Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 238
Filter
1.
Science ; 385(6704): 80-86, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38963846

ABSTRACT

Classical migraine patients experience aura, which is transient neurological deficits associated with cortical spreading depression (CSD), preceding headache attacks. It is not currently understood how a pathological event in cortex can affect peripheral sensory neurons. In this study, we show that cerebrospinal fluid (CSF) flows into the trigeminal ganglion, establishing nonsynaptic signaling between brain and trigeminal cells. After CSD, ~11% of the CSF proteome is altered, with up-regulation of proteins that directly activate receptors in the trigeminal ganglion. CSF collected from animals exposed to CSD activates trigeminal neurons in naïve mice in part by CSF-borne calcitonin gene-related peptide (CGRP). We identify a communication pathway between the central and peripheral nervous system that might explain the relationship between migrainous aura and headache.


Subject(s)
Calcitonin Gene-Related Peptide , Cortical Spreading Depression , Migraine Disorders , Trigeminal Ganglion , Animals , Mice , Calcitonin Gene-Related Peptide/cerebrospinal fluid , Calcitonin Gene-Related Peptide/metabolism , Cerebrospinal Fluid/metabolism , Disease Models, Animal , Migraine Disorders/cerebrospinal fluid , Migraine Disorders/metabolism , Migraine Disorders/physiopathology , Proteome/metabolism , Signal Transduction , Trigeminal Ganglion/metabolism , Trigeminal Ganglion/physiopathology
2.
Science ; 385(6704): 28-29, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38963860
3.
Headache ; 64(5): 533-546, 2024 May.
Article in English | MEDLINE | ID: mdl-38650105

ABSTRACT

OBJECTIVES: Investigation of chronic homocysteine action on the excitability and N-methyl-D-aspartate (NMDA) sensitivity of the peripheral trigeminovascular system of rats. BACKGROUND: Migraine is a neurological disease that affects 15%-20% of the general population. Epidemiological observations show that an increase of the sulfur-containing amino acid homocysteine in plasma-called hyperhomocysteinemia-is associated with a high risk of migraine, especially migraine with aura. In animal studies, rats with hyperhomocysteinemia demonstrated mechanical allodynia, photophobia, and anxiety, and higher sensitivity to cortical spreading depression. In addition, rats with hyperhomocysteinemia were more sensitive in a model of chronic migraine induced by nitroglycerin which indicated the involvement of peripheral nociceptive mechanisms. The present work aimed to analyze the excitability of meningeal afferents and neurons isolated from the trigeminal ganglion of rats with prenatal hyperhomocysteinemia. METHODS: Experiments were performed on male rats born from females fed with a methionine-rich diet before and during pregnancy. The activity of meningeal afferents was recorded extracellularly in hemiskull preparations ex vivo and action potentials were characterized using cluster analysis. The excitability of trigeminal ganglion neurons was assessed using whole-cell patch clamp recording techniques and calcium imaging studies. Meningeal mast cells were stained using toluidine blue. RESULTS: The baseline extracellular recorded electrical activity of the trigeminal nerve was higher in the hyperhomocysteinemia group with larger amplitude action potentials. Lower concentrations of KCl caused an increase in the frequency of action potentials of trigeminal afferents recorded in rat hemiskull ex vivo preparations. In trigeminal ganglion neurons of rats with hyperhomocysteinemia, the current required to elicit at least one action potential (rheobase) was lower, and more action potentials were induced in response to stimulus of 2 × rheobase. In controls, short-term application of homocysteine and its derivatives increased the frequency of action potentials of the trigeminal nerve and induced Ca2+ transients in neurons, which are associated with the activation of NMDA receptors. At the same time, in rats with hyperhomocysteinemia, we did not observe an increased response of the trigeminal nerve to NMDA. Similarly, the parameters of Ca2+ transients induced by NMDA, homocysteine, and its derivatives were not changed in rats with hyperhomocysteinemia. Acute incubation of the meninges in homocysteine and homocysteinic acid did not change the state of the mast cells, whereas in the model of hyperhomocysteinemia, an increased degranulation of mast cells in the meninges was observed. CONCLUSIONS: Our results demonstrated higher excitability of the trigeminal system of rats with hyperhomocysteinemia. Together with our previous finding about the lower threshold of generation of cortical spreading depression in rats with hyperhomocysteinemia, the present data provide evidence of homocysteine as a factor that increases the sensitivity of the peripheral migraine mechanisms, and the control of homocysteine level may be an important strategy for reducing the risk and/or severity of migraine headache attacks.


