Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.941
Filter
1.
Sci Signal ; 17(843): eadk0231, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954637

ABSTRACT

The Hippo pathway is generally understood to inhibit tumor growth by phosphorylating the transcriptional cofactor YAP to sequester it to the cytoplasm and reduce the formation of YAP-TEAD transcriptional complexes. Aberrant activation of YAP occurs in various cancers. However, we found a tumor-suppressive function of YAP in clear cell renal cell carcinoma (ccRCC). Using cell cultures, xenografts, and patient-derived explant models, we found that the inhibition of upstream Hippo-pathway kinases MST1 and MST2 or expression of a constitutively active YAP mutant impeded ccRCC proliferation and decreased gene expression mediated by the transcription factor NF-κB. Mechanistically, the NF-κB subunit p65 bound to the transcriptional cofactor TEAD to facilitate NF-κB-target gene expression that promoted cell proliferation. However, by competing for TEAD, YAP disrupted its interaction with NF-κB and prompted the dissociation of p65 from target gene promoters, thereby inhibiting NF-κB transcriptional programs. This cross-talk between the Hippo and NF-κB pathways in ccRCC suggests that targeting the Hippo-YAP axis in an atypical manner-that is, by activating YAP-may be a strategy for slowing tumor growth in patients.


Subject(s)
Adaptor Proteins, Signal Transducing , Carcinoma, Renal Cell , Cell Proliferation , Kidney Neoplasms , Protein Serine-Threonine Kinases , Transcription Factors , YAP-Signaling Proteins , Humans , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Animals , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Mice , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Hippo Signaling Pathway , Signal Transduction , TEA Domain Transcription Factors/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , Mice, Nude , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Serine-Threonine Kinase 3
2.
Medicine (Baltimore) ; 103(26): e38737, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941371

ABSTRACT

Alterations in signaling pathways and modulation of cell metabolism are associated with the pathogenesis of cancers, including hepatocellular carcinoma (HCC). Small ubiquitin-like modifier (SUMO) proteins and NF-κB family play major roles in various cellular processes. The current study aims to determine the expression profile of SUMO and NF-κB genes in HCC tumors and investigate their association with the clinical outcome of HCC. The expression of 5 genes - SUMO1, SUMO2, SUMO3, NF-κB p65, and NF-κB p50 - was quantified in tumor and adjacent non-tumor tissues of 58 HBV-related HCC patients by real-time quantitative PCR and was analyzed for the possible association with clinical parameters of HCC. The expression of SUMO2 was significantly higher in HCC tumor tissues compared to the adjacent non-tumor tissues (P = .01), while no significant difference in SUMO1, SUMO3, NF-κB p65, and NF-κB p50 expression was observed between HCC tumor and non-tumor tissues (P > .05). In HCC tissues, a strong correlation was observed between the expression of SUMO2 and NF-κB p50, between SUMO3 and NF-κB p50, between SUMO3 and NF-κB p65 (Spearman rho = 0.83; 0.82; 0.772 respectively; P < .001). The expression of SUMO1, SUMO2, SUMO3, NF-κB p65, and NF-κB p50 was decreased in grade 3 compared to grades 1 and 2 in HCC tumors according to the World Health Organization grades system. Our results highlighted that the SUMO2 gene is upregulated in tumor tissues of patients with HCC, and is related to the development of HCC, thus it may be associated with the pathogenesis of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Small Ubiquitin-Related Modifier Proteins , Humans , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/virology , Liver Neoplasms/metabolism , Male , Female , Middle Aged , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism , NF-kappa B/metabolism , Adult , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Hepatitis B virus/genetics , NF-kappa B p50 Subunit/genetics , NF-kappa B p50 Subunit/metabolism , Aged , Gene Expression Regulation, Neoplastic , Ubiquitins/genetics , Ubiquitins/metabolism , Hepatitis B/complications , Hepatitis B/genetics
3.
Cell Mol Life Sci ; 81(1): 255, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856747

