Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32.678
Filter
1.
J Environ Sci (China) ; 148: 665-682, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095198

ABSTRACT

Emission characteristics of biogenic volatile organic compounds (BVOCs) from dominant tree species in the subtropical pristine forests of China are extremely limited. Here we conducted in situ field measurements of BVOCs emissions from representative mature evergreen trees by using dynamic branch enclosures at four altitude gradients (600-1690 m a.s.l.) in the Nanling Mountains of southern China. Composition characteristics as well as seasonal and altitudinal variations were analyzed. Standardized emission rates and canopy-scale emission factors were then calculated. Results showed that BVOCs emission intensities in the wet season were generally higher than those in the dry season. Monoterpenes were the dominant BVOCs emitted from most broad-leaved trees, accounting for over 70% of the total. Schima superba, Yushania basihirsuta and Altingia chinensis had relatively high emission intensities and secondary pollutant formation potentials. The localized emission factors of isoprene were comparable to the defaults in the Model of Emissions of Gases and Aerosols from Nature (MEGAN), while emission factors of monoterpenes and sesquiterpenes were 2 to 58 times of those in the model. Our results can be used to update the current BVOCs emission inventory in MEGAN, thereby reducing the uncertainties of BVOCs emission estimations in forested regions of southern China.


Subject(s)
Air Pollutants , Environmental Monitoring , Forests , Volatile Organic Compounds , Volatile Organic Compounds/analysis , China , Air Pollutants/analysis , Trees , Seasons
2.
Rev. biol. trop ; 72(1): e54500, ene.-dic. 2024. graf
Article in Spanish | LILACS, SaludCR | ID: biblio-1559314

ABSTRACT

Resumen Introducción: La melina (Gmelina arborea), es una especie de gran interés por su madera y propiedades medicinales. En Costa Rica, existen clones genéticamente superiores que se propagan sin el conocimiento de la edad ontogénica y fisiológica de los materiales. Objetivo: Evaluar la relación del contenido de fenoles y ligninas en hojas, peciolos, tallos y raíces de plantas con diferentes edades. Métodos: Los contenidos de fenoles y ligninas totales se determinaron mediante el método colorimétrico de Folin-Ciocalteu y el método de extracción alcalina, respectivamente. Para la investigación se eligieron plantas in vitro "año cero" y árboles de año y medio, cuatro, siete y 20 años. El muestreo se realizó en marzo y abril del 2021. Resultados: Se demostró que todas las partes de la planta analizadas contienen compuestos fenólicos y ligninas, independientemente de su edad. No hubo una correlación positiva entre la edad con el contenido de fenoles y ligninas para ninguna condición de desarrollo, pues los valores más altos no se obtuvieron en los árboles más longevos. Los extractos de hojas de las plantas in vitro y los árboles de siete años mostraron, respectivamente, los contenidos más altos de fenoles y ligninas para todas las condiciones (P < 0.05). Los valores promedio más bajos de compuestos fenólicos para todas las condiciones se obtuvieron en los árboles de cuatro años. Respecto a las ligninas, el contenido más bajo se presentó en las raíces más longevas, aunque la tendencia no se mantuvo para el resto de las partes de la planta. Conclusiones: La investigación muestra los primeros resultados del contenido de compuestos fenólicos y ligninas presentes en diferentes tejidos de una especie forestal de edades diferentes. Por lo tanto, son los primeros valores de referencia acerca del compromiso bioquímico para la síntesis fenólica según la edad y el estado de desarrollo específico de una planta leñosa.


Abstract Introduction: Melina (Gmelina arborea) is a tree species of great interest for its wood and medicinal properties. In Costa Rica, there are genetically superior clones that are propagated without knowledge of the ontogenic and physiological age of the materials. Objective: To evaluate how age influences the content of phenols and lignins in leaves, petioles, stems, and roots of melina plants. Methods: The total phenolic and lignins contents were determined using Folin-Ciocalteu colorimetric method and alkaline extraction method, respectively. Plants of five different ages were chosen for the investigation (in vitro plants "year 0" and trees of a year and a half, four, seven and 20 years). Sampling was done in March and April 2021. Results: All parts of the plant analyzed contain phenolic compounds and lignins, regardless of their age. There was no positive correlation between age and phenol and lignin content for any development condition, since the highest values were not obtained in the oldest trees. Leaf extracts from in vitro plants and seven-year-old trees showed, respectively, the highest phenol and lignin contents for all conditions (P < 0.05). The lowest average values of phenolic compounds for all conditions were obtained in four-year-old trees. Regarding lignins, the lowest content occurred in the oldest roots, although the trend was not maintained for the rest of the plant parts. Conclusions: This study provides the first results of the content of phenolic compounds and lignins present in different tissues of a forest species of different ages. Therefore, they are the first reference values about the biochemical commitment for phenolic synthesis according to the age and the specific developmental stage of a woody plant.