Subject(s)
Homocysteine , Hyperhomocysteinemia , Meninges , Migraine Disorders , Trigeminal Ganglion , Animals , Hyperhomocysteinemia/complications , Hyperhomocysteinemia/physiopathology , Migraine Disorders/physiopathology , Migraine Disorders/metabolism , Male , Homocysteine/pharmacology , Rats , Trigeminal Ganglion/metabolism , Trigeminal Ganglion/physiopathology , Female , Disease Models, Animal , Action Potentials/physiology , Action Potentials/drug effects , Pregnancy , Rats, Wistar , Patch-Clamp Techniques , Rats, Sprague-Dawley , Neurons, Afferent/physiology , Neurons, Afferent/metabolism
4.
Life Sci ; 336: 122283, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37993094

ABSTRACT

Chronic temporomandibular joint (TMJ) pain profoundly affects patients' quality of life. Trigeminal tumor necrosis factor-α (TNFα) plays a pivotal role in mediating TMJ pain in mice, yet the underlying epigenetic mechanisms remain enigmatic. To unravel these epigenetic intricacies, we employed a multifaceted approach. Hydroxymethylated DNA immunoprecipitation (hMeDIP) and chromatin immunoprecipitation (ChIP) followed by qPCR were employed to investigate the demethylation of TNFα gene (Tnfa) and its regulation by ten-eleven translocation methylcytosine dioxygenase 1 (TET1) in a chronic TMJ pain mouse model. The global levels of 5-hydroxymethylcytosine (5hmc) and percentage of 5hmc at the Tnfa promoter region were measured in the trigeminal ganglia (TG) and spinal trigeminal nucleus caudalis (Sp5C) following complete Freund's adjuvant (CFA) or saline treatment. TET1 knockdown and pain behavioral testing were conducted to ascertain the role of TET1-mediated epigenetic regulation of TNFα in the pathogenesis of chronic TMJ pain. Our finding revealed an increase in 5hmc at the Tnfa promoter region in both TG and Sp5C of CFA-treated mice. TET1 was upregulated in the mouse TG, and the ChIP result showed TET1 direct binding to the Tnfa promoter, with higher efficiency in the CFA-treated group. Immunofluorescence revealed the predominant expression of TET1 in trigeminal neurons. TET1 knockdown in the TG significantly reversed CFA-induced TNFα upregulation and alleviated chronic TMJ pain. In conclusion, our study implicates TET1 as a vital epigenetic regulator contributing to chronic inflammatory TMJ pain via trigeminal TNFα signaling. Targeting TET1 holds promise for epigenetic interventions in TMJ pain management.


Subject(s)
Arthralgia , DNA-Binding Proteins , Temporomandibular Joint , Trigeminal Ganglion , Tumor Necrosis Factor-alpha , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Epigenesis, Genetic/genetics , DNA-Binding Proteins/metabolism , Trigeminal Ganglion/physiopathology , Arthralgia/chemically induced , Arthralgia/physiopathology , Temporomandibular Joint/physiopathology , Male , Animals , Mice , Mice, Inbred C57BL , Freund's Adjuvant/pharmacology , Up-Regulation/drug effects , Neurons/metabolism , Gene Knockdown Techniques , Promoter Regions, Genetic , Protein Binding/drug effects
5.
Proc Natl Acad Sci U S A ; 119(38): e2119630119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36095216

ABSTRACT

Trigeminal neuralgia (TN) is a unique pain disorder characterized by intense paroxysmal facial pain within areas innervated by the trigeminal nerve. Although most cases of TN are sporadic, familial clusters of TN suggest that genetic factors may contribute to this disorder. Whole-exome sequencing in patients with TN reporting positive family history demonstrated a spectrum of variants of ion channels including TRP channels. Here, we used patch-clamp analysis and Ca2+ and Na+ imaging to assess a rare variant in the TRPM7 channel, p.Ala931Thr, within transmembrane domain 3, identified in a man suffering from unilateral TN. We showed that A931T produced an abnormal inward current carried by Na+ and insensitive to the pore blocker Gd3+. Hypothesizing that replacement of the hydrophobic alanine at position 931 with the more polar threonine destabilizes a hydrophobic ring, near the voltage sensor domain, we performed alanine substitutions of F971 and W972 and obtained results suggesting a role of A931-W972 hydrophobic interaction in S3-S4 hydrophobic cleft stability. Finally, we transfected trigeminal ganglion neurons with A931T channels and observed that expression of this TRPM7 variant lowers current threshold and resting membrane potential, and increases evoked firing activity in TG neurons. Our results support the notion that the TRPM7-A931T mutation located in the S3 segment at the interface with the transmembrane region S4, generates an omega current that carries Na+ influx in physiological conditions. A931T produces hyperexcitability and a sustained Na+ influx in trigeminal ganglion neurons that may underlie pain in this kindred with trigeminal neuralgia.


