Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.473
Filter
1.
Acta Parasitol ; 69(3): 1724-1728, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39164547

ABSTRACT

PURPOSE: Toxoplasma gondii (T. gondii) and Toxocara spp. are two types of parasites that can infect humans and various animals, including dogs. Police dogs and their trainers have a vital role in law enforcement, and their health and well-being are crucial for them to effectively carry out their duties. No study has yet been conducted on the prevalence of T. gondii and Toxocara spp. infections among police dogs and their trainers in Iran. The objective of this study was to determine the sero-molecular prevalence of T. gondii and Toxocara spp. infections in police dogs and their trainers in Tehran, the capital of Iran. METHODS: In Tehran province, the anti-narcotics police have nearly 200 well-trained police dogs. Each dog is assigned a dedicated trainer and upon completing missions, is housed separately in a designated area. In the present study, a total of 150 samples were gathered. These included 50 blood samples from randomly selected police dogs, 50 fecal samples from the same dogs, and 50 blood samples from their trainers. The Modified Agglutination Test (MAT) was performed to detect T. gondii antibodies in dog blood samples and the ELISA system was utilized to identify anti-Toxoplasma and anti-Toxocara antibodies in the sera of the dog trainers. A specific segment of the SAG2 and ITS genes were amplified via nested-PCR in order to molecularly detect T. gondii in human blood samples and Toxocara spp. in dog fecal samples. RESULTS: Regarding serological findings, the prevalence of T. gondii in dog and human blood samples was 4% (2/50) and 10% (5/50), respectively. According to reports, the seroprevalence of Toxocara spp. in human blood samples was 6% (3/50). No statistically significant association was found between the prevalence of the examined parasites and variables (age, sex, and breed) in dogs, as well as the age variable in military personnel. Molecular findings showed that out of the 50 dog fecal samples and 50 human blood samples, there was no presence of Toxocara spp. and T. gondii, respectively. CONCLUSION: Understanding the prevalence of parasitic infections helps public health officials assess the risk to human and animal populations. This information can guide the development of prevention and control measures to reduce the spread of these infections. Overall, the prevalence of parasitic infections, particularly T. gondii and Toxocara spp., in police dogs and their trainers remains uncertain and necessitates further in-depth research.


Subject(s)
Dog Diseases , Police , Toxocara , Toxocariasis , Toxoplasma , Toxoplasmosis, Animal , Animals , Dogs , Iran/epidemiology , Toxoplasma/genetics , Toxoplasma/immunology , Toxoplasma/isolation & purification , Dog Diseases/epidemiology , Dog Diseases/parasitology , Toxocariasis/epidemiology , Toxocariasis/parasitology , Toxocara/isolation & purification , Toxocara/genetics , Toxocara/immunology , Humans , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/parasitology , Seroepidemiologic Studies , Antibodies, Protozoan/blood , Feces/parasitology , Female , Male , Enzyme-Linked Immunosorbent Assay/veterinary , Prevalence
2.
Ann Parasitol ; 70(2): 101-111, 2024.
Article in English | MEDLINE | ID: mdl-39154197

ABSTRACT

Toxoplasma gondii and Toxocara spp. zoonotic infections may cause severe systemic and ocular illness in infected individuals. Cats play a significant role in environmental contamination and the transmission of parasites. The goal of the present study was to investigate the prevalence of Toxoplasma gondii (T. gondii) and Toxocara spp. infection among stray cats at Ahvaz Jundishapur University of Medical Sciences campus. The current descriptive study began with the collection of 170 fresh cat faecal samples from various sites in the Ahvaz Jundishapur University of Medical Sciences area. Sheather's sugar flotation method was applied to all specimens, and parasites were identified and examined microscopically. Next, a nested-PCR assay, sequencing, and real-time PCR with high-resolution melting curve (HRM) analysis were performed. In this study, out of 170 cat faecal samples microscopically evaluated, 8 (4.70%) and 37 (21.76%) were infected with T. gondii oocysts and Toxocara eggs, respectively. Using nested PCR, 8 out of 170 samples (4.70%) were found to be infected with T. gondii. HRM analysis showed that all isolates could be classified into three genetic lineages. Considerable prevalence, exceeding 50% for Toxocara and surpassing 25% for Toxoplasma in certain instances, along with genetic diversity, was observed in the present study. Hence, it is suggested that all individuals, including kindergarten children, students, employees, workers, and pregnant women who are in contact with their surroundings, take the necessary precautions.