Subject(s)
Phenols/analysis , Trees , Lignin/analysis , Sampling Studies , Lamiaceae , Phytochemicals/analysis
3.
Glob Chang Biol ; 30(9): e17493, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39239723

ABSTRACT

The future of tropical forests hinges on the balance between disturbance rates, which are expected to increase with climate change, and tree growth. Whereas tree growth is a slow process, disturbance events occur sporadically and tend to be short-lived. This difference challenges forest monitoring to achieve sufficient resolution to capture tree growth, while covering the necessary scale to characterize disturbance rates. Airborne LiDAR time series can address this challenge by measuring landscape scale changes in canopy height at 1 m resolution. In this study, we present a robust framework for analysing disturbance and recovery processes in LiDAR time series data. We apply this framework to 8000 ha of old-growth tropical forests over a 4-5-year time frame, comparing growth and disturbance rates between Borneo, the eastern Amazon and the Guiana shield. Our findings reveal that disturbance was balanced by growth in eastern Amazonia and the Guiana shield, resulting in a relatively stable mean canopy height. In contrast, tall Bornean forests experienced a decrease in canopy height due to numerous small-scale (<0.1 ha) disturbance events outweighing the gains due to growth. Within sites, we found that disturbance rates were weakly related to topography, but significantly increased with maximum canopy height. This could be because taller trees were particularly vulnerable to disturbance agents such as drought, wind and lightning. Consequently, we anticipate that tall forests, which contain substantial carbon stocks, will be disproportionately affected by the increasing severity of extreme weather events driven by climate change.


Subject(s)
Climate Change , Forests , Trees , Trees/growth & development , Borneo , Tropical Climate , Brazil
4.
Sci Adv ; 10(36): eadk5861, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39241070

ABSTRACT

Canopy leaf abundance of Amazon rainforests increases in the dry season but decreases in the wet season, contrary to earlier expectations of water stress adversely affecting plant functions. Drivers of this seasonality, particularly the role of water availability, remain debated. We introduce satellite-based ecophysiological indicators to demonstrate that Amazon rainforests are constrained by water during dry seasons despite light-driven canopy greening. Evidence includes a shifted partitioning of photosynthetically active radiation toward more isoprene emissions and synchronized declines in leaf and xylem water potentials. In addition, we find that convective storms attenuate light-driven ecosystem greening in the late dry season and then reverse to net leaf loss in the wet season, improving rainforest leaf area predictability by 24 to 31%. These findings highlight the susceptibility of Amazon rainforests to increasing risks of drought and windthrow disturbances under warming.


Subject(s)
Droughts , Rainforest , Seasons , Water , Water/metabolism , Plant Leaves , Photosynthesis , Trees , Ecosystem , Rain
5.
Physiol Plant ; 176(5): e14522, 2024.
Article in English | MEDLINE | ID: mdl-39248017

ABSTRACT

Reserves of non-structural carbohydrates (NSC) stored in living cells are essential for drought tolerance of trees. However, little is known about the phenotypic plasticity of living storage compartments (SC) and their interactions with NSC reserves under changing water availability. Here, we examined adjustments of SC and NSC reserves in stems and roots of seedlings of two temperate tree species, Acer negundo L. and Betula pendula Roth., cultivated under different substrate water availability. We found that relative contents of soluble NSC, starch and total NSC increased with decreasing water availability in stems of both species, and similar tendencies were also observed in roots of A. negundo. In the roots of B. pendula, soluble NSC contents decreased along with the decreasing water availability, possibly due to phloem decoupling or NSC translocation to shoots. Despite the contrast in organ responses, NSC contents (namely starch) positively correlated with proportions of total organ SC. Individual types of SC showed markedly distinct plasticity upon decreasing water availability, suggesting that water availability changes the partitioning of organ storage capacity. We found an increasing contribution of parenchyma-rich bark to the total organ NSC storage capacity under decreasing water availability. However, xylem SC showed substantially greater plasticity than those in bark. Axial storage cells, namely living fibers in A. negundo, responded more sensitively to decreasing water availability than radial parenchyma. Our results demonstrate that drought-induced changes in carbon balance affect the organ storage capacity provided by living cells, whose proportions are sensitively coordinated along with changing NSC reserves.