Subject(s)
Protein Serine-Threonine Kinases , TRPM Cation Channels , Trigeminal Ganglion , Trigeminal Neuralgia , Alanine/genetics , Humans , Male , Mutation , Neurons/physiology , Protein Serine-Threonine Kinases/genetics , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Trigeminal Ganglion/physiopathology , Trigeminal Neuralgia/genetics
6.
Curr Pain Headache Rep ; 25(11): 73, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34766205

ABSTRACT

PURPOSE OF REVIEW: Headache is a common symptom of COVID-19 with emerging literature being published on the subject. Although it may seem unspecific, scientific evidence has allowed a better definition of this headache type, revealing relevant associations with other COVID-19 symptoms and prognoses. We therefore sought to highlight the most remarkable findings concerning headache secondary to COVID-19, specifically focusing on epidemiology, characteristics, pathophysiology, and treatments. RECENT FINDINGS: The real prevalence of headache as a symptom of COVID-19 is still unclear ranging from 10 to 70%. Headache mainly has a tension-type-like phenotype, although 25% of individuals present with migraine-like features that also occur in patients without personal migraine history. This finding suggests that a likely pathophysiological mechanism is the activation of the trigeminovascular system. SARS-CoV-2 neurotropism can occur by trans-synaptic invasion through the olfactory route from the nasal cavity, leading to anosmia which has been associated with headache. SARS-CoV-2 protein has been found not only in olfactory mucosa and bulbs but also in trigeminal branches and the trigeminal ganglion, supporting this hypothesis. However, other mechanisms such as brain vessels inflammation due to SARS-CoV-2 damage to the endothelium or systemic inflammation in the context of cytokine storm cannot be ruled out. Interestingly, headache has been associated with lower COVID-19 mortality. No specific treatment for COVID-19 headache is available at present. Studies show that investigating COVID-19 headache represents an opportunity not only to better understand COVID-19 in general but also to advance in the knowledge of both secondary and primary headaches. Future research is therefore warranted.


Subject(s)
COVID-19/epidemiology , Headache/epidemiology , Anosmia/physiopathology , COVID-19/complications , COVID-19/mortality , COVID-19/physiopathology , Endothelium, Vascular , Headache/etiology , Headache/physiopathology , Headache/therapy , Humans , Inflammation , Migraine Disorders/physiopathology , SARS-CoV-2 , Tension-Type Headache/physiopathology , Trigeminal Ganglion/physiopathology , Trigeminal Ganglion/virology , Trigeminal Nerve/physiopathology , Trigeminal Nerve/virology , Viral Tropism
7.
Invest Ophthalmol Vis Sci ; 62(13): 21, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34698773

ABSTRACT

Purpose: To test whether an acute corneal injury activates a proinflammatory reflex, involving corneal sensory nerves expressing substance P (SP), the hypothalamus, and the sympathetic nervous system. Methods: C57BL6/N (wild-type [WT]) and SP-depleted B6.Cg-Tac1tm1Bbm/J (TAC1-KO) mice underwent bilateral corneal alkali burn. One group of WT mice received oxybuprocaine before alkali burn. One hour later, hypothalamic neuronal activity was assessed in vivo by magnetic resonance imaging and ex vivo by cFOS staining. Some animals were followed up for 14 days to evaluate corneal transparency and inflammation. Tyrosine hydroxylase (TH), neurokinin 1 receptor (NK1R), and neuronal nitric oxide synthase (nNOS) expression was assessed in brain sections. Sympathetic neuron activation was evaluated in the superior cervical ganglion (SCG). CD45+ leukocytes were quantified in whole-mounted corneas. Noradrenaline (NA) was evaluated in the cornea and bone marrow. Results: Alkali burn acutely induced neuronal activation in the trigeminal ganglion, paraventricular hypothalamus, and lateral hypothalamic area (PVH and LHA), which was significantly lower in TAC1-KO mice (P < 0.05). Oxybuprocaine application similarly reduced neuronal activation (P < 0.05). TAC1-KO mice showed a reduced number of cFOS+/NK1R+/TH+ presympathetic neurons (P < 0.05) paralleled by higher nNOS expression (P < 0.05) in both PVH and LHA. A decrease in activated sympathetic neurons in the SCG and NA levels in both cornea/bone marrow and reduced corneal leukocyte infiltration (P < 0.05) in TAC1-KO mice were found. Finally, 14 days after injury, TAC1-KO mice showed reduced corneal opacity and inflammation (P < 0.05). Conclusions: Our findings suggest that stimulation of corneal sensory nerves containing SP activates presympathetic neurons located in the PVH and LHA, leading to sympathetic activation, peripheral release of NA, and corneal inflammation.