Subject(s)
Cat Diseases , Feces , Toxocara , Toxoplasma , Animals , Cats , Toxoplasma/isolation & purification , Toxoplasma/genetics , Toxocara/isolation & purification , Toxocara/genetics , Feces/parasitology , Cat Diseases/parasitology , Cat Diseases/epidemiology , Universities , Toxocariasis/epidemiology , Toxocariasis/parasitology , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/parasitology , Toxoplasmosis/epidemiology , Toxoplasmosis/parasitology
3.
Parasite Immunol ; 46(7): e13055, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38979848

ABSTRACT

We aimed to develop an indirect enzyme-linked immunosorbent assay (ELISA) to evaluate the presence of specific IgG against Toxocara canis and Toxocara cati somatic antigens on the serum of patients with toxocariasis. The sensitivity, specificity, positive and negative predictive values for indirect-ELISA were calculated by receiver operating characteristic curve (ROC) analysis and Youden's J using Likelihood ratio. All statistics were analysed and graphs are plotted using GraphPad Prism version 8.4.3 (Graph Pad Software, La Jolla, CA, USA), with 95% confidence interval (CI). The sensitivity, specificity, positive and negative predictive values for T. canis were 100%, 82%, 79% and 100%, respectively. The mentioned variables for T. cati were 97%, 82%, 78% and 98%, respectively. Five immune reactive bands of 38, 40, 72, 100 and 250 kDa were common in both species. Toxocara crude antigens were highly immunogenic in human sera. Immunoreactive bands against T. canis compared to T. cati somatic antigen were about two times more. Unlike Toxocara excretory-secretory antigen, that was homologue in two species, somatic antigens of T. canis and T. cati showed different immunoreactive bands in our western blot.


Subject(s)
Antibodies, Helminth , Antigens, Helminth , Enzyme-Linked Immunosorbent Assay , Immunoglobulin G , Sensitivity and Specificity , Toxocara canis , Toxocara , Toxocariasis , Humans , Animals , Antigens, Helminth/immunology , Antigens, Helminth/blood , Toxocariasis/immunology , Toxocariasis/diagnosis , Toxocariasis/blood , Toxocara/immunology , Antibodies, Helminth/blood , Enzyme-Linked Immunosorbent Assay/methods , Immunoglobulin G/blood , Toxocara canis/immunology , Adult , Predictive Value of Tests , ROC Curve , Female , Male
4.
Parasitol Res ; 123(6): 246, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896311

ABSTRACT

Human toxocariasis is a neglected anthropozoonosis with global distribution. Treatment is based on the administration of anthelmintics; however, their effectiveness at the tissue level is low to moderate, necessitating the discovery of new drug candidates. Several groups of synthetic compounds, including coumarin derivatives, have demonstrated bioactivity against fungi, bacteria, and even parasites, such as Dactylogyrus intermedius, Leishmania major, and Plasmodium falciparum. The aim of this study was to evaluate the effect of ten coumarin-derived compounds against Toxocara canis larvae using in vitro, cytotoxicity, and in silico tests for selecting new drug candidates for preclinical tests aimed at evaluating the treatment of visceral toxocariasis. The compounds were tested in vitro in duplicate at a concentration of 1 mg/mL, and compounds with larvicidal activity were serially diluted to obtain concentrations of 0.5 mg/mL; 0.25 mg/mL; 0.125 mg/mL; and 0.05 mg/mL. The tests were performed in a microculture plate containing 100 T. canis larvae in RPMI-1640 medium. One compound (COU 9) was selected for cytotoxicity analysis using J774.A1 murine macrophages and it was found to be non-cytotoxic at any concentration tested. The in silico analysis was performed using computational models; the compound presented adequate results of oral bioavailability. To confirm the non-viability of the larvae, the contents of the microplate wells of COU 9 were inoculated intraperitoneally (IP) into female Swiss mice at 7-8 weeks of age. This confirmed the larvicidal activity of this compound. These results show that COU 9 exhibited larvicidal activity against T. canis larvae, which, after exposure to the compound, were non-viable, and that COU 9 inhibited infection in a murine model. In addition, COU 9 did not exhibit cytotoxicity and presented adequate bioavailability in silico, similar to albendazole, an anthelmintic, which is the first choice for treatment of human toxocariasis, supporting the potential for future investigations and preclinical tests on COU 9.


Subject(s)
Coumarins , Larva , Toxocara canis , Animals , Larva/drug effects , Toxocara canis/drug effects , Coumarins/pharmacology , Coumarins/chemistry , Anthelmintics/pharmacology , Anthelmintics/chemistry , Biological Availability , Mice , Computer Simulation , Toxocariasis/drug therapy , Toxocariasis/parasitology
5.
Immun Inflamm Dis ; 12(6): e1307, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860753

ABSTRACT

BACKGROUND: The hygiene hypothesis suggests that early life exposure to helminth infections can reduce hypersensitivity in the immune system. OBJECTIVE: The present study aims to evaluate the effects of Toxocara cati (T. cati) somatic products on allergic airway inflammation. METHODS: Between 2018 and 2020, T. cati adult worms were collected from stray cats in Mashhad, Iran (31 out of 186 cats), and their somatic extract was collected. Thirty BALB/c mice were equally divided into three groups, including the OVA group (sensitized and challenged with ovalbumin), the somatic administered group (received somatic extract along with ovalbumin sensitization), and the PBS group (sensitized and challenged with phosphate buffer saline). Bronchoalveolar lavage (BAL) fluid was collected to assess the number of cells, and lung homogenates were prepared for cytokine analysis. Histopathological analysis of the lungs was performed, and inflammatory cells and mucus were detected. Cytokine levels (IL-4, IL-5, IL-10) were measured using enzyme-linked immunosorbent assay (ELISA), and ovalbumin-specific immunoglobulin E (IgE) levels were determined using a capture ELISA. RESULTS: The somatic group significantly decreased regarding the lung pathological changes, including peribronchiolitis, perivasculitis, and eosinophil influx, compared to the group treated with ovalbumin alone. These changes were accompanied by a decrease in proinflammatory cytokines IL-4 and IL-5 and an increase in the anti-inflammatory cytokine IL-10, indicating a shift toward a more balanced immune response. The number of inflammatory cells in the BAL fluid was also significantly reduced in the somatic group, indicating a decrease in inflammation. CONCLUSION: These preclinical findings suggest that in experimental models, T. cati somatic extract exhibits promising potential as a therapeutic agent for mitigating allergic airway inflammation. Its observed effects on immune response modulation and reduction of inflammatory cell infiltration warrant further investigation in clinical studies to assess its efficacy and safety in human patients.