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor; GBM's inevitable recurrence suggests that glioblastoma stem cells (GSC) allow these tumors to persist. Our previous work showed that FOSL1, transactivated by the STAT3 gene, functions as a tumorigenic gene in glioma pathogenesis and acts as a diagnostic marker and potential drug target in glioma patients. Accumulating evidence shows that STAT3 and NF-κB cooperate to promote the development and progression of various cancers. The link between STAT3 and NF-κB suggests that NF-κB can also transcriptionally regulate FOSL1 and contribute to gliomagenesis. To investigate downstream molecules of FOSL1, we analyzed the transcriptome after overexpressing FOSL1 in a PDX-L14 line characterized by deficient FOSL1 expression. We then conducted immunohistochemical staining for FOSL1 and NF-κB p65 using rabbit polyclonal anti-FOSL1 and NF-κB p65 in glioma tissue microarrays (TMA) derived from 141 glioma patients and 15 healthy individuals. Next, mutants of the human FOSL1 promoter, featuring mutations in essential binding sites for NF-κB were generated using a Q5 site-directed mutagenesis kit. Subsequently, we examined luciferase activity in glioma cells and compared it to the wild-type FOSL1 promoter. Then, we explored the mutual regulation between NF-κB signaling and FOSL1 by modulating the expression of NF-κB or FOSL1. Subsequently, we assessed the activity of FOSL1 and NF-κB. To understand the role of FOSL1 in cell growth and stemness, we conducted a CCK-8 assay and cell cycle analysis, assessing apoptosis and GSC markers, ALDH1, and CD133 under varying FOSL1 expression conditions. Transcriptome analyses of downstream molecules of FOSL1 show that NF-κB signaling pathway is regulated by FOSL1. NF-κB p65 protein expression correlates to the expression of FOSL1 in glioma patients, and both are associated with glioma grades. NF-κB is a crucial transcription factor activating the FOSL1 promoter in glioma cells. Mutual regulation between NF-κB and FOSL1 contributes to glioma tumorigenesis and stemness through promoting G1/S transition and inhibiting apoptosis. Therefore, the FOSL1 molecular pathway is functionally connected to NF-κB activation, enhances stemness, and is indicative that FOSL1 may potentially be a novel GBM drug target.


Subject(s)
Gene Expression Regulation, Neoplastic , NF-kappa B , Neoplastic Stem Cells , Promoter Regions, Genetic , Proto-Oncogene Proteins c-fos , Animals , Humans , Mice , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Glioma/pathology , Glioma/genetics , Glioma/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , NF-kappa B/metabolism , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Signal Transduction , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics
4.
PLoS One ; 19(6): e0300790, 2024.
Article in English | MEDLINE | ID: mdl-38935597

ABSTRACT

Myocardial ischemia-reperfusion injury (MIRI) refers to the secondary damage to myocardial tissue that occurs when blood perfusion is rapidly restored following myocardial ischemia. This process often exacerbates the injury to myocardial fiber structure and function. The activation mechanism of angiogenesis is closely related to MIRI and plays a significant role in the occurrence and progression of ischemic injury. In this study, we utilized sequencing data from the GEO database and employed WGCNA, Mfuzz cluster analysis, and protein interaction network to identify Stat3, Rela, and Ubb as hub genes involved in MIRI-angiogenesis. Additionally, the GO and KEGG analysis of differentially expressed genes highlighted their broad participation in inflammatory responses and associated signaling pathways. Moreover, the analysis of sequencing data and hub genes revealed a notable increase in the infiltration ratio of monocytes and activated mast cells. By establishing key cell ROC curves, using independent datasets, and validating the expression of hub genes, we demonstrated their high diagnostic value. Moreover, by scrutinizing single-cell sequencing data alongside trajectory analysis, it has come to light that Stat3 and Rela exhibit predominant expression within Dendritic cells. In contrast, Ubb demonstrates expression across multiple cell types, with all three genes being expressed at distinct stages of cellular development. Lastly, leveraging the CMap database, we predicted potential small molecule compounds for the identified hub genes and validated their binding activity through molecular docking. Ultimately, our research provides valuable evidence and references for the early diagnosis and treatment of MIRI from the perspective of angiogenesis.


Subject(s)
Biomarkers , Myocardial Reperfusion Injury , STAT3 Transcription Factor , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Humans , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Biomarkers/metabolism , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Protein Interaction Maps/genetics , Neovascularization, Pathologic/genetics , Gene Expression Profiling , Angiogenesis
5.
Arch Dermatol Res ; 316(6): 274, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796528

ABSTRACT

Wound healing is a highly programmed process, in which any abnormalities result in scar formation. MicroRNAs are potent regulators affecting wound repair and scarification. However, the function of microRNAs in wound healing is not fully understood. Here, we analyzed the expression and function of microRNAs in patients with cutaneous wounds. Cutaneous wound biopsies from patients with either hypertrophic scarring or normal wound repair were collected during inflammation, proliferation, and remodeling phases. Fourteen candidate microRNAs were selected for expression analysis by qRT-PCR. The expression of genes involved in inflammation, angiogenesis, proliferation, and migration were measured using qRT-PCR. Cell cycle and scratch assays were used to explore the proliferation and migration rates. Flow cytometry analysis was employed to examine TGF-ß, αSMA and collagen-I expression. Target gene suggestion was performed using Enrichr tool. The results showed that miR-16-5p, miR-152-3p, miR-125b-5p, miR-34c-5p, and miR-182-5p were revealed to be differentially expressed between scarring and non-scarring wounds. Based on the expression patterns obtained, miR-182-5p was selected for functional studies. miR-182-5p induced RELA expression synergistically upon IL-6 induction in keratinocytes and promoted angiogenesis. miR-182-5p prevented keratinocyte migration, while overexpressed TGF-ß3 following induction of inflammation. Moreover, miR-182-5p enhanced fibroblast proliferation, migration, differentiation, and collagen-1 expression. FoxO1 and FoxO3 were found to potentially serve as putative gene targets of miR-182-5p. In conclusion, miR-182-5p is differentially expressed between scarring and non-scarring wounds and affect the behavior of cells involved in cutaneous wound healing. Deregulated expression of miR-182-5p adversely affects the proper transition of wound healing phases, resulting in scar formation.


Subject(s)
Cell Proliferation , Cicatrix, Hypertrophic , MicroRNAs , Skin , Wound Healing , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Wound Healing/genetics , Cell Proliferation/genetics , Skin/pathology , Skin/injuries , Skin/metabolism , Cicatrix, Hypertrophic/genetics , Cicatrix, Hypertrophic/pathology , Cicatrix, Hypertrophic/metabolism , Cell Movement/genetics , Inflammation/genetics , Inflammation/pathology , Keratinocytes/metabolism , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Male , Female , Adult , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Fibroblasts/metabolism , Gene Expression Regulation , Middle Aged , Neovascularization, Physiologic/genetics
6.
Nucleic Acids Res ; 52(12): 6906-6927, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38742642

ABSTRACT

MicroRNAs (miRNAs) play crucial regulatory roles in controlling immune responses, but their dynamic expression mechanisms are poorly understood. Here, we firstly confirm that the conserved miRNA miR-210 negatively regulates innate immune responses of Drosophila and human via targeting Toll and TLR6, respectively. Secondly, our findings demonstrate that the expression of miR-210 is dynamically regulated by NF-κB factor Dorsal in immune response of Drosophila Toll pathway. Thirdly, we find that Dorsal-mediated transcriptional inhibition of miR-210 is dependent on the transcriptional repressor Su(Hw). Mechanistically, Dorsal interacts with Su(Hw) to modulate cooperatively the dynamic expression of miR-210 in a time- and dose-dependent manner, thereby controlling the strength of Drosophila Toll immune response and maintaining immune homeostasis. Fourthly, we reveal a similar mechanism in human cells, where NF-κB/RelA cooperates with E4F1 to regulate the dynamic expression of hsa-miR-210 in the TLR immune response. Overall, our study reveals a conservative regulatory mechanism that maintains animal innate immune homeostasis and provides new insights into the dynamic regulation of miRNA expression in immune response.


Subject(s)
Drosophila Proteins , Immunity, Innate , MicroRNAs , Transcription Factors , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Humans , Immunity, Innate/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation , Drosophila melanogaster/genetics , Drosophila melanogaster/immunology , NF-kappa B/metabolism , Toll-Like Receptor 6/genetics , Toll-Like Receptor 6/metabolism , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Signal Transduction , Cell Line , Drosophila/genetics , Drosophila/immunology , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Nuclear Proteins , Phosphoproteins
7.
Parasit Vectors ; 17(1): 239, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802961

ABSTRACT

BACKGROUND: The spleen plays a critical role in the immune response against malaria parasite infection, where splenic fibroblasts (SFs) are abundantly present and contribute to immune function by secreting type I collagen (collagen I). The protein family is characterized by Plasmodium vivax tryptophan-rich antigens (PvTRAgs), comprising 40 members. PvTRAg23 has been reported to bind to human SFs (HSFs) and affect collagen I levels. Given the role of type I collagen in splenic immune function, it is important to investigate the functions of the other members within the PvTRAg protein family. METHODS: Protein structural prediction was conducted utilizing bioinformatics analysis tools and software. A total of 23 PvTRAgs were successfully expressed and purified using an Escherichia coli prokaryotic expression system, and the purified proteins were used for co-culture with HSFs. The collagen I levels and collagen-related signaling pathway protein levels were detected by immunoblotting, and the relative expression levels of inflammatory factors were determined by quantitative real-time PCR. RESULTS: In silico analysis showed that P. vivax has 40 genes encoding the TRAg family. The C-terminal region of all PvTRAgs is characterized by the presence of a domain rich in tryptophan residues. A total of 23 recombinant PvTRAgs were successfully expressed and purified. Only five PvTRAgs (PvTRAg5, PvTRAg16, PvTRAg23, PvTRAg30, and PvTRAg32) mediated the activation of the NF-κBp65 signaling pathway, which resulted in the production of inflammatory molecules and ultimately a significant reduction in collagen I levels in HSFs. CONCLUSIONS: Our research contributes to the expansion of knowledge regarding the functional role of PvTRAgs, while it also enhances our understanding of the immune evasion mechanisms utilized by parasites.