Subject(s)
Blinking/physiology , Burns, Chemical/complications , Cornea/innervation , Corneal Injuries/complications , Keratitis/physiopathology , Trigeminal Ganglion/physiopathology , Animals , Burns, Chemical/pathology , Burns, Chemical/physiopathology , Cornea/diagnostic imaging , Cornea/physiopathology , Corneal Injuries/pathology , Corneal Injuries/physiopathology , Disease Models, Animal , Keratitis/diagnosis , Keratitis/etiology , Male , Mice , Mice, Inbred C57BL
8.
Pain Res Manag ; 2021: 6638392, 2021.
Article in English | MEDLINE | ID: mdl-34122683

ABSTRACT

Postherpetic neuralgia (PHN) is a painful, long-lasting condition as a consequence of nerve damage resulting from a herpes zoster infection. Although there are many different treatments available to reduce pain duration and severity, PHN is often refractory to them and no single therapy shows an effective cure for all cases of PHN, especially for those involving the ophthalmic branch of the trigeminal nerve. Pulsed radiofrequency (PRF) is a minimally invasive procedure for pain treatment that has been practiced over the past decade. However, its clinical efficacy and safety for treating PHN involving the ophthalmic branch of the trigeminal nerve have not been evaluated. Objective. This study aimed to evaluate the efficacy and safety of PRF for treating PHN involving the ophthalmic branch of the trigeminal ganglion. Study Design. An observational study. Setting. All patients received PRF of the ophthalmic branch of the trigeminal nerve, pain intensity was assessed by a visual analogue scale (VAS), and complications before and after PRF stimulation were noted. Methods. Thirty-two patients with PHN of the ophthalmic branch were treated by PRF of the ophthalmic branch with controlled temperature at 42°C for 8 min. Pain relief, corneal reflex, sleep quality, and satisfaction were assessed for all patients. Results. Thirty out of 32 patients (93.75%) reported significant pain reduction after PRF treatment. Twenty-eight of them (87.5%) were satisfied with their sleep and obtained a pain score lower than 3 following the procedure. Only two patients had a recurrence of the severe burning pain and returned to the hospital for other medical therapies 2 weeks after the PRF procedure. No patient lost the corneal reflex. Limitations. This study is an observational study and a nonprospective trial with a short-term follow-up period. Conclusion. PRF of the trigeminal ganglion of the ophthalmic branch can significantly reduce pain sensation and improve sleep quality and satisfaction for PHN of the ophthalmic branch.


Subject(s)
Chronic Pain/radiotherapy , Herpes Zoster/complications , Neuralgia, Postherpetic/radiotherapy , Pain Management/methods , Pulsed Radiofrequency Treatment/statistics & numerical data , Trigeminal Ganglion/radiation effects , Trigeminal Neuralgia/radiotherapy , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Neuralgia, Postherpetic/etiology , Pain Management/statistics & numerical data , Trigeminal Ganglion/physiopathology , Trigeminal Neuralgia/etiology
9.
Invest Ophthalmol Vis Sci ; 62(7): 18, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34132748