Subject(s)
Acer , Starch , Water , Water/metabolism , Acer/metabolism , Acer/physiology , Starch/metabolism , Betula/metabolism , Betula/physiology , Plant Roots/metabolism , Plant Roots/physiology , Plant Stems/metabolism , Plant Stems/physiology , Trees/metabolism , Trees/physiology , Droughts , Carbohydrate Metabolism , Xylem/metabolism , Wood/metabolism , Seedlings/metabolism , Seedlings/physiology
6.
Braz J Biol ; 84: e282479, 2024.
Article in English | MEDLINE | ID: mdl-39230079

ABSTRACT

The phytosociological survey was conducted during 2018-2020. The research area was classified into five ecological zones based on habitat, physiognomy and species composition. Pc-Ord software was used for cluster analysis and four vegetation communities were established. The Quercus baloot-Quercus incana community is situated in Sair at an altitude of 1196 (mean ± SE) m altitude with a 14.1 ± 0 slope angle and contains eleven tree species. The Pinus wallichiana- Ailanthus altissima community had a relatively small number of tree species reported in Shakawlie at 1556 (mean ± SE) with a 17.5 ± 0 slope angle. The Pinus wallichiana- Quercus incana community is distributed in Wali Kandao and Mangi Kandao at altitudes of 2030.5 (mean ± SE) m and the slope angle was 19.2 ± 1.4. This community possesses a total of twenty-one tree species and is highly diverse. Similarly, the Populus alba - Platanus orientalis group was present in Banr Pate, with an altitude of 1613 (mean ± SE) m and a 16.3 slope angle. The principal component analysis (PCA) and non-metric multidimensional scaling (NMS) ordination methods were applied to study the relationships between ecological and soil variables with trees species. The NMS ordination of axis 1 was significantly correlated with Sand% (p<0.2), Nitrogen% (p<0.1) and Pb (mg/kg) (r= 0.876751, p<0.05), while the ordination of axis 2 was significantly correlated with Silt% (p<0.2), Sand% (p<0.2), Organic matter% (p<0.2), K (mg/kg) (r=0.882433, p<0.02), Fe (mg/kg)(r=0.614833, p<0.2), Ca (mg/kg) (r=0.721712, p< 0.2) and Zn (mg/kg) (r=0.609545, p<0.2). Similarly, the PCA ordination of axis 1 revealed that it was significantly correlated with phosphorus, calcium and slope angle, while that of axis 2 was significantly correlated with altitude, zinc and manganese.


Subject(s)
Forests , Trees , Trees/classification , Pakistan , Biodiversity , Altitude , Ecosystem , Soil/chemistry
7.
Environ Monit Assess ; 196(10): 893, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230633

ABSTRACT

The rapid reduction of forests due to environmental impacts such as deforestation, global warming, natural disasters such as forest fires as well as various human activities is an escalating concern. The increasing frequency and severity of forest fires are causing significant harm to the ecosystem, economy, wildlife, and human safety. During dry and hot seasons, the likelihood of forest fires also increases. It is crucial to accurately monitor and analyze the large-scale changes in the forest cover to ensure sustainable forest management. Remote sensing technology helps to precisely study such changes in forest cover over a wide area over time. This research analyzes the impact of forest fires over time, identifies hotspots, and explores the environmental factors that affect forest cover change. Sentinel-2 imagery was utilized to study changes in Brunei Darussalam's forest cover area over five years from 2017 to 2022. An object-based approach, Simple Non-Iterative Clustering (SNIC), is employed to cluster the region using NDVI values and analyze the changes per cluster. The results indicate that the area of the clusters reduced where fire incidence occurred as well as the precipitation dropped. Between 2017 and 2022, the increased forest fires and decreased precipitation levels resulted in the change in cluster areas as follows: 66.11%, 69.46%, 68.32%, 73.88%, 77.27%, and 78.70%, respectively. Additionally, hotspots in response to forest fires each year were identified in the Belait district. This study will help forest managers assess the causes of forest cover loss and develop conservation and afforestation strategies.