Subject(s)
Antigens, Protozoan , Collagen Type I , Fibroblasts , Plasmodium vivax , Signal Transduction , Spleen , Plasmodium vivax/genetics , Plasmodium vivax/immunology , Fibroblasts/parasitology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Animals , Collagen Type I/metabolism , Collagen Type I/genetics , Spleen/immunology , Spleen/parasitology , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Mice , Humans , Malaria, Vivax/parasitology , Malaria, Vivax/immunology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/immunology , Tryptophan/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Computational Biology
8.
Proc Natl Acad Sci U S A ; 121(23): e2405555121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805268

ABSTRACT

The dimeric nuclear factor kappa B (NF-κB) transcription factors (TFs) regulate gene expression by binding to a variety of κB DNA elements with conserved G:C-rich flanking sequences enclosing a degenerate central region. Toward defining mechanistic principles of affinity regulated by degeneracy, we observed an unusual dependence of the affinity of RelA on the identity of the central base pair, which appears to be noncontacted in the complex crystal structures. The affinity of κB sites with A or T at the central position is ~10-fold higher than with G or C. The crystal structures of neither the complexes nor the free κB DNAs could explain the differences in affinity. Interestingly, differential dynamics of several residues were revealed in molecular dynamics simulation studies, where simulation replicates totaling 148 µs were performed on NF-κB:DNA complexes and free κB DNAs. Notably, Arg187 and Arg124 exhibited selectivity in transient interactions that orchestrated a complex interplay among several DNA-interacting residues in the central region. Binding and simulation studies with mutants supported these observations of transient interactions dictating specificity. In combination with published reports, this work provides insights into the nuanced mechanisms governing the discriminatory binding of NF-κB family TFs to κB DNA elements and sheds light on cancer pathogenesis of cRel, a close homolog of RelA.


Subject(s)
DNA , Molecular Dynamics Simulation , NF-kappa B , Protein Binding , DNA/metabolism , Humans , NF-kappa B/metabolism , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Binding Sites , Crystallography, X-Ray
9.
Biochem Biophys Res Commun ; 722: 150143, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38795451

ABSTRACT

Nuclear factor (NF)-κB signaling is not only important for the immune and inflammatory responses but also for the normal development of epithelial cells, such as those in the skin and tooth. Here, we generated epithelial cell-specific p65-deficient (p65Δepi-/-) mice to analyze the roles of NF-κB signaling in epithelial cell developent. Notably, p65Δepi-/- mice exhibited no abnormalities in their appearance compared to the control (p65flox/flox) littermates. Furthermore, no major changes were observed in the skin, hair growth, and shape and color of the incisors and molars. However, 65 % of p65Δepi-/- mice exhibited corneal thickening after 8 weeks of age, and 30 % of p65Δepi-/- mice exhibited hair growth from the mandibular incisors around 24 weeks of age. No hair growth was observed at 36 and 42 weeks of age. However, micro-computed tomography images revealed a large cavity below the mandibular incisors extending to the root of the incisor. Histological analysis revealed that the cavity was occupied by a connective tissue containing hair-like structures with many dark brown granules that disappeared after melanin bleaching, confirming the presence of hair. Although inflammatory cells were also observed near the eruption site of the incisor teeth of p65Δepi-/- mice, no major disturbance was observed in the arrangement of enamel epithelial cells. Overall, these results highlight the role of p65 in the maintenance of epithelial cell homeostasis during aging.


Subject(s)
Cellular Senescence , Epithelial Cells , Mice, Knockout , Transcription Factor RelA , Animals , Epithelial Cells/metabolism , Epithelial Cells/cytology , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Mice , Mice, Inbred C57BL , Signal Transduction , Aging/metabolism
10.
Bull Exp Biol Med ; 176(5): 562-566, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38724811

ABSTRACT

We studied the effect of an NO donor, nitrosyl iron complex with N-ethylthiourea, on Nrf2-dependent antioxidant system activation of tumor cells in vitro. The complex increased intracellular accumulation of Nrf2 transcription factor and induced its nuclear translocation. It was shown that both heme oxygenase-1 gene and protein expression increased significantly under the influence of the complex. Nrf2 activation was accompanied by a decrease in the intracellular accumulation of proinflammatory transcription factor NF-κB p65 subunit and expression of its target genes. The cytotoxic effect of N-ethylthiourea leads to induction of Nrf2/HO-1 antioxidant response and suppression of NF-κB-dependent processes in tumor cells.


Subject(s)
Heme Oxygenase-1 , Iron , NF-E2-Related Factor 2 , Thiourea , Humans , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Thiourea/analogs & derivatives , Thiourea/pharmacology , HeLa Cells , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Iron/metabolism , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Nitrogen Oxides/metabolism , Nitrogen Oxides/pharmacology , Antioxidants/pharmacology
11.
Sci Rep ; 14(1): 11211, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755247

ABSTRACT

Lung adenocarcinoma (LUAD) is a malignancy with an abysmal survival rate. High metastasis is the leading cause of the low survival rate of LUAD. NCAPH, an oncogene, is involved in the carcinogenesis of LUAD. However, the regulation of NCAPH in LUAD remains controversial. In this work, we identified an up-regulation of NCAPH in LUAD tissues. Patients who expressed more NCAPH had shorter overall survival (OS). Furthermore, NCAPH overexpression promoted LUAD cell migration while inhibiting apoptosis. MiR-1976 and miR-133b were predicted to target NCAPH expression by searching TargetScan and linkedomics databases. Following that, we confirmed that miR-1976 suppressed NCAPH by directly targeting a 7-bp region of NCAPH 3' untranslated regions (UTR). In addition, increased expression of miR-1976 decreased the proliferation & migration and promoted apoptosis of LUAD cells, and the re-introduction of NCAPH reversed these influences. Furthermore, the xenograft and metastasis mouse models also confirmed that miR-1976 inhibited tumor growth and metastasis in vivo by targeting NCAPH. Finally, we found that MiR-1976 targeting NCAPH blocked the activation of NF-κB. In conclusion, miR-1976 inhibits NCAPH activity in LUAD and acts as a tumor suppressor. The miR-1976/NCAPH/NF-κB axis may, in the future, represent crucial diagnostic and prognostic biomarkers and promising therapeutic options.


Subject(s)
Adenocarcinoma of Lung , Apoptosis , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Animals , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Mice , Cell Movement/genetics , Cell Proliferation/genetics , Apoptosis/genetics , Cell Line, Tumor , Male , Female , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Phenotype , Mice, Nude , Signal Transduction
12.
Nat Commun ; 15(1): 3653, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688896

ABSTRACT

Although nontumor components play an essential role in colon cancer (CC) progression, the intercellular communication between CC cells and adjacent colonic epithelial cells (CECs) remains poorly understood. Here, we show that intact mitochondrial genome (mitochondrial DNA, mtDNA) is enriched in serum extracellular vesicles (EVs) from CC patients and positively correlated with tumor stage. Intriguingly, circular mtDNA transferred via tumor cell-derived EVs (EV-mtDNA) enhances mitochondrial respiration and reactive oxygen species (ROS) production in CECs. Moreover, the EV-mtDNA increases TGFß1 expression in CECs, which in turn promotes tumor progression. Mechanistically, the intercellular mtDNA transfer activates the mitochondrial respiratory chain to induce the ROS-driven RelA nuclear translocation in CECs, thereby transcriptionally regulating TGFß1 expression and promoting tumor progression via the TGFß/Smad pathway. Hence, this study highlights EV-mtDNA as a major driver of paracrine metabolic crosstalk between CC cells and adjacent CECs, possibly identifying it as a potential biomarker and therapeutic target for CC.


Subject(s)
Colonic Neoplasms , DNA, Mitochondrial , Disease Progression , Epithelial Cells , Extracellular Vesicles , Genome, Mitochondrial , Reactive Oxygen Species , Transforming Growth Factor beta1 , Humans , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Reactive Oxygen Species/metabolism , Extracellular Vesicles/metabolism , Animals , Male , Mice , Female , Cell Line, Tumor , Mitochondria/metabolism , Colon/metabolism , Colon/pathology , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Gene Expression Regulation, Neoplastic , Signal Transduction , Middle Aged , Metabolic Reprogramming
13.
Gene ; 916: 148446, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38583816

ABSTRACT

Mesenchymal stem cells (MSCs) have high priority in clinical applications for treatment of immune disorders because of their immunomodulatory function. A lot of researches have currently been undertaken to enhance the stemness capacities of the cells and pick an excellent type of MSCs for clinical approaches. This study aims to assess the immunomodulatory related MicroRNAs (miRNAs) expression as well as their target genes in both adipose derived stem cells (Ad-SCs) and dental pulp derived stem cell (DP-SCs) in the presence or lack of Crocin (saffron plant's bioactive compound). For this purpose, first MSCs were extracted from adipose and dental pulp tissues, and then their mesenchymal nature was confirmed using flow cytometry and differentiation tests. Following the cell treatment with an optimal-non-toxic dose of Crocin (Obtained by MTT test), the expression of 4 selected immunomodulatory-related micro-RNAs (Mir-126, -21, -23, and-155) and their target genes (PI3K/ Akt 1 and 2/ NFKB and RELA) were assessed by RT-PCR. Our findings revealed that miRNA-23 and miRNA-126 were up-regulated in both types of cells treated with Crocin, while in the other side, miRNA-21 and miRNA-155 were down-regulated in DP-SCs and were up-regulated in Ad-SCs under treatment. Moreover, the real-time PCR results indicated that Crocin could significantly down regulate the expression of PI3K/ Akt1/ Akt2/ NFKB/ RELA genes in DP-SCs and PI3K/Akt2 genes in Ad-SCs and up regulate the expression of Akt1/ NFKB/ RELA genes in recent cells. Based on the analysis of the obtained data, the immunoregulatory effects of Crocin were higher in DP-SCs than in Ad-SCs. In conclusion, Crocin could control essential signaling pathways related to the inflammation by regulating the expression of related- miRNAs genes that play a key function in the immune regulation pathways in MSCs. Our findings can give an understanding of the mechanisms by which Crocin enhances the immunomodulatory feature of MSCs. According to the research findings, DP-SCs are probably a better immunomodulator in Crocin treatment than Ad-SCs and it may be helpful for MSCs selection in clinical applications for modulation or treatment of autoimmune disorders.


Subject(s)
Carotenoids , Mesenchymal Stem Cells , MicroRNAs , MicroRNAs/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/immunology , Carotenoids/pharmacology , Humans , Cells, Cultured , Gene Expression Regulation/drug effects , Cell Differentiation/drug effects , Immunomodulation/drug effects , Immunomodulation/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Adipose Tissue/cytology , Adipose Tissue/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism
14.
Virol J ; 21(1): 93, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658979

ABSTRACT

African swine fever virus (ASFV) is a highly contagious and fatal hemorrhagic disease of domestic pigs, which poses a major threat to the swine industry worldwide. Studies have shown that indigenous African pigs tolerate ASFV infection better than European pigs. The porcine v-rel avian reticuloendotheliosis viral oncogene homolog A (RelA) encoding a p65 kD protein, a major subunit of the NF-kB transcription factor, plays important roles in controlling both innate and adaptive immunity during infection with ASFV. In the present study, RelA genes from ASFV-surviving and symptomatic pigs were sequenced and found to contain polymorphisms revealing two discrete RelA amino acid sequences. One was found in the surviving pigs, and the other in symptomatic pigs. In total, 16 nonsynonymous SNPs (nsSNPs) resulting in codon changes were identified using bioinformatics software (SIFT and Polyphen v2) and web-based tools (MutPre and PredictSNP). Seven nsSNPs (P374-S, T448-S, P462-R, V464-P, Q478-H, L495-E, and P499-Q) were predicted to alter RelA protein function and stability, while 5 of these (P374-S, T448-S, P462-R, L495-E, and Q499-P) were predicted as disease-related SNPs.Additionally, the inflammatory cytokine levels of IFN-α, IL-10, and TNF-α at both the protein and the mRNA transcript levels were measured using ELISA and Real-Time PCR, respectively. The resulting data was used in correlation analysis to assess the association between cytokine levels and the RelA gene expression. Higher levels of IFN-α and detectable levels of IL-10 protein and RelA mRNA were observed in surviving pigs compared to healthy (non-infected). A positive correlation of IFN-α cytokine levels with RelA mRNA expression was also obtained. In conclusion, 7 polymorphic events in the coding region of the RelA gene may contribute to the tolerance of ASFV in pigs.


Subject(s)
African Swine Fever Virus , African Swine Fever , Polymorphism, Single Nucleotide , Transcription Factor RelA , Animals , African Swine Fever Virus/genetics , African Swine Fever Virus/immunology , Swine , Transcription Factor RelA/genetics , African Swine Fever/virology , African Swine Fever/genetics , African Swine Fever/immunology , Disease Resistance/genetics , Up-Regulation , Transcription, Genetic , Sequence Analysis, DNA , Sus scrofa/genetics , Sus scrofa/virology
15.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 385-393, 2024 Apr 15.
Article in Chinese | MEDLINE | ID: mdl-38660903

ABSTRACT

OBJECTIVES: To investigate the effect of chaperone-mediated autophagy (CMA) on the damage of mouse microglial BV2 cells induce by unconjugated bilirubin (UCB). METHODS: The BV2 cell experiments were divided into two parts. (1) For the CMA activation experiment: control group (treated with an equal volume of dimethyl sulfoxide), QX77 group (treated with 20 µmol/L QX77 for 24 hours), UCB group (treated with 40 µmol/L UCB for 24 hours), and UCB+QX77 group (treated with both 20 µmol/L QX77 and 40 µmol/L UCB for 24 hours). (2) For the cell transfection experiment: LAMP2A silencing control group (treated with an equal volume of dimethyl sulfoxide), LAMP2A silencing control+UCB group (treated with 40 µmol/L UCB for 24 hours), LAMP2A silencing group (treated with an equal volume of dimethyl sulfoxide), and LAMP2A silencing+UCB group (treated with 40 µmol/L UCB for 24 hours). The cell viability was assessed using the modified MTT method. The expression levels of p65, nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), and cysteinyl aspartate specific proteinase-1 (caspase-1) were detected by Western blot. The relative mRNA expression levels of the inflammatory cytokines interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α) were determined by real-time quantitative polymerase chain reaction. Levels of IL-6 and TNF-α in the cell culture supernatant were measured using ELISA. The co-localization of heat shock cognate protein 70 with p65 and NLRP3 was detected by immunofluorescence. RESULTS: Compared to the UCB group, the cell viability in the UCB+QX77 group increased, and the expression levels of inflammation-related proteins p65, NLRP3, and caspase-1, as well as the mRNA relative expression levels of IL-1ß, IL-6, and TNF-α and levels of IL-6 and TNF-α decreased (P<0.05). Compared to the control group, there was co-localization of heat shock cognate protein 70 with p65 and NLRP3 in both the UCB and UCB+QX77 groups. After silencing the LAMP2A gene, compared to the LAMP2A silencing control+UCB group, the LAMP2A silencing+UCB group showed increased expression levels of inflammation-related proteins p65, NLRP3, and caspase-1, as well as increased mRNA relative expression levels of IL-1ß, IL-6, and TNF-α and levels of IL-6 and TNF-α (P<0.05). CONCLUSIONS: CMA is inhibited in UCB-induced BV2 cell damage, and activating CMA may reduce p65 and NLRP3 protein levels, suppress inflammatory responses, and counteract bilirubin neurotoxicity.


Subject(s)
Bilirubin , Chaperone-Mediated Autophagy , Microglia , Animals , Mice , Microglia/metabolism , Chaperone-Mediated Autophagy/physiology , Chaperone-Mediated Autophagy/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Lysosomal-Associated Membrane Protein 2/genetics , Lysosomal-Associated Membrane Protein 2/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Cells, Cultured , Cell Survival
16.
Exp Cell Res ; 438(2): 114058, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38688434

ABSTRACT

BACKGROUND: Gastric cancer (GC) is a common cancer type with both high incidence and mortality. Recent studies have revealed an important role of circRNA in the development of GC. However, more experiments are needed to reveal the precise molecular mechanisms of circRNA in GC development. METHODS: Bioinformatics analysis was conducted to predict the potential role of circ_PABPC1 in GC and the target proteins of circ_PABPC1. Quantitative RT-PCR, Western blot and immunohistochemistry assays were conducted to detect the levels of circ_PABPC1, NF-κB p65, NF-κB p65 (Ser536) and ILK. MTT, Edu staining, cell scratch-wound and trans-well assays were carried out to detect cell proliferation, migration and invasion. The interaction between ILK and circ_PABPC1 was confirmed by RNA immunoprecipitation (RIP), RNA pull-down and fluorescence in situ hybridization assays. Genetically modified GC cells were injected into mice to evaluate the tumor growth performance. RESULTS: This study found that the high expression of circ_PABPC1 was associated with a poor prognosis of GC. The up-regulation of circ_PABPC1 promoted the proliferation, migration and invasion of GC cells. Circ_PABPC1 bound to ILK protein, thereby preventing the degradation of ILK. ILK mediated the effect of circ_PABPC1 on GC cells through activating NF-κB. CONCLUSION: circ_PABPC1 promotes the malignancy of GC cells through binding to ILK to activate NF-κB signaling pathway.


Subject(s)
Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , NF-kappa B , Protein Serine-Threonine Kinases , RNA, Circular , Signal Transduction , Stomach Neoplasms , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Cell Proliferation/genetics , Animals , Mice , NF-kappa B/metabolism , NF-kappa B/genetics , Cell Movement/genetics , Cell Line, Tumor , Mice, Nude , Male , Prognosis , Female , Mice, Inbred BALB C , Neoplasm Invasiveness , Middle Aged , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics
17.
Neuromolecular Med ; 26(1): 16, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668900

ABSTRACT

Toll-like receptor (TLR) 7 plays an important role in recognizing virus-derived nucleic acids. TLR7 signaling in astrocytes and microglia is critical for activating immune responses against neurotrophic viruses. Neurons express TLR7, similar to glial cells; however, the role of neuronal TLR7 has not yet been fully elucidated. This study sought to determine whether resiquimod, the TLR7/8 agonist, induces the expression of inflammatory chemokines in SH-SY5Y human neuroblastoma cells. Immunofluorescence microscopy revealed that TLR7 was constitutively expressed in SH-SY5Y cells. Stimulation with resiquimod induced C-C motif chemokine ligand 2 (CCL2) expression, accompanied by the activation of nuclear factor-kappa B (NF-κB) in SH-SY5Y cells. Resiquimod increased mRNA levels of C-X-C motif chemokine ligand 8 (CXCL8) and CXCL10, while the increase was slight at the protein level. Knockdown of NF-κB p65 eliminated resiquimod-induced CCL2 production. This study provides novel evidence that resiquimod has promising therapeutic potential against central nervous system viral infections through its immunostimulatory effects on neurons.


Subject(s)
Chemokine CCL2 , Chemokine CXCL10 , Imidazoles , Interleukin-8 , Toll-Like Receptor 7 , Transcription Factor RelA , Humans , Cell Line, Tumor , Chemokine CCL2/genetics , Chemokine CCL2/biosynthesis , Chemokine CXCL10/genetics , Chemokine CXCL10/biosynthesis , Imidazoles/pharmacology , Interleukin-8/genetics , Interleukin-8/biosynthesis , Neuroblastoma , Neurons/drug effects , Neurons/metabolism , NF-kappa B/metabolism , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Signal Transduction/drug effects , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/genetics , Toll-Like Receptor 8/agonists , Toll-Like Receptor 8/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics
18.
Blood ; 143(23): 2414-2424, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38457657