ABSTRACT

Purpose: The cornea is richly innervated by the trigeminal ganglion (TG) and its function supported by secretions from the adjacent lacrimal (LG) and meibomian glands (MG). In this study we examined how pigment epithelium-derived factor (PEDF) gene deletion affects the cornea structure and function. Methods: We used PEDF hemizygous and homozygous knockout mice to study effects of PEDF deficiency on corneal innervation assessed by beta tubulin staining, mRNA expression of trophic factors, and PEDF receptors by adjacent supporting glands, corneal sensitivity measured using a Cochet-Bonnet esthesiometer, and tear production using phenol red cotton thread wetting. Results: Loss of PEDF was accompanied by reduced corneal innervation and sensitivity, increased corneal surface injury and tear production, thinning of the corneal stroma and loss of stromal cells. PEDF mRNA was expressed in the cornea and its supporting tissues, the TG, LG, and MG. Deletion of one or both PEDF alleles resulted in decreased expression of essential trophic support in the TG, LG, and MG including nerve growth factor, brain-derived neurotrophic growth factor, and GDNF with significantly increased levels of NT-3 in the LG and decreased EGF expression in the cornea. Decreased transcription of the putative PEDF receptors, adipose triglyceride lipase, lipoprotein receptor-related protein 6, laminin receptor, PLXDC1, and PLXDC2 was also evident in the TG, LG and MG with the first three showing increased levels in corneas of the Pedf+/- and Pedf-/- mice compared to wildtype controls. Constitutive inactivation of ERK1/2 and Akt was pronounced in the TG and cornea, although their protein levels were dramatically increased in Pedf-/- mice. Conclusions: This study highlights an essential role for PEDF in corneal structure and function and confirms the reported rescue of exogenous PEDF treatment in corneal pathologies. The pleiotropic effects of PEDF deletion on multiple trophic factors, receptors and signaling molecules are strong indications that PEDF is a key coordinator of molecular mechanisms that maintain corneal function and could be exploited in therapeutic options for several ocular surface diseases.


Subject(s)
Cornea , Corneal Diseases , Eye Proteins , Nerve Growth Factors , Serpins , Tears/physiology , Trigeminal Ganglion , Animals , Cornea/innervation , Cornea/pathology , Cornea/physiopathology , Corneal Diseases/metabolism , Corneal Diseases/physiopathology , Corneal Diseases/therapy , Corneal Injuries/metabolism , Corneal Injuries/physiopathology , Eye Proteins/genetics , Eye Proteins/pharmacology , Gene Deletion , Humans , Mice , Mice, Knockout , Nerve Growth Factors/deficiency , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Nerve Growth Factors/pharmacology , Protease Inhibitors/pharmacology , Receptors, Neuropeptide/metabolism , Serpins/deficiency , Serpins/genetics , Serpins/pharmacology , Trigeminal Ganglion/metabolism , Trigeminal Ganglion/physiopathology , Tubulin/metabolism , Visual Perception/physiology
11.
Int J Mol Sci ; 21(22)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228217

ABSTRACT

Dry eye disease (DED) is commonly associated with ocular surface inflammation and pain. In this study, we evaluated the effectiveness of repeated instillations of transient receptor potential melastatin 8 (TRPM8) ion channel antagonist M8-B on a mouse model of severe DED induced by the excision of extra-orbital lacrimal and Harderian glands. M8-B was topically administered twice a day from day 7 until day 21 after surgery. Cold and mechanical corneal sensitivities and spontaneous ocular pain were monitored at day 21. Ongoing and cold-evoked ciliary nerve activities were next evaluated by electrophysiological multi-unit extracellular recording. Corneal inflammation and expression of genes related to neuropathic pain and inflammation were assessed in the trigeminal ganglion. We found that DED mice developed a cold allodynia consistent with higher TRPM8 mRNA expression in the trigeminal ganglion (TG). Chronic M8-B instillations markedly reversed both the corneal mechanical allodynia and spontaneous ocular pain commonly associated with persistent DED. M8-B instillations also diminished the sustained spontaneous and cold-evoked ciliary nerve activities observed in DED mice as well as inflammation in the cornea and TG. Overall, our study provides new insight into the effectiveness of TRPM8 blockade for alleviating corneal pain syndrome associated with severe DED, opening a new avenue for ocular pain management.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Dry Eye Syndromes/drug therapy , Hyperalgesia/drug therapy , Neuralgia/drug therapy , Nicotinic Acids/pharmacology , TRPM Cation Channels/genetics , Thiophenes/pharmacology , Administration, Ophthalmic , Animals , Anti-Inflammatory Agents/therapeutic use , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Cold Temperature , Cornea/drug effects , Cornea/metabolism , Cornea/physiopathology , Disease Models, Animal , Dry Eye Syndromes/complications , Dry Eye Syndromes/genetics , Dry Eye Syndromes/metabolism , Evoked Potentials, Somatosensory/drug effects , Ganglia, Parasympathetic/drug effects , Ganglia, Parasympathetic/metabolism , Ganglia, Parasympathetic/physiopathology , Gene Expression Regulation , Harderian Gland/surgery , Hyperalgesia/etiology , Hyperalgesia/genetics , Hyperalgesia/metabolism , Interleukin-18/genetics , Interleukin-18/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lacrimal Apparatus/surgery , Male , Mice , Mice, Inbred C57BL , Neuralgia/etiology , Neuralgia/genetics , Neuralgia/metabolism , Prostaglandin-E Synthases/genetics , Prostaglandin-E Synthases/metabolism , TRPM Cation Channels/antagonists & inhibitors , TRPM Cation Channels/metabolism , Trigeminal Ganglion/drug effects , Trigeminal Ganglion/metabolism , Trigeminal Ganglion/physiopathology
12.
J Neurosci ; 40(47): 8976-8993, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33055278