Subject(s)
Cytokines , Mice, Inbred BALB C , Toxocara , Animals , Mice , Toxocara/immunology , Toxocara/drug effects , Cytokines/metabolism , Cytokines/immunology , Immunoglobulin E/immunology , Immunoglobulin E/blood , Ovalbumin/immunology , Lung/immunology , Lung/pathology , Lung/parasitology , Lung/drug effects , Bronchoalveolar Lavage Fluid/immunology , Asthma/immunology , Asthma/drug therapy , Disease Models, Animal , Cats , Female , Toxocariasis/drug therapy , Toxocariasis/immunology , Toxocariasis/parasitology
6.
Parasit Vectors ; 17(1): 256, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867315

ABSTRACT

BACKGROUND: Human toxocariasis is a neglected parasitic disease characterised by the syndromes visceral, cerebral, and ocular larva migrans. This disease is caused by the migrating larvae of Toxocara roundworms from dogs and cats, affecting 1.4 billion people globally. Via extracellular vesicles (EVs), microRNAs have been demonstrated to play roles in host-parasite interactions and proposed as circulating biomarkers for the diagnosis and follow-up of parasitic diseases. METHODS: Small RNA-seq was conducted to identify miRNAs in the infective larvae of T. canis and plasma EV-containing preparations of infected BALB/c mice. Differential expression analysis and target prediction were performed to indicate miRNAs involved in host-parasite interactions and miRNAs associated with visceral and/or cerebral larva migrans in the infected mice. Quantitative real-time polymerase chain reaction (PCR) was used to amplify circulating miRNAs from the infected mice. RESULTS: This study reports host and parasite miRNAs in the plasma of BALB/c mice with visceral and cerebral larva migrans and demonstrates the alterations of these miRNAs during the migration of larvae from the livers through the lungs and to the brains of infected mice. After filtering unspecific changes in an irrelevant control, T. canis-derived miRNAs and T. canis infection-induced differential miRNAs are predicted to modulate genes consistently involved in mitogen-activated protein kinase (MAPK) signalling and pathways regulating axon guidance and pluripotency of stem in the infected mice with visceral and cerebral larva migrans. For these plasma circulating miRNAs predicted to be involved in host-parasite crosstalk, two murine miRNAs (miR-26b-5p and miR-122-5p) are experimentally verified to be responsive to larva migrans and represent circulating biomarker candidates for visceral and cerebral toxocariasis in BALB/c mice. CONCLUSIONS: Our findings provide novel insights into the crosstalk of T. canis and the mammalian host via plasma circulating miRNAs, and prime agents and indicators for visceral and cerebral larva migrans. A deep understanding of these aspects will underpin the diagnosis and control of toxocariasis in humans and animals.


Subject(s)
Circulating MicroRNA , Mice, Inbred BALB C , Toxocara canis , Toxocariasis , Animals , Toxocara canis/genetics , Toxocara canis/physiology , Mice , Toxocariasis/parasitology , Toxocariasis/blood , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Host-Parasite Interactions , Larva Migrans, Visceral/parasitology , Larva Migrans, Visceral/blood , Female , Larva Migrans/parasitology , Larva Migrans/blood , Larva/genetics , Dogs , MicroRNAs/blood , MicroRNAs/genetics , Biomarkers/blood , Brain/parasitology
7.
Parasites Hosts Dis ; 62(2): 243-250, 2024 May.
Article in English | MEDLINE | ID: mdl-38835265

ABSTRACT

We investigated organ specific Toxocara canis larval migration in mice infected with T. canis larvae. We observed the worm burden and systemic immune responses. Three groups of BALB/c mice (n=5 each) were orally administered 1,000 T. canis 2nd stage larvae to induce larva migrans. Mice were sacrificed at 1, 3, and 5 weeks post-infection. Liver, lung, brain, and eye tissues were collected. Tissue from 2 mice per group was digested for larval count, while the remaining 3 mice underwent histological analysis. Blood hematology and serology were evaluated and compared to that in a control uninfected group (n=5) to assess the immune response. Cytokine levels in bronchoalveolar lavage (BAL) fluid were also analyzed. We found that, 1 week post-infection, the mean parasite load in the liver (72±7.1), brain (31±4.2), lungs (20±5.7), and eyes (2±0) peaked and stayed constant until the 3 weeks. By 5-week post-infection, the worm burden in the liver and lungs significantly decreased to 10±4.2 and 9±5.7, respectively, while they remained relatively stable in the brain and eyes (18±4.2 and 1±0, respectively). Interestingly, ocular larvae resided in all retinal layers, without notable inflammation in outer retina. Mice infected with T. canis exhibited elevated levels of neutrophils, monocytes, eosinophils, and immunoglobulin E. At 5 weeks post-infection, interleukin (IL)-5 and IL-13 levels were elevated in BAL fluid. Whereas IL-4, IL-10, IL-17, and interferon-γ levels in BAL fluid were similar to that in controls. Our findings demonstrate that a small portion of T. canis larvae migrate to the eyes and brain within the first week of infection. Minimal tissue inflammation was observed, probably due to increase of anti-inflammatory cytokines. This study contributes to our understanding of the histological and immunological responses to T. canis infection in mice, which may have implications to further understand human toxocariasis.


Subject(s)
Brain , Cytokines , Larva , Liver , Lung , Mice, Inbred BALB C , Toxocara canis , Toxocariasis , Animals , Toxocara canis/immunology , Toxocariasis/immunology , Toxocariasis/pathology , Toxocariasis/parasitology , Larva/immunology , Mice , Cytokines/metabolism , Lung/parasitology , Lung/immunology , Lung/pathology , Liver/parasitology , Liver/pathology , Liver/immunology , Brain/parasitology , Brain/immunology , Brain/pathology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/parasitology , Female , Parasite Load , Eye/parasitology , Eye/immunology , Eye/pathology , Disease Models, Animal
8.
Korean J Gastroenterol ; 83(6): 247-252, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918038

ABSTRACT

Toxocariasis, a zoonotic infection transmitted by Toxocara canis (from dogs) and Toxocara cati (from cats) larvae, poses rare but severe risks to humans. We present a case of hepatic visceral larva migrans (VLM) caused by Toxocara canis in a 21-year-old male with a history of close contact with a pet dog. Initial symptoms and imaging findings mimicked a pyogenic liver abscess. The initial laboratory investigations revealed neutrophilia and elevated levels of IgE. Despite broad-spectrum antibiotics, persistent fever prompted further investigation. Subsequent serological testing for Toxocara antibodies and histopathological analysis of liver tissue demonstrating eosinophil infiltrates and Charcot-Leyden crystals led to a confirmed diagnosis of a liver abscess caused by Toxocara canis. Serological testing for Toxocara antibodies and histopathological analysis of liver tissue confirmed a Toxocara canis-induced liver abscess. Albendazole treatment yielded significant clinical improvement. This case highlights the necessity of considering toxocariasis in liver abscess differentials, particularly in high-seroprevalence regions like Vietnam. Relying solely on serological tests may be insufficient, emphasizing the need for corroborative evidence, including invasive procedures like liver biopsy, for accurate hepatic toxocariasis diagnosis.


Subject(s)
Albendazole , Larva Migrans, Visceral , Tomography, X-Ray Computed , Toxocara canis , Humans , Toxocara canis/isolation & purification , Larva Migrans, Visceral/diagnosis , Larva Migrans, Visceral/drug therapy , Male , Animals , Young Adult , Albendazole/therapeutic use , Dogs , Liver/parasitology , Liver/pathology , Antibodies, Helminth/blood , Ultrasonography , Liver Abscess/diagnosis , Liver Abscess/parasitology , Liver Abscess/drug therapy , Toxocariasis/diagnosis , Toxocariasis/drug therapy , Immunoglobulin E/blood , Anthelmintics/therapeutic use
10.
J Fr Ophtalmol ; 47(6): 104191, 2024 Jun.
Article in French | MEDLINE | ID: mdl-38713931

ABSTRACT

INTRODUCTION: Ocular toxocariasis is a rare disease, predominantly affecting children and young adolescents, and usually presenting as unilateral posterior uveitis. We report the case of a child with toxocariasis associated with serous retinal detachment. OBSERVATION: A 8-year-old child with no previous history of toxocariasis was referred for a 1-year decline in visual acuity, unimproved by optical correction, with vitreous condensation on examination, without central or peripheral granulomas, and serous retinal detachment on OCT. The diagnosis was made after extensive questioning, with evidence of contact with dogs and positive serology. Medical treatment combining corticosteroid therapy and antiparasitic therapy was initiated, and the clinical picture improved. DISCUSSION: Ocular toxocariasis is a rare infection, unilateral in 90% of cases. Its clinical manifestation in children is pars planitis, posterior uveitis with a posterior pole chorioretinal focus associated with vitreoretinal traction and/or peripheral granuloma. In our case, the patient presented with vitreous condensation only, with OCT serous retinal detachment and no peripheral or central granulomas. Positive plasma serology or ocular samples confirmed the diagnosis. CONCLUSION: Ocular toxocariasis should not be ruled out in the absence of a typical clinical picture, and seropositivity enables confirmation of the diagnosis when clinical suspicion arises.


Subject(s)
Eye Infections, Parasitic , Retinal Detachment , Toxocariasis , Humans , Toxocariasis/diagnosis , Toxocariasis/drug therapy , Toxocariasis/complications , Child , Eye Infections, Parasitic/diagnosis , Eye Infections, Parasitic/parasitology , Eye Infections, Parasitic/drug therapy , Retinal Detachment/diagnosis , Retinal Detachment/parasitology , Male , Dogs , Animals
11.
Parasit Vectors ; 17(1): 210, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725025

ABSTRACT

BACKGROUND: Toxocara canis is considered one of the most neglected parasitic zoonoses and threatens the health of millions of people worldwide with a predilection for pediatric and adolescent populations in impoverished communities. Exploring the invasion and developmental mechanisms associated with T. canis infection in its definitive canine hosts will help to better control zoonotic toxocariasis. METHODS: Proteomic changes in samples from the upper lobe of the left lung of Beagle puppies were systematically analyzed by quantitative proteomic technology of data-independent acquisition (DIA) at 96 h post-infection (hpi) with T. canis. Proteins with P-values < 0.05 and fold change > 1.5 or < 0.67 were considered proteins with differential abundance (PDAs). RESULTS: A total of 28 downregulated PDAs and 407 upregulated PDAs were identified at 96 hpi, including RhoC, TM4SFs and LPCAT1, which could be associated with the maintenance and repair of lung homeostasis. GO annotation and KEGG pathway enrichment analyses of all identified proteins and PDAs revealed that many lung proteins have correlation to signal transduction, lipid metabolism and immune system. CONCLUSIONS: The present study revealed lung proteomic alterations in Beagle dogs at the lung migration stage of T. canis infection and identified many PDAs of Beagle dog lung, which may play important roles in the pathogenesis of toxocariasis, warranting further experimental validation.


Subject(s)
Dog Diseases , Lung , Proteomics , Toxocara canis , Toxocariasis , Animals , Dogs , Toxocariasis/parasitology , Lung/parasitology , Dog Diseases/parasitology , Proteome
12.
Parasitol Res ; 123(5): 216, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771352

ABSTRACT

Domestic dogs and cats can serve as a source of environmental contamination with Toxocara spp. and Blastocystis spp., and this represents a neglected public and veterinary health problem. We assessed the microscopic and molecular prevalence of these species in a locality in Algeria and identified the associated risk factors. The faeces of 225 dogs and 78 cats were collected in Mitidja between March and July 2022. The samples were analysed by coproscopy and by polymerase chain reaction (PCR) targeting the Internal Transcribed Spacer 2 (ITS2) and Small Subunit Ribosomal (SSU-RNA) of T. canis and Blastocystis spp. respectively. The overall microscopic prevalence of Toxocara spp. in dogs and cats was 9.78 ± 1.98% and 12.82 ± 7.42%, respectively. The rate of Blastocystis spp. was 15.11 ± 2.39% and 15.38 ± 4.08% in dogs and cats, respectively while the molecular prevalence of T. canis in dogs was 4.89 ± 1.44% and in cats 1.28 ± 1.27%; the prevalence of Blastocystis spp. was 41.78 ± 3.29% and 34.62 ± 5.39% in dogs and cats, respectively. Phylogenetic and phylogeographic analyses identified the presence of the H1 subtype of T. canis in dogs, and the ST1 subtype of Blastocystis in dogs and cats. Dogs with clinical signs were more likely to be infected with T. canis (OR 6.039, P < 0.05) than healthy dogs. This study demonstrates that dogs and cats are carriers of Toxocara spp. and Blastocystis spp. and are therefore a source of environmental contamination. Veterinarians and human health professionals should work together to implement control strategies as part of a "One Health" approach to improving animal health and reducing the risk of transmission to humans.


Subject(s)
Blastocystis Infections , Blastocystis , Cat Diseases , Dog Diseases , Feces , Toxocara , Toxocariasis , Animals , Dogs , Cats , Algeria/epidemiology , Dog Diseases/epidemiology , Dog Diseases/parasitology , Cat Diseases/parasitology , Cat Diseases/epidemiology , Toxocariasis/epidemiology , Toxocariasis/parasitology , Prevalence , Risk Factors , Blastocystis Infections/epidemiology , Blastocystis Infections/veterinary , Blastocystis Infections/parasitology , Toxocara/genetics , Toxocara/isolation & purification , Toxocara/classification , Feces/parasitology , Blastocystis/genetics , Blastocystis/classification , Blastocystis/isolation & purification , Male , Female , Polymerase Chain Reaction , Microscopy , Phylogeny
13.
Exp Parasitol ; 261: 108753, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621506

ABSTRACT

Toxocara cati and T. canis are parasitic nematodes found in the intestines of cats and dogs respectively, with a cosmopolitan distribution, and the potential for anthropozoonotic transmission, resulting in human toxocariasis. Spread of Toxocara spp. is primarily through the ingestion of embryonated eggs contaminating surfaces or uncooked food, or through the ingestion of a paratenic host containing a third-stage larva. The Toxocara spp. eggshell is composed of a lipid layer providing a permeability barrier, a chitinous layer providing structural strength, and thin vitelline and uterine layers, which combined create a biologically resistant structure, making the Toxocara spp. egg very hardy, and capable of surviving for years in the natural environment. The use of sodium hypochlorite, household bleach, as a disinfectant for Toxocara spp. eggs has been reported, with results varying from ineffective to limited effectiveness depending on parameters including contact time, concentration, and temperature. Desiccation or humidity levels have also been reported to have an impact on larval development and/or survival of Toxocara spp. eggs. However, to date, after a thorough search of the literature, no relevant publications have been found that evaluated the use of sodium hypochlorite and desiccation in combination. These experiments aim to assess the effects of using a combination of desiccation and 10% bleach solution (0.6% sodium hypochlorite) on fertilized or embryonated eggs of T. cati, T. canis, and T. vitulorum. Results of these experiments highlight the synergistic effects of desiccation and bleach, and demonstrate a relatively simple method for surface inactivation, resulting in a decrease in viability or destruction of T. cati, T. canis and T. vitulorum eggs. Implications for these findings may apply to larger scale elimination of ascarid eggs from both research, veterinary, and farming facilities to mitigate transmission.


Subject(s)
Desiccation , Sodium Hypochlorite , Toxocara , Animals , Sodium Hypochlorite/pharmacology , Toxocara/drug effects , Toxocara/physiology , Ovum/drug effects , Disinfectants/pharmacology , Dogs , Toxocariasis/parasitology , Toxocariasis/prevention & control , Female , Cats , Toxocara canis/drug effects , Toxocara canis/physiology , Larva/drug effects
14.
Exp Parasitol ; 261: 108765, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679126

ABSTRACT

Toxocara is a genus of nematodes, which infects a variety of hosts, principally dogs and cats, with potential zoonotic risks to humans. Toxocara spp. larvae are capable of migrating throughout the host tissues, eliciting eosinophilic and granulomatous reactions, while surviving for extended periods of time, unchanged, in the host. It is postulated that larvae are capable of altering the host's immune response through the release of excretory-secretory products, containing both proteins and extracellular vesicles (EVs). The study of EVs has increased exponentially in recent years, largely due to their potential use as a diagnostic tool, and in molecular therapy. To this end, there have been multiple isolation methods described for the study of EVs. Here, we use nanoparticle tracking to compare the yield, size distribution, and % labelling of EV samples acquired through various reported methods, from larval cultures of Toxocara canis and T. cati containing Toxocara excretory-secretory products (TES). The methods tested include ultracentrifugation, polymer precipitation, magnetic immunoprecipitation, size exclusion chromatography, and ultrafiltration. Based on these findings, ultrafiltration produces the best results in terms of yield, expected particle size, and % labelling of sample. Transmission electron microscopy confirmed the presence of EVs with characteristic cup-shaped morphology. These findings can serve as a guide for those investigating EVs, particularly those released from multicellular organisms, such as helminths, for which few comparative analyses have been performed.


Subject(s)
Chromatography, Gel , Exosomes , Extracellular Vesicles , Microscopy, Electron, Transmission , Toxocara canis , Toxocara , Ultracentrifugation , Animals , Toxocara/isolation & purification , Toxocara/metabolism , Toxocara/chemistry , Toxocara canis/chemistry , Exosomes/chemistry , Exosomes/ultrastructure , Exosomes/metabolism , Extracellular Vesicles/chemistry , Extracellular Vesicles/ultrastructure , Extracellular Vesicles/metabolism , Dogs , Larva , Immunoprecipitation , Toxocariasis/parasitology , Cats , Nanoparticles/chemistry , Particle Size , Helminth Proteins/analysis , Helminth Proteins/metabolism , Helminth Proteins/chemistry , Helminth Proteins/isolation & purification
15.
Vet Parasitol ; 328: 110186, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640875

ABSTRACT

Neutrophils, a crucial element of the host defense system, develop extracellular traps against helminth parasites. Neutrophils accumulate around the larvae of Toxocara canis (T. canis) in the tissues of the organism. This study aimed to determine the reaction in canine neutrophils after incubation with infective stage T. canis larvae (L3) in vitro. Most L3 were still active and moved between the extracellular traps (NETs) after 60-min incubation. NETs were not disintegrated by L3 movement. The L3 was only immobilized by NETs, entrapped larvae were still motile between the traps at the 24 h incubation. NETs were observed not only to accumulate around the mouth, excretory pole or anus but also the entire body of live L3. The extracellular DNA amount released from the canine neutrophils after being induced with phorbol 12-myristate 13-acetate was not affected by T. canis excretory/secretory products obtained from 250 L3. To the Authors'knowledge, the extracellular trap structures was firstly observed in canine neutrophils against T. canis L3 in vitro. NETs decorated with myeloperoxidase, neutrophil elastase and histone (H3) were observed under fluorescence microscope. There were not significant differences in the amount of extracellular DNA (P > 0.05), but the morphological structure of NETs was different in the live and head-inactivated T. canis larvae.


Subject(s)
Extracellular Traps , Larva , Neutrophils , Toxocara canis , Animals , Dogs , Toxocara canis/physiology , Neutrophils/immunology , Larva/physiology , Larva/immunology , Dog Diseases/parasitology , Dog Diseases/immunology , Toxocariasis/parasitology , Toxocariasis/immunology
16.
Early Hum Dev ; 193: 106017, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663140

ABSTRACT

BACKGROUND: The study aims to compare neurological soft signs and executive functions between Toxocara-seropositive and seronegative groups in children with attention-deficit/hyperactivity disorder. METHODS: The study included 60 boys with ADHD, aged 7-12. After blood samples were taken, the Stroop Color Word Test and Judgment of Line Orientation test (JLOT) were implemented to measure executive functions. Neurological soft signs were evaluated with Physical and Neurological Examination for Subtle Signs (PANESS). RESULTS: Serological tests were positive for Toxocara antibodies in 20 cases. There was no significant difference between Toxocara seropositive and seronegative regarding age, socioeconomic status, developmental stages, and ADHD severity. However, Toxocara-seropositive children had higher Stroop time and Stroop interference scores and lower JLOT scores than Toxocara-seronegative children. Furthermore, Toxocara-seropositive children exhibited more neurological soft signs, such as gait and station abnormalities, dysrhythmia, and a longer total time in timed movements compared to Toxocara-seronegative children. CONCLUSION: Our study indicates a link between Toxocara-seropositivity and impaired neurological soft signs and executive functions in ADHD. Further research is needed to understand ADHD mechanisms, develop practical treatments considering immunological factors, and thoroughly evaluate how Toxocara seropositivity affects executive functions and motor skills in children with ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Motor Skills , Toxocara , Humans , Child , Male , Attention Deficit Disorder with Hyperactivity/blood , Motor Skills/physiology , Executive Function/physiology , Animals , Toxocariasis/blood , Attention
17.
Infect Dis Obstet Gynecol ; 2024: 1943353, 2024.
Article in English | MEDLINE | ID: mdl-38682081

ABSTRACT

Background: Toxocariasis is an important health problem caused by the parasitic species Toxocara canis (T. canis) and Toxocara cati (T. cati). Prevalence of toxocariasis in pregnant women as a vulnerable population is doubly important, and the aim of this study is to estimate the overall prevalence of toxocariasis infection in pregnant women according to the available reports. Methods: The present study followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) checklists. A systematic search was carried out in international scientific databases (Google Scholar, Web of Science, ScienceDirect, Scopus, and PubMed) between 1990 and 2023. The overall prevalence of parasitic infection was estimated with a random-effects model. All analyses (overall prevalence, heterogeneity, publication bias, and sensitivity analysis) were performed with comprehensive meta-analysis (V2.2, Bio stat) software. Results: Amid the final eleven included studies, based on the random-effects model, the estimation of the pooled prevalence of Toxocara spp. was 20.8% (95% CI, 9.8-38.7%). The association between the risk factors of toxocariasis and the prevalence of the disease was not statistically significant. Conclusions: In the present study, significant prevalence was reported; however, considering the limited number of studies, it seems that the actual prevalence of the disease is higher. Therefore, it seems necessary to monitor this health problem in pregnant women.


Subject(s)
Pregnancy Complications, Parasitic , Toxocara , Toxocariasis , Humans , Female , Pregnancy , Toxocariasis/epidemiology , Animals , Toxocara/immunology , Seroepidemiologic Studies , Pregnancy Complications, Parasitic/epidemiology , Prevalence , Toxocara canis/immunology
18.
Front Immunol ; 15: 1332933, 2024.
Article in English | MEDLINE | ID: mdl-38576624

ABSTRACT

Introduction: Worldwide, breast cancer is the most important cancer in incidence and prevalence in women. Different risk factors interact to increase the probability of developing it. Biological agents such as helminth parasites, particularly their excretory/secretory antigens, may play a significant role in tumor development. Helminths and their antigens have been recognized as inducers or promoters of cancer due to their ability to regulate the host's immune response. Previously in our laboratory, we demonstrated that chronic infection by Toxocara canis increases the size of mammary tumors, affecting the systemic response to the parasite. However, the parasite does not invade the tumor, and we decided to study if the excretion/secretion of antigens from Toxocara canis (EST) can affect the progression of mammary tumors or the pathophysiology of cancer which is metastasis. Thus, this study aimed to determine whether excretion/secretion T. canis antigens, injected directly into the tumor, affect tumor growth and metastasis. Methods: We evaluated these parameters through the monitoring of the intra-tumoral immune response. Results: Mice injected intratumorally with EST did not show changes in the size and weight of the tumors; although the tumors showed an increased microvasculature, they did develop increased micro and macro-metastasis in the lung. The analysis of the immune tumor microenvironment revealed that EST antigens did not modulate the proportion of immune cells in the tumor, spleen, or peripheral lymph nodes. Macroscopic and microscopic analyses of the lungs showed increased metastasis in the EST-treated animals compared to controls, accompanied by an increase in VEGF systemic levels. Discussion: Thus, these findings showed that intra-tumoral injection of T. canis EST antigens promote lung metastasis through modulation of the tumor immune microenvironment.


Subject(s)
Breast Neoplasms , Parasites , Toxocara canis , Toxocariasis , Humans , Female , Animals , Mice , Antigens, Helminth , Injections, Intralesional , Lung , Tumor Microenvironment
19.
Int J Parasitol ; 54(6): 303-310, 2024 May.
Article in English | MEDLINE | ID: mdl-38458482

ABSTRACT

Toxocara canis and Toxocara cati are globally distributed, zoonotic roundworm parasites. Human infection can have serious clinical consequences including blindness and brain disorders. In addition to ingesting environmental eggs, humans can become infected by eating infective larvae in raw or undercooked meat products. To date, no studies have assessed the prevalence of Toxocara spp. larvae in meat from animals consumed as food in the UK or assessed tissue exudates for the presence of anti-Toxocara antibodies. This study aimed to assess the potential risk to consumers eating meat products from animals infected with Toxocara spp. Tissue samples were obtained from 155 different food producing animals in the south, southwest and east of England, UK. Tissue samples (n = 226), either muscle or liver, were processed by artificial digestion followed by microscopic sediment evaluation for Toxocara spp. larvae, and tissue exudate samples (n = 141) were tested for the presence of anti-Toxocara antibodies using a commercial ELISA kit. A logistic regression model was used to compare anti-Toxocara antibody prevalence by host species, tissue type and source. While no larvae were found by microscopic examination after tissue digestion, the overall prevalence of anti-Toxocara antibodies in tissue exudates was 27.7%. By species, 35.3% of cattle (n = 34), 15.0% of sheep (n = 60), 54.6% of goats (n = 11) and 61.1% of pigs (n = 18) had anti-Toxocara antibodies. Logistic regression analysis found pigs were more likely to be positive for anti-Toxocara antibodies (odds ration (OR) = 2.89, P = 0.0786) compared with the other species sampled but only at a 10% significance level. The high prevalence of anti-Toxocara antibodies in tissue exudates suggests that exposure of food animals to this parasite is common in England. Tissue exudate serology on meat products within the human food chain could be applied in support of food safety and to identify practices that increase risks of foodborne transmission of zoonotic toxocariasis.


Subject(s)
Antibodies, Helminth , Toxocara , Toxocariasis , Animals , Toxocariasis/epidemiology , Toxocariasis/parasitology , Toxocara/immunology , Toxocara/isolation & purification , Antibodies, Helminth/blood , Antibodies, Helminth/analysis , Sheep , Swine , Cattle , Enzyme-Linked Immunosorbent Assay/veterinary , England/epidemiology , Meat/parasitology , Liver/parasitology , Goats , Exudates and Transudates/parasitology , Swine Diseases/parasitology , Humans , Muscles/parasitology , Sheep Diseases/parasitology , Sheep Diseases/epidemiology , Food Parasitology
20.
Front Biosci (Landmark Ed) ; 29(3): 124, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38538283

ABSTRACT

BACKGROUND: Toxocara canis (T. canis) is a helminth parasite of zoonotic and veterinary health significance that causes the disease known as Toxocariasis. This disease has been associated with conditions of poverty, especially in tropical climate zones throughout the world. Although it rarely causes important clinical manifestations, T. canis can lead to blindness, meningoencephalitis, or other nervous manifestations in humans. Moreover, some studies show its importance in the development of tumor growth, which have been associated with the parasite's ability to modulate the host's immune response. While different studies have evaluated the immune response during this disease, currently, there are no studies where the infection is analyzed from the perspective of sexual dimorphism. METHODS: To evaluate sex differences in susceptibility, we analyzed lesions and parasite loads in lung and liver at 7 days post-infection. In addition, immune cell subpopulations were analyzed in spleen, mesenteric and peripheral lymph nodes. Finally, the production of cytokines and specific antibodies were determined in the serum. Statical analyses were performed using a Two-way ANOVA and a post-hoc Bonferroni multiple comparison test. RESULTS: Female rats had a higher number of larvae in the liver, while male rats had them in the lungs. The percentages of immune cells were evaluated, and in most cases, no significant differences were observed. Regarding the cytokines production, infection can generate a decrease in Th1 such as IL-1ß in both sexes and IL-6 only in females. In the case of Th2, IL-4 increases only in infected males and IL-5 increases in males while decreasing in females due to the effect of infection. IL-10 also decreases in both sexes as a consequence of the infection, and TGF-ß only in females. Finally, the infection generates the production of antibodies against the parasite, however, their quantity is lower in females. CONCLUSIONS: This study demonstrates that T. canis infection is dimorphic and affects females more than males. This is due to a polarization of the inadequate immune response, which is reflected as a higher parasite load in this sex.


Subject(s)
Toxocara canis , Toxocariasis , Humans , Female , Rats , Male , Animals , Toxocariasis/parasitology , Toxocariasis/pathology , Toxocara canis/physiology , Sex Characteristics , Cytokines , Immunity
SELECTION OF CITATIONS
SEARCH DETAIL