ABSTRACT

ABSTRACT: Hyperactivation of the NF-κB cascade propagates oncogenic signaling and proinflammation, which together augments disease burden in myeloproliferative neoplasms (MPNs). Here, we systematically ablate NF-κB signaling effectors to identify core dependencies using a series of primary samples and syngeneic and patient-derived xenograft (PDX) mouse models. Conditional knockout of Rela attenuated Jak2V617F- and MPLW515L-driven onset of polycythemia vera and myelofibrosis disease hallmarks, respectively. In PDXs, RELA knockout diminished leukemic engraftment and bone marrow fibrosis while extending survival. Knockout of upstream effector Myd88 also alleviated disease burden; conversely, perturbation of negative regulator miR-146a microRNA induced earlier lethality and exacerbated disease. Perturbation of NF-κB effectors further skewed the abundance and distribution of hematopoietic multipotent progenitors. Finally, pharmacological targeting of interleukin-1 receptor-associated kinase 4 (IRAK4) with inhibitor CA-4948 suppressed disease burden and inflammatory cytokines specifically in MPN without inducing toxicity in nondiseased models. These findings highlight vulnerabilities in MPN that are exploitable with emerging therapeutic approaches.


Subject(s)
Myeloproliferative Disorders , NF-kappa B , Signal Transduction , Animals , Mice , Humans , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Myeloproliferative Disorders/metabolism , NF-kappa B/metabolism , Mice, Knockout , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics
19.
J Biol Chem ; 300(4): 107200, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508315

ABSTRACT

Interferon (IFN) regulatory factors (IRF) are key transcription factors in cellular antiviral responses. IRF7, a virus-inducible IRF, expressed primarily in myeloid cells, is required for transcriptional induction of interferon α and antiviral genes. IRF7 is activated by virus-induced phosphorylation in the cytoplasm, leading to its translocation to the nucleus for transcriptional activity. Here, we revealed a nontranscriptional activity of IRF7 contributing to its antiviral functions. IRF7 interacted with the pro-inflammatory transcription factor NF-κB-p65 and inhibited the induction of inflammatory target genes. Using knockdown, knockout, and overexpression strategies, we demonstrated that IRF7 inhibited NF-κB-dependent inflammatory target genes, induced by virus infection or toll-like receptor stimulation. A mutant IRF7, defective in transcriptional activity, interacted with NF-κB-p65 and suppressed NF-κB-induced gene expression. A single-action IRF7 mutant, active in anti-inflammatory function, but defective in transcriptional activity, efficiently suppressed Sendai virus and murine hepatitis virus replication. We, therefore, uncovered an anti-inflammatory function for IRF7, independent of transcriptional activity, contributing to the antiviral response of IRF7.


Subject(s)
Interferon Regulatory Factor-7 , NF-kappa B , Animals , Humans , Mice , HEK293 Cells , Inflammation/genetics , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/immunology , NF-kappa B/genetics , NF-kappa B/immunology , Sendai virus/physiology , Transcription Factor RelA/genetics , Transcription Factor RelA/immunology , Virus Replication , Mutation , Gene Expression Regulation/genetics , Murine hepatitis virus/physiology , Coronavirus Infections/immunology , Respirovirus Infections/immunology
20.
Pathol Res Pract ; 255: 155168, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367599

ABSTRACT

OBJECTIVE: To explore the biological function of RELA proto-oncogene, NF-kB subunit (RELA) in hepatocellular carcinoma (HCC) progression, and its potential regulatory effects on the regulators of m6A modification. METHODS AND MATERIALS: GEPIA, UALCAN and Human Protein Atlas databases were applied to analyze the expression characteristics of RELA in HCC tissues and non-cancer liver tissues, and its relationship with clinicopathologic indicators and prognosis. Quantitative real-time PCR (qRT-PCR) was used to examine the expression level of RELA mRNA in HCC cells. Cell counting kit-8 (CCK-8) assay, EdU assay and flow cytometry were used to examine cell growth and apoptosis. PROMO database was applied to predict the binding sequence between RELA and methyltransferase like protein 3 (METTL3) promoter region, and this prediction was verified by dual luciferase reporter gene experiment and chromatin immunoprecipitation assay. The effect of RELA on METTL3 expression was examined by Western blot and qRT-PCT, and the regulatory effects of RELA on the other m6A regulators were evaluated by qRT-PCR. RESULTS: RELA was highly expressed in HCC tissues and cell lines, and was closely associated with adverse clinicopathologic indicators and poor prognosis of patients. Overexpression of RELA promoted the growth of HCC cells and inhibited apoptosis; Knocking down RELA had the opposite effects. Overexpression of RELA promoted METTL3 transcription. Knockdown or overexpression of METTL3 reversed the effects of overexpression or knockdown of RELA on HCC cell growth and apoptosis, respectively. RELA also promoted the expression of a series of m6A regulators at mRNA expression level in HCC cell lines. CONCLUSION: RELA promotes the transcription of METTL3 by binding to METTL3 promoter region, thus promoting the malignancy of HCC cells. This study suggests NF-κB signaling contributes the dysregulation of m6A modification in HCC tumorigenesis.


Subject(s)
Adenine , Carcinoma, Hepatocellular , Liver Neoplasms , Transcription Factor RelA , Humans , Adenine/analogs & derivatives , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Liver Neoplasms/genetics , Methyltransferases/genetics , RNA, Messenger , Transcription Factor RelA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...