject(s)
Mice, Inbred BALB C , Naproxen , Toxicity Tests, Acute , Toxicity Tests, Subacute , Animals , Female , Naproxen/toxicity , Naproxen/administration & dosage , Male , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Mice , Administration, Oral , Oxidative Stress/drug effects , Nanoparticles/toxicity , Dose-Response Relationship, Drug , No-Observed-Adverse-Effect Level
20.
Environ Pollut ; 355: 124210, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38795815

ABSTRACT

Pesticide residue and thermal stress resulting from global climate change are parallel stressors for soil fauna. However, it remains ambiguous how elevated temperatures and pesticides can interact to threaten soil fauna. In the study, the acute and chronic clothianidin (CTD) toxicity to earthworms (Eisenia fetida) at different temperatures, and the effect of increasing temperature on antioxidant defense mechanisms in response to CTD were investigated. The acute toxicity of CTD was exacerbated by increased temperature in both filter paper contact tests (a decrease in the 48-h median lethal concentration (LC50) from 0.077 µg/cm2 at 20 °C to 0.009 µg/cm2 at 30 °C) and natural soil tests (a decrease in the 48-h LC50 from 0.774 mg/kg at 20 °C to 0.199 mg/kg at 30 °C). Exposure to CTD or high temperature (30 °C) triggered reactive oxygen species (ROS) overgeneration and increased antioxidant enzyme activities in earthworms; and the effect was particularly pronounced after exposure to both higher temperatures and CTD. At 20 and 25 °C, there was no significant change in the growth and reproduction of E. fetida after 56-d exposure to CTD-contaminated soil. However, the combined effect of CTD and high temperature (30 °C) significantly reduced the weight change rate, cocoon number, hatching rate, and number of juveniles on day 56. These results indicated that elevated temperature could aggravate acute and chronic CTD toxicity to earthworms. The findings emphasize that evaluating changes in pesticide toxicity under global warming is worth further investigation.


Subject(s)
Guanidines , Neonicotinoids , Oligochaeta , Soil Pollutants , Thiazoles , Oligochaeta/drug effects , Animals , Neonicotinoids/toxicity , Guanidines/toxicity , Thiazoles/toxicity , Soil Pollutants/toxicity , Insecticides/toxicity , Hot Temperature , Reactive Oxygen Species/metabolism , Toxicity Tests, Acute , Toxicity Tests, Chronic , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL