Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 18882, 2024 08 14.
Article in English | MEDLINE | ID: mdl-39143261

ABSTRACT

Oligodeoxynucleotides containing CpG motifs (CpG-ODN) can promote antimicrobial immunity in chickens by enriching immune compartments and activating immune cells. Innate memory, or trained immunity, has been demonstrated in humans and mice, featuring the absence of specificity to the initial stimulus and subsequently cross-protection against pathogens. We hypothesize that CpG-ODN can induce trained immunity in chickens. We delivered single or multiple administrations of CpG-ODN to birds and mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis of peripheral blood mononuclear cells were quantified using Seahorse XFp. Next, chickens were administered with CpG-ODN twice at 1 and 4 day of age and challenged with Escherichia coli at 27 days of age. The CpG-ODN administered groups had significantly higher mitochondrial OXPHOS until 21 days of age while cellular glycolysis gradually declined by 14 days of age. The group administered with CpG-ODN twice at 1 and 4 days of age had significantly higher survival, lower clinical score and bacterial load following challenge with E. coli at 27 d of age. This study demonstrated the induction of trained immunity in broiler chickens following administration of CpG-ODN twice during the first 4 days of age to protect birds against E. coli septicemia at 27 days of age.


Subject(s)
Chickens , Escherichia coli Infections , Escherichia coli , Oligodeoxyribonucleotides , Poultry Diseases , Sepsis , Animals , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/pharmacology , Chickens/immunology , Escherichia coli Infections/immunology , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Sepsis/immunology , Sepsis/prevention & control , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Poultry Diseases/microbiology , Immunity, Innate/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Oxidative Phosphorylation , Trained Immunity
3.
Cell ; 187(17): 4637-4655.e26, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39043180

ABSTRACT

The medical burden of stroke extends beyond the brain injury itself and is largely determined by chronic comorbidities that develop secondarily. We hypothesized that these comorbidities might share a common immunological cause, yet chronic effects post-stroke on systemic immunity are underexplored. Here, we identify myeloid innate immune memory as a cause of remote organ dysfunction after stroke. Single-cell sequencing revealed persistent pro-inflammatory changes in monocytes/macrophages in multiple organs up to 3 months after brain injury, notably in the heart, leading to cardiac fibrosis and dysfunction in both mice and stroke patients. IL-1ß was identified as a key driver of epigenetic changes in innate immune memory. These changes could be transplanted to naive mice, inducing cardiac dysfunction. By neutralizing post-stroke IL-1ß or blocking pro-inflammatory monocyte trafficking with a CCR2/5 inhibitor, we prevented post-stroke cardiac dysfunction. Such immune-targeted therapies could potentially prevent various IL-1ß-mediated comorbidities, offering a framework for secondary prevention immunotherapy.


Subject(s)
Brain Injuries , Immunity, Innate , Immunologic Memory , Inflammation , Interleukin-1beta , Mice, Inbred C57BL , Monocytes , Animals , Mice , Interleukin-1beta/metabolism , Brain Injuries/immunology , Humans , Male , Monocytes/metabolism , Monocytes/immunology , Inflammation/immunology , Macrophages/immunology , Macrophages/metabolism , Stroke/complications , Stroke/immunology , Heart Diseases/immunology , Female , Receptors, CCR2/metabolism , Fibrosis , Epigenesis, Genetic , Trained Immunity
4.
JCI Insight ; 9(16)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39024553

ABSTRACT

To determine whether hyperlipidemia and chronic kidney disease (CKD) have a synergy in accelerating vascular inflammation via trained immunity (TI), we performed aortic pathological analysis and RNA-Seq of high-fat diet-fed (HFD-fed) 5/6 nephrectomy CKD (HFD+CKD) mice. We made the following findings: (a) HFD+CKD increased aortic cytosolic LPS levels, caspase-11 (CASP11) activation, and 998 gene expressions of TI pathways in the aorta (first-tier TI mechanism); (b) CASP11-/- decreased aortic neointima hyperplasia, aortic recruitment of macrophages, and casp11-gasdermin D-mediated cytokine secretion; (c) CASP11-/- decreased N-terminal gasdermin D (N-GSDMD) membrane expression on aortic endothelial cells and aortic IL-1B levels; (d) LPS transfection into human aortic endothelial cells resulted in CASP4 (human)/CASP11 (mouse) activation and increased N-GSDMD membrane expression; and (e) IL-1B served as the second-tier mechanism underlying HFD+CKD-promoted TI. Taken together, hyperlipidemia and CKD accelerated vascular inflammation by promoting 2-tier trained immunity.


Subject(s)
Caspases, Initiator , Caspases , Diet, High-Fat , Hyperlipidemias , Renal Insufficiency, Chronic , Trained Immunity , Animals , Humans , Male , Mice , Aorta/pathology , Aorta/immunology , Aorta/metabolism , Caspases/metabolism , Caspases/genetics , Caspases, Initiator/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/immunology , Gasdermins , Hyperlipidemias/immunology , Inflammation/immunology , Inflammation/metabolism , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Lipopolysaccharides , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Renal Insufficiency, Chronic/immunology , Renal Insufficiency, Chronic/metabolism
5.
Front Immunol ; 15: 1427443, 2024.
Article in English | MEDLINE | ID: mdl-39081326

ABSTRACT

While most of the cancer immunotherapy strategies engage adaptive immunity, especially tumor-associated T cells, the small fraction of responding patients and types of cancers amenable, and the possibility of severe adverse effects limit its usage. More effective and general interventions are urgently needed. Recently, a de facto innate immune memory, termed 'trained immunity', has become a new research focal point, and promises to be a powerful tool for achieving long-term therapeutic benefits against cancers. Trained immunity-inducing agents such as BCG and fungal glucan have been shown to be able to avert the suppressive tumor microenvironment (TME), enhance T cell responses, and eventually lead to tumor regression. Here, we review the current understating of trained immunity induction and highlight the critical roles of emergency granulopoiesis, interferon γ and tissue-specific induction. Preclinical and clinical studies that have exploited trained immunity inducers for cancer immunotherapy are summarized, and repurposed trained immunity inducers from other fields are proposed. We also outline the challenges and opportunities for trained immunity in future cancer immunotherapies. We envisage that more effective cancer vaccines will combine the induction of trained immunity with T cell therapies.


Subject(s)
Immunity, Innate , Immunologic Memory , Immunotherapy , Neoplasms , Tumor Microenvironment , Humans , Neoplasms/immunology , Neoplasms/therapy , Immunotherapy/methods , Tumor Microenvironment/immunology , Animals , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , T-Lymphocytes/immunology , Interferon-gamma/metabolism , Interferon-gamma/immunology , Trained Immunity
6.
Elife ; 122024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980302

ABSTRACT

Trained immunity is the long-term functional reprogramming of innate immune cells, which results in altered responses toward a secondary challenge. Despite indoxyl sulfate (IS) being a potent stimulus associated with chronic kidney disease (CKD)-related inflammation, its impact on trained immunity has not been explored. Here, we demonstrate that IS induces trained immunity in monocytes via epigenetic and metabolic reprogramming, resulting in augmented cytokine production. Mechanistically, the aryl hydrocarbon receptor (AhR) contributes to IS-trained immunity by enhancing the expression of arachidonic acid (AA) metabolism-related genes such as arachidonate 5-lipoxygenase (ALOX5) and ALOX5 activating protein (ALOX5AP). Inhibition of AhR during IS training suppresses the induction of IS-trained immunity. Monocytes from end-stage renal disease (ESRD) patients have increased ALOX5 expression and after 6 days training, they exhibit enhanced TNF-α and IL-6 production to lipopolysaccharide (LPS). Furthermore, healthy control-derived monocytes trained with uremic sera from ESRD patients exhibit increased production of TNF-α and IL-6. Consistently, IS-trained mice and their splenic myeloid cells had increased production of TNF-α after in vivo and ex vivo LPS stimulation compared to that of control mice. These results provide insight into the role of IS in the induction of trained immunity, which is critical during inflammatory immune responses in CKD patients.


Subject(s)
Indican , Kidney Failure, Chronic , Receptors, Aryl Hydrocarbon , Animals , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Kidney Failure, Chronic/immunology , Kidney Failure, Chronic/metabolism , Humans , Mice , Monocytes/immunology , Monocytes/metabolism , Monocytes/drug effects , Arachidonic Acid/metabolism , Male , Immunity, Innate/drug effects , Mice, Inbred C57BL , Arachidonate 5-Lipoxygenase/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Trained Immunity
7.
Proc Natl Acad Sci U S A ; 121(29): e2400413121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38976741

ABSTRACT

Trained immunity is characterized by epigenetic and metabolic reprogramming in response to specific stimuli. This rewiring can result in increased cytokine and effector responses to pathogenic challenges, providing nonspecific protection against disease. It may also improve immune responses to established immunotherapeutics and vaccines. Despite its promise for next-generation therapeutic design, most current understanding and experimentation is conducted with complex and heterogeneous biologically derived molecules, such as ß-glucan or the Bacillus Calmette-Guérin (BCG) vaccine. This limited collection of training compounds also limits the study of the genes most involved in training responses as each molecule has both training and nontraining effects. Small molecules with tunable pharmacokinetics and delivery modalities would both assist in the study of trained immunity and its future applications. To identify small molecule inducers of trained immunity, we screened a library of 2,000 drugs and drug-like compounds. Identification of well-defined compounds can improve our understanding of innate immune memory and broaden the scope of its clinical applications. We identified over two dozen small molecules in several chemical classes that induce a training phenotype in the absence of initial immune activation-a current limitation of reported inducers of training. A surprising result was the identification of glucocorticoids, traditionally considered immunosuppressive, providing an unprecedented link between glucocorticoids and trained innate immunity. We chose seven of these top candidates to characterize and establish training activity in vivo. In this work, we expand the number of compounds known to induce trained immunity, creating alternative avenues for studying and applying innate immune training.


Subject(s)
High-Throughput Screening Assays , Immunity, Innate , Small Molecule Libraries , Animals , Mice , High-Throughput Screening Assays/methods , Immunity, Innate/drug effects , Small Molecule Libraries/pharmacology , Mice, Inbred C57BL , Immunologic Memory/drug effects , Trained Immunity
8.
Semin Immunopathol ; 46(3-4): 7, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39060761

ABSTRACT

The innate immune system exhibits features of memory, termed trained immunity, which promote faster and more robust responsiveness to heterologous challenges. Innate immune memory is sustained through epigenetic modifications, affecting gene accessibility, and promoting a tailored gene transcription for an enhanced immune response. Alterations in the epigenetic landscape are intertwined with metabolic rewiring. Here, we review the metabolic pathways that underscore the induction and maintenance of trained immunity, including glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, and amino acid and lipid metabolism. The intricate interplay of these pathways is pivotal for establishing innate immune memory in distinct cellular compartments. We explore in particular the case of resident lung alveolar macrophages. We propose that leveraging the memory of the innate immune system may present therapeutic potential. Specifically, targeting the metabolic programs of innate immune cells is an emerging strategy for clinical interventions, either to boost immune responses in immunosuppressed conditions or to mitigate maladaptive activation in hyperinflammatory diseases.


Subject(s)
Epigenesis, Genetic , Immunity, Innate , Immunologic Memory , Humans , Animals , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/immunology , Energy Metabolism , Metabolic Networks and Pathways , Lipid Metabolism , Trained Immunity
9.
Cell Rep ; 43(6): 114324, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38850536

ABSTRACT

Trained immunity is classically characterized by long-term functional reprogramming of innate immune cells to combat infectious diseases. Infection-induced organ injury is a common clinical severity phenotype of sepsis. However, whether the induction of trained immunity plays a role in protecting septic organ injury remains largely unknown. Here, through establishing an in vivo ß-glucan training and lipopolysaccharide (LPS) challenge model in zebrafish larvae, we observe that induction of trained immunity could inhibit pyroptosis of hepatocytes to alleviate septic liver injury, with an elevated trimethyl-histone H3 lysine 4 (H3K4me3) modification that targets mitophagy-related genes. Moreover, we identify a C-type lectin domain receptor in zebrafish, named DrDectin-1, which is revealed as the orchestrator in gating H3K4me3 rewiring-mediated mitophagy activation and alleviating pyroptosis-engaged septic liver injury in vivo. Taken together, our results uncover tissue-resident trained immunity in maintaining liver homeostasis at the whole-animal level and offer an in vivo model to efficiently integrate trained immunity for immunotherapies.


Subject(s)
Hepatocytes , Pyroptosis , Sepsis , Zebrafish Proteins , Zebrafish , Animals , Hepatocytes/metabolism , Hepatocytes/immunology , Sepsis/immunology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Lipopolysaccharides , Liver/pathology , Liver/metabolism , Liver/immunology , Mitophagy , Lectins, C-Type/metabolism , Immunity, Innate , Histones/metabolism , beta-Glucans/pharmacology , Trained Immunity
11.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892046

ABSTRACT

Trained immunity is a concept in immunology in which innate immune cells, such as monocytes and macrophages, exhibit enhanced responsiveness and memory-like characteristics following initial contact with a pathogenic stimulus that may promote a more effective immune defense following subsequent contact with the same pathogen. Helicobacter pylori, a bacterium that colonizes the stomach lining, is etiologically associated with various gastrointestinal diseases, including gastritis, peptic ulcer, gastric adenocarcinoma, MALT lymphoma, and extra gastric disorders. It has been demonstrated that repeated exposure to H. pylori can induce trained immunity in the innate immune cells of the gastric mucosa, which become more responsive and better able to respond to subsequent H. pylori infections. However, interactions between H. pylori and trained immunity are intricate and produce both beneficial and detrimental effects. H. pylori infection is characterized histologically as the presence of both an acute and chronic inflammatory response called acute-on-chronic inflammation, or gastritis. The clinical outcomes of ongoing inflammation include intestinal metaplasia, gastric atrophy, and dysplasia. These same mechanisms may also reduce immunotolerance and trigger autoimmune pathologies in the host. This review focuses on the relationship between trained immunity and H. pylori and underscores the dynamic interplay between the immune system and the pathogen in the context of gastric colonization and inflammation.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Immune Tolerance , Immunity, Innate , Humans , Helicobacter Infections/immunology , Helicobacter Infections/microbiology , Helicobacter pylori/immunology , Animals , Gastric Mucosa/immunology , Gastric Mucosa/microbiology , Gastric Mucosa/pathology , Gastritis/immunology , Gastritis/microbiology , Immunologic Memory , Trained Immunity
13.
PLoS One ; 19(5): e0302722, 2024.
Article in English | MEDLINE | ID: mdl-38722827

ABSTRACT

BACKGROUND: Pakistan is endemic to a diverse set of parasitic, mycobacterial and viral diseases. The recognition of BCG Trained Immunity (TI) led us to postulate that the continued presence of BCG-TI may play a protective role, previously reported for both infectious and noninfectious conditions. Most of the previous studies have addressed the issue of BCG-TI in the paediatric populations. This study addressed the key issue of maintenance of BCG-TI in a wider age range (adolescent and adults) to identify the strength and quality of the immune responses. OBJECTIVE: To assess the BCG-induced recall responses in healthy individuals by cytokines secreted from the TI network and its potential role in providing cross-protection against COVID-19 and other viral infections. STUDY DESIGN: In this cross-sectional study, healthy young adults and adolescents (n = 20) were recruited from 16-40 years of age, with no prior history of TB treatment, autoimmune, or chronic inflammatory condition. METHODS: BCG-induced cytokine responses were assessed using prototypic markers for cells of the TI network [macrophages [M1 (TNFα, IFNγ), M2 (IL10)], NK (IL2), Gamma delta (γδ) T (IL17, IL4)] and SARS CoV2 IgG antibodies against RBD using short-term (12 hrs.) cultures assay. RESULTS: Significant differences were observed in the magnitude of recall responses to BCG with macrophage cytokines showing the highest mean levels of TNFα (9148 pg/ml) followed by IL10 (488 pg/ml) and IFNγ (355 pg/ml). The ratio of unstimulated vs.BCG-stimulated cytokines was 132 fold higher for TNFα, 40 fold fo r IL10, and 27 fold for IFNγ. Furthermore, SARS-CoV-2 antibodies were also detected in unstimulated plasma which showed cross reactivity with BCG. CONCLUSION: The presence of cross reactive antibodies to SARS-CoV-2 and the relative ratio of pro- and anti-inflammatory cytokines secreted by activated TI cellular network may play a pivotal role in protection in the early stages of infection as observed during the COVID-19 pandemic in the younger age groups resulting in lower morbidity and mortality.


Subject(s)
Antibodies, Viral , BCG Vaccine , COVID-19 , Cytokines , Trained Immunity , Adolescent , Adult , Female , Humans , Male , Young Adult , Antibodies, Viral/immunology , Antibodies, Viral/blood , BCG Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Cross Reactions/immunology , Cross-Sectional Studies , Cytokines/immunology , Pakistan/epidemiology , SARS-CoV-2/immunology , Vaccination
14.
Trends Immunol ; 45(6): 406-418, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38796404

ABSTRACT

Sarcoidosis is a chronic immune disease of unknown origin for which we still lack an immunological framework unifying causal agents, host factors, and natural history of disease. Here, we discuss the initial triggers of disease, and how myeloid cells drive granuloma formation and contribute to immunopathogenesis. We highlight recent advances in our understanding of innate immune memory and propose the hypothesis that maladaptive innate immune training connects previous environmental exposure to granuloma maintenance and expansion. Lastly, we consider how this hypothesis may open novel therapeutic avenues, while corticosteroids remain the front-line treatment.


Subject(s)
Immunity, Innate , Immunologic Memory , Sarcoidosis , Humans , Sarcoidosis/immunology , Immunity, Innate/immunology , Animals , Granuloma/immunology , Myeloid Cells/immunology , Trained Immunity
15.
Sci Immunol ; 9(95): eade3814, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787963

ABSTRACT

Patients with heart failure (HF) often experience repeated acute decompensation and develop comorbidities such as chronic kidney disease and frailty syndrome. Although this suggests pathological interaction among comorbidities, the mechanisms linking them are poorly understood. Here, we identified alterations in hematopoietic stem cells (HSCs) as a critical driver of recurrent HF and associated comorbidities. Bone marrow transplantation from HF-experienced mice resulted in spontaneous cardiac dysfunction and fibrosis in recipient mice, as well as increased vulnerability to kidney and skeletal muscle insults. HF enhanced the capacity of HSCs to generate proinflammatory macrophages. In HF mice, global chromatin accessibility analysis and single-cell RNA-seq showed that transforming growth factor-ß (TGF-ß) signaling was suppressed in HSCs, which corresponded with repressed sympathetic nervous activity in bone marrow. Transplantation of bone marrow from mice in which TGF-ß signaling was inhibited similarly exacerbated cardiac dysfunction. Collectively, these results suggest that cardiac stress modulates the epigenome of HSCs, which in turn alters their capacity to generate cardiac macrophage subpopulations. This change in HSCs may be a common driver of repeated HF events and comorbidity by serving as a key carrier of "stress memory."


Subject(s)
Heart Failure , Immunity, Innate , Immunologic Memory , Mice, Inbred C57BL , Animals , Heart Failure/immunology , Mice , Male , Multimorbidity , Transforming Growth Factor beta/metabolism , Hematopoietic Stem Cells/immunology , Signal Transduction/immunology , Macrophages/immunology , Trained Immunity
16.
Front Immunol ; 15: 1393283, 2024.
Article in English | MEDLINE | ID: mdl-38742111

ABSTRACT

For decades, innate immune cells were considered unsophisticated first responders, lacking the adaptive memory of their T and B cell counterparts. However, mounting evidence demonstrates the surprising complexity of innate immunity. Beyond quickly deploying specialized cells and initiating inflammation, two fascinating phenomena - endotoxin tolerance (ET) and trained immunity (TI) - have emerged. ET, characterized by reduced inflammatory response upon repeated exposure, protects against excessive inflammation. Conversely, TI leads to an enhanced response after initial priming, allowing the innate system to mount stronger defences against subsequent challenges. Although seemingly distinct, these phenomena may share underlying mechanisms and functional implications, blurring the lines between them. This review will delve into ET and TI, dissecting their similarities, differences, and the remaining questions that warrant further investigation.


Subject(s)
Endotoxins , Immune Tolerance , Immunity, Innate , Immunologic Memory , Humans , Animals , Endotoxins/immunology , Inflammation/immunology , Adaptive Immunity , Trained Immunity
17.
Front Immunol ; 15: 1362289, 2024.
Article in English | MEDLINE | ID: mdl-38812523

ABSTRACT

Introduction: Innate immune training is a metabolic, functional, and epigenetic long-term reprogramming of innate cells triggered by different stimuli. This imprinting also reaches hematopoietic precursors in the bone marrow to sustain a memory-like phenotype. Dendritic cells (DCs) can exhibit memory-like responses, enhanced upon subsequent exposure to a pathogen; however, whether this imprinting is lineage and stimulus-restricted is still being determined. Nevertheless, the functional consequences of DCs training on the adaptive and protective immune response against non-infectious diseases remain unresolved. Methods: We evaluated the effect of the nontoxic cholera B subunit (CTB), LPS and LTA in the induction of trained immunity in murine DCs revealed by TNFa and LDH expression, through confocal microscopy. Additionally, we obtained bone marrow DCs (BMDCs) from mice treated with CTB, LPS, and LTA and evaluated training features in DCs and their antigen-presenting cell capability using multiparametric cytometry. Finally, we design an experimental melanoma mouse model to demonstrate protection induced by CTB-trained DCs in vivo. Results: CTB-trained DCs exhibit increased expression of TNFa, and metabolic reprogramming indicated by LDH expression. Moreover, CTB training has an imprint on DC precursors, increasing the number and antigen-presenting function in BMDCs. We found that training by CTB stimulates the recruitment of DC precursors and DCs infiltration at the skin and lymph nodes. Interestingly, training-induced by CTB promotes a highly co-stimulatory phenotype in tumor-infiltrating DCs (CD86+) and a heightened functionality of exhausted CD8 T cells (Ki67+, GZMB+), which were associated with a protective response against melanoma challenge in vivo. Conclusion: Our work indicates that CTB can induce innate immune training on DCs, which turns into an efficient adaptive immune response in the melanoma model and might be a potential immunotherapeutic approach for tumor growth control.


Subject(s)
CD8-Positive T-Lymphocytes , Cholera Toxin , Dendritic Cells , Melanoma, Experimental , Mice, Inbred C57BL , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mice , CD8-Positive T-Lymphocytes/immunology , Cholera Toxin/immunology , Cholera Toxin/pharmacology , Melanoma, Experimental/immunology , Immunity, Innate , Female , Immunologic Memory , Trained Immunity
18.
Sci Adv ; 10(14): eadk8093, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578989

ABSTRACT

Trained immunity is one of the mechanisms by which BCG vaccination confers persistent nonspecific protection against diverse diseases. Genomic differences between the different BCG vaccine strains that are in global use could result in variable protection against tuberculosis and therapeutic effects on bladder cancer. In this study, we found that four representative BCG strains (BCG-Russia, BCG-Sweden, BCG-China, and BCG-Pasteur) covering all four genetic clusters differed in their ability to induce trained immunity and nonspecific protection. The trained immunity induced by BCG was associated with the Akt-mTOR-HIF1α axis, glycolysis, and NOD-like receptor signaling pathway. Multi-omics analysis (epigenomics, transcriptomics, and metabolomics) showed that linoleic acid metabolism was correlated with the trained immunity-inducing capacity of different BCG strains. Linoleic acid participated in the induction of trained immunity and could act as adjuvants to enhance BCG-induced trained immunity, revealing a trained immunity-inducing signaling pathway that could be used in the adjuvant development.


Subject(s)
BCG Vaccine , Tuberculosis , Humans , Linoleic Acid , Trained Immunity , Multiomics , Adjuvants, Immunologic/pharmacology
19.
BMC Microbiol ; 24(1): 130, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643095

ABSTRACT

BACKGROUND: Mycobacteria bloodstream infections are common in immunocompromised people and usually have disastrous consequences. As the primary phagocytes in the bloodstream, monocytes and neutrophils play critical roles in the fight against bloodstream mycobacteria infections. In contrast to macrophages, the responses of monocytes infected with the mycobacteria have been less investigated. RESULTS: In this study, we first established a protocol for infection of non-adherent monocyte-like THP-1 cells (i.e. without the differentiation induced by phorbol 12-myristate 13-acetate (PMA) by bacillus Calmette-Guérin (BCG). Via the protocol, we were then capable of exploring the global transcriptomic profiles of non-adherent THP-1 cells infected with BCG, and found that NF-κB, MAPK and PI3K-Akt signaling pathways were enhanced, as well as some inflammatory chemokine/cytokine genes (e.g. CCL4, CXCL10, TNF and IL-1ß) were up-regulated. Surprisingly, the Akt-HIF-mTOR signaling pathway was also activated, which induces trained immunity. In this in vitro infection model, increased cytokine responses to lipopolysaccharides (LPS) restimulation, higher cell viability, and decreased Candida albicans loads were observed. CONCLUSIONS: We have first characterized the transcriptomic profiles of BCG-infected non-adherent THP-1 cells, and first developed a trained immunity in vitro model of the cells.


Subject(s)
Monocytes , Mycobacterium bovis , Humans , BCG Vaccine , Trained Immunity , Proto-Oncogene Proteins c-akt/genetics , THP-1 Cells , Phosphatidylinositol 3-Kinases , Cytokines
20.
Front Immunol ; 15: 1365127, 2024.
Article in English | MEDLINE | ID: mdl-38665915

ABSTRACT

Conventionally, immunity in humans has been classified as innate and adaptive, with the concept that only the latter type has an immunological memory/recall response against specific antigens or pathogens. Recently, a new concept of trained immunity (a.k.a. innate memory response) has emerged. According to this concept, innate immune cells can exhibit enhanced responsiveness to subsequent challenges, after initial stimulation with antigen/pathogen. Thus, trained immunity enables the innate immune cells to respond robustly and non-specifically through exposure or re-exposure to antigens/infections or vaccines, providing enhanced resistance to unrelated pathogens or reduced infection severity. For example, individuals vaccinated with BCG to protect against tuberculosis were also protected from malaria and SARS-CoV-2 infections. Epigenetic modifications such as histone acetylation and metabolic reprogramming (e.g. shift towards glycolysis) and their inter-linked regulations are the key factors underpinning the immune activation of trained cells. The integrated metabolic and epigenetic rewiring generates sufficient metabolic intermediates, which is crucial to meet the energy demand required to produce proinflammatory and antimicrobial responses by the trained cells. These factors also determine the efficacy and durability of trained immunity. Importantly, the signaling pathways and regulatory molecules of trained immunity can be harnessed as potential targets for developing novel intervention strategies, such as better vaccines and immunotherapies against infectious (e.g., sepsis) and non-infectious (e.g., cancer) diseases. However, aberrant inflammation caused by inappropriate onset of trained immunity can lead to severe autoimmune pathological consequences, (e.g., systemic sclerosis and granulomatosis). In this review, we provide an overview of conventional innate and adaptive immunity and summarize various mechanistic factors associated with the onset and regulation of trained immunity, focusing on immunologic, metabolic, and epigenetic changes in myeloid cells. This review underscores the transformative potential of trained immunity in immunology, paving the way for developing novel therapeutic strategies for various infectious and non-infectious diseases that leverage innate immune memory.


Subject(s)
Epigenesis, Genetic , Immunity, Innate , Immunologic Memory , Myeloid Cells , Animals , Humans , Myeloid Cells/immunology , Trained Immunity
SELECTION OF CITATIONS
SEARCH DETAIL