Subject(s)
Conservation of Natural Resources , Environmental Monitoring , Forests , Wildfires , Environmental Monitoring/methods , Conservation of Natural Resources/methods , Ecosystem , Remote Sensing Technology , Fires , Trees
10.
Funct Plant Biol ; 512024 Sep.
Article in English | MEDLINE | ID: mdl-39222466

ABSTRACT

The water relation strategy is a key issue in climate change. Given the difficulty of determining water relations strategy, there is a need for simple traits with a solid theoretical basis to estimate it. Traits associated with resource allocation patterns along a 'fast-slow' plant economics spectrum are particularly compelling, reflecting trade-offs between growth rate and carbon allocation. Avocado (Persea americana ), fig tree (Ficus carica ), mandarin (Citrus reticulata ), olive (Olea europaea ), pomegranate (Punica granatum ), and grapevine (Vitis vinifera ) were characterised in terms of iso-anisohydric strategy through stomatal behaviour, water potential at the turgor loss point (TLP), and hydroscape area. Additionally, the association of these metrics with leaf mass per area (LMA) and wood density (WDen) was explored. We observed high coordination between LMA and WDen, and both traits were related to metrics of water relation strategy. More anisohydric species tended to invest more carbon per unit leaf area or unit stem volume, which has implications for hydraulic efficiency and water stress tolerance. WDen and TLP were the most powerful traits in estimating the water relation strategy for six fruit species. These traits are easy to measure, time-cost efficient, and appear central to coordinating multiple traits and behaviours along the water relations strategies.


Subject(s)
Carbon , Plant Leaves , Plant Stems , Trees , Water , Plant Leaves/physiology , Plant Leaves/growth & development , Plant Leaves/anatomy & histology , Plant Leaves/metabolism , Water/metabolism , Carbon/metabolism , Plant Stems/growth & development , Plant Stems/physiology , Plant Stems/anatomy & histology , Trees/growth & development , Trees/physiology , Persea/physiology , Persea/growth & development , Citrus/growth & development , Citrus/physiology , Citrus/anatomy & histology , Fruit/growth & development , Vitis/growth & development , Vitis/physiology , Olea/physiology , Olea/growth & development , Ficus/physiology , Ficus/growth & development , Pomegranate
11.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1877-1886, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39233417

ABSTRACT

Investigating the wind speed flow field and aerodynamic characteristics of shelterbelts with different structural features is of significant importance for the rational arrangement of shelterbelts and the mitigation of wind-blown sand disasters. Considering five cross-sectional shapes of shelterbelts (rectangle, windward right-angle triangle, leeward right-angle triangle, isosceles triangle, and parabolic) and four layout forms (single shelterbelt, L-shaped network, U-shaped network, and rectangular network), we conducted computational fluid dynamics (CFD) simulations using the large eddy simulation (LES) turbulence model to understand mean wind speed flow field and turbulence structure of shelterbelts with different structural features, and investigated the effects of shelterbelt cross-sectional shapes and layout forms on windbreak indicators, such as protection distance and area. We considered tree canopies as porous media and conducted simulation with the 'Tsujimatsu' shelterbelt in Japan with a total height (H) of 7 m, canopy height of 5.8 m, and a canopy base width of 2 m. The results showed that the average relative errors of mean wind speed and turbulent kinetic energy at different heights obtained by numerical simulations and field measurement were small, being 5.5% and 12%, respectively, indicating that the porous medium canopy model successfully reproduced the mean wind speed and turbulent kinetic energy in the leeward area of the shelterbelt. The rectangular cross-section shelterbelt, with the largest canopy volume, significantly obstructed airflow. The mean wind speed and turbulent kinetic energy showed a notable reduction in the leeward area near the shelterbelt, especially in the upper region (z≥0.5H, where z denoted the height), showing the largest protection range. The parabolic cross-section shelterbelt ranked second in terms of protection range, followed by shelterbelts with windward right-angle, leeward right-angle, and isosceles triangular cross-sections. In the downstream area where horizontal distance x≥10H, the mean wind speed and turbulent kinetic energy of shelterbelts with different cross-sectional shapes tended to be the same. Comparing the flow field structures of single shelterbelts and L-shaped, U-shaped, and rectangular networks, it revealed that the more shelterbelts oriented perpendicular to the incoming wind speed, the more pronounced the wind speed attenuation behind the canopy, a longer distance would be required for airflow to recover to the incoming wind speed. In contrast, the wind protection effect of shelterbelts paralleled to the wind direction was extremely limited, making the U-shaped and rectangular networks more effective in wind protection than single shelterbelts and L-shaped networks. The findings would provide references for the structural configuration and optimal layout of shelterbelt systems.


Subject(s)
Computer Simulation , Forests , Wind , Models, Theoretical , Conservation of Natural Resources , Pinus/growth & development , Ecosystem , Trees/growth & development , China
12.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1979-1987, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39233428

ABSTRACT

We assessed the diversity, composition, and distribution of bird species in patches of semi-humid evergreen broad-leaved forest by selecting eight natural forest communities in the central Yunnan Plateau, which is a representative distribution area of semi-humid broad-leaved evergreen forest. Field observations were conducted from April to August 2023 by the sample line and sample point method, and eight survey routes of 3-4 km in length were established. The results showed that 1) A total of 1286 birds were recorded, belonging to 102 species in 7 orders and 30 families. The three most abundant families were Muscicapidae (14 species), Leiothrichidae (9 species), and Phylloscopidae (7 species); 2) Species of Oriental origin, Palaearctic origin, and widespread species accounted for 81.4%, 4.9%, and 13.7% of observations, respectively; 3) The average number of bird species surveyed in forest patches was 32.0±3.5; the Shannon index of birds was lower in secondary, semi-humid evergreen broad-leaved forests (1.536±0.110) than in primary forest communities (2.037±0.100); 4) Species composition exhibited considerable variation between patches, with the presence of dominant and common species, and the difference in rare species; 5) Considering the ecological groups of birds based on diet, invertebrate-eating and omnivorous birds, herbivorous birds, and carnivorous birds accounted for 84.3%, 11.8%, and 3.9%, respectively. The coexistence of birds with similar diets was maintained by diluting interspecific competition, mainly through partitioning of the vertical feeding space. For the conservation of bird species diversity and rare species, all patches of native semi-humid evergreenbroad-leaved forest are of conservation value.


Subject(s)
Biodiversity , Birds , Forests , Animals , China , Birds/classification , Trees/growth & development , Trees/classification , Conservation of Natural Resources
13.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1455-1462, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39235002

ABSTRACT

The contribution of litterfall nutrient return to the maintenance of soil carbon pool and nutrient cycling is a crucial aspect of forest ecosystem functioning. Taking 21 tree species in subtropical young plantations as subjects, we investigated the correlation between litterfall nutrient return characteristics and functional traits of leaf and root and. The results showed notable variations in litterfall production, standing crop, and nutrient return across all the examined tree species. Mytilaria laosensis exhibited the highest litterfall production (689.2 g·m-2·a-1) and standing crop (605.1 g·m-2), while Cryptomeria fortunei demonstrated the lowest litterfall production (36.0 g·m-2·a-1) and standing crop (10.0 g·m-2). The nitrogen and phosphorus return amounts of 21 species ranged from 3.0 to 48.3 kg·hm-2 and from 0.1 to 2.0 kg·hm-2, respectively. Castanopsis fissa demonstrated the highest nitrogen return, while Liquidambar formosana exhibited the highest phosphorus return. C. fortunei had the lowest nitrogen and phosphorus return. Results of the stepwise regression analysis indicated that litterfall production exhibited a significant negative correlation with leaf nitrogen content and leaf dry matter content, and a significant positive correlation with fine root tissue density. Additionally, leaf nitrogen content, leaf dry matter content, and specific root length had a significant negative impact on standing crop. The structural equation modelling results indicated that leaf dry matter content had a direct or indirect negative effect on nitrogen return amount through the reduction of litterfall production. Conversely, fine root tissue density had a significant positive impact on nitrogen return amount by increasing litter leaf nitrogen content. Both leaf nitrogen content and leaf dry matter content had direct or indirect negative effects on phosphorus return amount through the reduction of litterfall production. In conclusion, the tree species with low leaf nitrogen content and dry matter content, as well as high fine root tissue density, was recommended for the establishment of plantations in the subtropical zone in order to enhance nutrient cycling through litter decomposition and improve soil fertility and forest productivity.


Subject(s)
Ecosystem , Nitrogen , Phosphorus , Plant Leaves , Soil , Trees , Tropical Climate , Trees/growth & development , Trees/metabolism , Nitrogen/analysis , Nitrogen/metabolism , Phosphorus/analysis , Phosphorus/metabolism , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Leaves/chemistry , China , Soil/chemistry , Forests , Plant Roots/metabolism , Plant Roots/growth & development , Nutrients/analysis , Nutrients/metabolism , Carbon/metabolism , Carbon/analysis
14.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1447-1454, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39235001

ABSTRACT

We analyzed multidimensional biodiversity (including species diversity, functional diversity, and phylogenetic diversity) of needle-broadleaf mixed forests of Abies fargesii var. faxoniana-Betula spp. and needleleaf forests of A. fargesii var. faxoniana in the subalpine regions of eastern edge of Qinghai-Tibet Plateau. We measured leaf functional traits including leaf area, leaf thickness, leaf dry matter content, and specific leaf area. The results showed that leaf thickness (0.28 mm) and leaf dry matter content (319.86 mg·g-1) in the needle-broadleaf mixed forests were significantly lower than in the needleleaf forest (0.39 mm and 371.33 mg·g-1, respectively), while specific leaf area (192.74 cm2·g-1) was significantly higher (100.91 cm2·g-1). Leaf area showed no significant difference between the two forest communities (27.88 and 26.63 cm2, respectively). The phylogenetic signals of all leaf functional traits were significant, except for leaf thickness. The phylogenetic structure of the needle-broadleaf mixed forests and needleleaf forest communities tended toward divergence. Shannon diversity index, Simpson diversity index, species richness, functional richness, functional dispersion, Rao's quadratic entropy, and phylogenetic diversity in the needle-broadleaf mixed forests were all significantly higher than in the needleleaf forest, and these indices were significantly positively correlated. Competitive exclusion played a major role in the assembly of subalpine forest communities, and species diversity, functional diversity, and phylogenetic diversity exhibited synchrony.


Subject(s)
Altitude , Biodiversity , Forests , China , Trees/growth & development , Trees/classification , Phylogeny , Tibet , Abies/growth & development , Abies/classification , Plant Leaves/growth & development
15.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1483-1491, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39235005

ABSTRACT

Studies on niche and interspecific association can reveal plant interspecific relationship in the community, and provide theoretical support for promoting the transformation and development of plantation to natural forest. Based on Cunninghamia lanceolata investigation data of permanent plots of plantation in Jianfengling area of Hainan Tropical Rainforest National Park, we analyzed niche and interspecific association of the top 20 woody species in the community according to their importance values. The results showed that there were 163 species of woody species belonging to 101 genera and 55 families in the C. lanceolata plantation community, with complex species composition. As a constructive species, C. lanceolata had the highest importance value and niche breadth, and thus was the absolute dominant species in the community. It had a large niche overlap and niche similarity with many other species, among which the highest was observed in Adinandra hainanensis. The average niche overlap and niche similarity of the community were 0.54 and 0.49, respectively. The change trends of those two niche indicators were basically the same, indicating that some species were similar in resource demands. The overall association of main woody species was significantly positive. The χ2 test, association coefficient, Pearson correlation coefficient, and Spearman rank correlation coefficient suggested that the amounts of pairs with positive association were more than that with negative ones. The proportion of significant association species pairs was relatively low, indicating that the community stability was strong, species could coexist stably, and most species did not form close ties. On the whole, C. lanceolata had inhibited the regeneration of original tree species, and A. hainanensis, Garcinia oblongifolia, and Heptapleurum heptaphyllum could be used in natural transformation and restoration of C. lanceolata plantation in the Hainan Tropical Rainforest National Park.


Subject(s)
Cunninghamia , Ecosystem , Cunninghamia/growth & development , Cunninghamia/classification , China , Rainforest , Conservation of Natural Resources , Trees/growth & development , Trees/classification , Biodiversity
16.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1553-1563, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39235013

ABSTRACT

Aiming for clarifying the potential distribution characteristics of canopy rainfall partitioning of the loess area, we explored the process of rainfall partitioning across eight typical forest stands (Pinus tabuliformis forest, Robinia pseudoacacia forest, Platycladus orientalis forest, mixed forest of Robinia pseudoacacia-Pinus tabuliformis, mixed forest of Platycladus orientalis-Robinia pseudoacacia, Quercus wutaishanica forest, Populus davidiana forest, mixed forest of Quercus wutaishanica-Populus davidiana), and used boosted regression trees (BRT) to quantify the relative influences of stand structures and meteorological environment factors. We established multiple regression relationships according to the most influential factors extracted by BRT, and applied to the dataset of mining to verify the performance of the BRT-derived predictive model. The results showed that the percentages of throughfall (TF), stemflow (SF), and canopy interception (Ic) in total precipitation were 24.5%-95.1%, 0-13.6%, and 0.7%-55.7% among eight typical forest stands, respectively. For the individual rainfall threshold of TF, coniferous forest (3.06±1.21 mm) was significantly higher than broad-leaved forest (1.97±0.52 mm), but there was no significant difference between coniferous forest and broad-leaved mixed forest (3.01±0.98 mm). There was no significant difference in the individual rainfall threshold of SF among different composition stands. BRT analysis showed that stand structure factors accounted for a relatively small proportion for TF and SF, respectively. By contrast, stand structure factors dominated the Ic. Rainfall was the most important factor in determining TF and SF. Tree height was the most important factor in determining Ic, followed by rainfall, canopy area, diameter at breast height, and stand density. Compared with the general linear function and the power function, the prediction effect of BRT prediction model constructed here on TF and SF had been further improved, and the prediction of canopy interception still needed to explore. In conclusion, the BRT model could better quantitatively evaluate the effects of stand structure and meteorological environmental factors on rainfall partitioning components, and the performance of the BRT predictive model could satisfy and lay the foundation for the optimization strategy for stand configuration.


Subject(s)
Forests , Rain , Trees , China , Trees/growth & development , Trees/classification , Ecosystem , Quercus/growth & development , Robinia/growth & development , Altitude , Populus/growth & development
17.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1501-1508, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39235007

ABSTRACT

We conducted in a common garden experiment to explore the differences in soil enzyme activity, stoichiometry, and their influencing factors among a secondary Castanopsis carlesii forest, 10-year-old C. carlesii plantation, and Cunninghamia lanceolata plantation. The results showed that compared to the secondary forest, the soil organic carbon, total nitrogen, and dissolved organic carbon significantly decreased by 42.6%, 47.4%, and 60.9% in C. carlesii plantation, and by 42.9%, 36.7%, and 61.1% in C. lanceolata plantation. Soil microbial biomass C, microbial biomass N (MBN), and microbial biomass phosphorus decreased significantly by 40.6%, 35.5%, and 45.9% in C. carlesii plantation, and by 53.7%、56.4%, and 61.7% in C. lanceolata plantation. Compared to the secondary forest, soil enzymes activities in C. carlesii plantation did not change significantly, but in C. lanceolata plantation, the activities of ß-1,4-glucosidase and cellobiohydrolase significantly decreased by 51.2% and 59.8%, ß-N-acetyl glucosaminidase and acid phosphatase decreased significantly by 41.0% and 29.8%, and enzymatic C:N acquisition ratio and enzymatic C:P acquisition ratio significantly decreased by 11.3% and 7.7%, respectively. Results of redundancy analysis indicated that MBN and NO3--N were the primary factors influencing soil enzyme activity and enzymic stoichiometry. Collectively, there were significant differences in soil enzyme activity and microbial nutrient demands among different forest stands. Compared to secondary forests, the establishment of C. lanceolata plantations would intensify nutrient competition between plants and microbes, and exacerbate the N and P limitations for microbes.


Subject(s)
Carbon , Cunninghamia , Forests , Nitrogen , Soil Microbiology , Soil , Soil/chemistry , Nitrogen/analysis , Nitrogen/metabolism , China , Cunninghamia/growth & development , Carbon/analysis , Phosphorus/analysis , Phosphorus/metabolism , Tropical Climate , Fagaceae/growth & development , Trees/growth & development , Ecosystem
18.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1492-1500, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39235006

ABSTRACT

Improving the availability of soil phosphorus (P) and promoting tree growth through tree species selection and assembly are the critical issue. We conducted an afforestation experiment following randomized block experimental design with 1, 2, 4, and 6 tree species richness in south subtropics, including Pinus massoniana, Mytilaria laosensis, Erythrophleum fordii, Castanopsis hystrix, Michelia macclurei, Manglietia glauca, Aquilaria sinensis, and Dalbergia odorifera. We measured the bioavailable P components (CaCl2-P, citrate-P, enzyme-P and HCl-P) and examined the effects of different tree species assembly on bioavailable P components and tree growth. The results showed that, compared with non-nitrogen-fixing tree species, the mixing of nitrogen-fixing tree species (E. fordii and D. odorifera) effectively increased the contents of soil water, total nitrogen, total phosphorus, and microbial biomass P (MBP). The assembly of specific tree species improved the accumulation of bioavailable P. Mixing of nitrogen-fixing tree species significantly increased CaCl2-P content by 46.2% to 160.3%, the enzyme-P content produced by microbial mineralization by 69.3% to 688.2%, and HCl-P by 31.5% to 81.3%, increased MBP by 81.8% to 149.4%, and microbial biomass N (MBN) by 88.1% to 160.6%, respectively. Redundancy and correlation analysis results showed that MBP, available P, total phosphorus, L-leucine aminopeptidase, cellobiose, acid phosphatase, MBN and soil organic carbon were key factors driving the variation of rhizosphere soil bioavailable P. Mixing of nitrogen-fixing tree species increased enzyme-P and citrate-P, and the availability of which were positively correlated to tree basal area. In this study, mixing of nitrogen-fixing tree species increased the rhizosphere soil bioavailable P content, which facilitates tree growth.


Subject(s)
Phosphorus , Rhizosphere , Soil , Trees , Phosphorus/metabolism , Phosphorus/analysis , Trees/growth & development , Trees/metabolism , Soil/chemistry , China , Tropical Climate , Nitrogen/metabolism , Nitrogen/analysis , Pinus/growth & development , Pinus/metabolism
19.
Appl Microbiol Biotechnol ; 108(1): 461, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39249589

ABSTRACT

Terrestrial plants form primarily mutualistic symbiosis with mycorrhizal fungi based on a compatible exchange of solutes between plant and fungal partners. A key attribute of this symbiosis is the acquisition of soil nutrients by the fungus for the benefit of the plant in exchange for a carbon supply to the fungus. The interaction can range from mutualistic to parasitic depending on environmental and physiological contexts. This review considers current knowledge of the functionality of ectomycorrhizal (EM) symbiosis in the mobilisation and acquisition of soil nitrogen (N) in northern hemisphere forest ecosystems, highlighting the functional diversity of the fungi and the variation of symbiotic benefits, including the dynamics of N transfer to the plant. It provides an overview of recent advances in understanding 'mycorrhizal decomposition' for N release from organic or mineral-organic forms. Additionally, it emphasises the taxon-specific traits of EM fungi in soil N uptake. While the effects of EM communities on tree N are likely consistent across different communities regardless of species composition, the sink activities of various fungal taxa for tree carbon and N resources drive the dynamic continuum of mutualistic interactions. We posit that ectomycorrhizas contribute in a species-specific but complementary manner to benefit tree N nutrition. Therefore, alterations in diversity may impact fungal-plant resource exchange and, ultimately, the role of ectomycorrhizas in tree N nutrition. Understanding the dynamics of EM functions along the mutualism-parasitism continuum in forest ecosystems is essential for the effective management of ecosystem restoration and resilience amidst climate change. KEY POINTS: • Mycorrhizal symbiosis spans a continuum from invested to appropriated benefits. • Ectomycorrhizal fungal communities exhibit a high functional diversity. • Tree nitrogen nutrition benefits from the diversity of ectomycorrhizal fungi.


Subject(s)
Forests , Mycorrhizae , Nitrogen , Symbiosis , Trees , Mycorrhizae/physiology , Nitrogen/metabolism , Trees/microbiology , Soil Microbiology , Soil/chemistry , Carbon/metabolism , Ecosystem
20.
Environ Sci Technol ; 58(37): 16410-16420, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39236253

ABSTRACT

Environmental DNA (eDNA) analysis is a powerful tool for studying biodiversity in forests and tree canopies. However, collecting representative eDNA samples from these high and complex environments remains challenging. Traditional methods, such as surface swabbing or tree rolling, are labor-intensive and require significant effort to achieve adequate coverage. This study proposes a novel approach for unmanned aerial vehicles (UAVs) to collect eDNA within tree canopies by using a surface swabbing technique. The method involves lowering a probe from a hovering UAV into the canopy and collecting eDNA as it descends and ascends through branches and leaves. To achieve this, a custom-designed robotic system was developed featuring a winch and a probe for eDNA collection. The design of the probe was optimized, and a control logic for the winch was developed to reduce the risk of entanglement while ensuring sufficient interaction force to facilitate transfer of eDNA onto the probe. The effectiveness of this method was demonstrated during the XPRIZE Rainforest Semi-Finals as 10 eDNA samples were collected from the rainforest canopy, and a total of 152 molecular operational taxonomic units (MOTUs) were identified using eDNA metabarcoding. We further investigate how the number of probe interactions with vegetation, the penetration depth, and the sampling duration influence the DNA concentration and community composition of the samples.


Subject(s)
DNA, Environmental , Trees , Biodiversity , Unmanned Aerial Devices
SELECTION OF CITATIONS
SEARCH DETAIL