ABSTRACT

Mammalian Piezo2 channels are essential for transduction of innocuous mechanical forces by proprioceptors and cutaneous touch receptors. In contrast, mechanical responses of somatosensory nociceptor neurons evoking pain, remain intact or are only partially reduced in Piezo2-deficient mice. In the eye cornea, comparatively low mechanical forces are detected by polymodal and pure mechanosensory trigeminal ganglion neurons. Their activation always evokes ocular discomfort or pain and protective reflexes, thus being a unique model to study mechanotransduction mechanisms in this particular class of nociceptive neurons. Cultured male and female mouse mechano- and polymodal nociceptor corneal neurons display rapidly, intermediately and slowly adapting mechanically activated currents. Immunostaining of the somas and peripheral axons of corneal neurons responding only to mechanical force (pure mechano-nociceptor) or also exhibiting TRPV1 (transient receptor potential cation channel subfamily V member 1) immunoreactivity (polymodal nociceptor) revealed that they express Piezo2. In sensory-specific Piezo2-deficient mice, the distribution of corneal neurons displaying the three types of mechanically evoked currents is similar to the wild type; however, the proportions of rapidly adapting neurons, and of intermediately and slowly adapting neurons were significantly reduced. Recordings of mechano- and polymodal-nociceptor nerve terminals in the corneal surface of Piezo2 conditional knock-out mice revealed a reduced number of mechano-sensitive terminals and lower frequency of nerve terminal impulse discharges under mechanical stimulation. Eye blinks evoked by von Frey filaments applied on the cornea were lower in Piezo2-deficient mice compared with wild type. Together, our results provide direct evidence that Piezo2 channels support mechanically activated currents of different kinetics in corneal trigeminal neurons and contributes to transduction of mechanical forces by corneal nociceptors.SIGNIFICANCE STATEMENT The cornea is a richly innervated and highly sensitive tissue. Low-threshold mechanical forces activate corneal receptors evoking discomfort or pain. To examine the contribution of Piezo2, a low-threshold mechanically activated channel, to acute ocular pain, we characterized the mechanosensitivity of corneal sensory neurons. By using Piezo2 conditional knock-out mice, we show that Piezo2 channels, present in the cell body and terminals of corneal neurons, are directly involved in acute corneal mechano-nociception. Inhibition of Piezo2 for systemic pain treatment is hindered because of its essential role for mechano-transduction processes in multiple body organs. Still, topical modulation of Piezo2 in the cornea may be useful to selectively relief unpleasant sensations and pain associated with mechanical irritation accompanying many ocular surface disorders.


Subject(s)
Corneal Diseases/genetics , Corneal Diseases/physiopathology , Ion Channels/genetics , Pain/genetics , Pain/physiopathology , Animals , Blinking , Cells, Cultured , Cornea/innervation , Mechanotransduction, Cellular , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons , Nociceptors , Patch-Clamp Techniques , Physical Stimulation , Presynaptic Terminals , Trigeminal Ganglion/physiopathology
13.
Eur Rev Med Pharmacol Sci ; 24(13): 7399-7411, 2020 07.
Article in English | MEDLINE | ID: mdl-32706079

ABSTRACT

OBJECTIVE: The efficacy of melatonin as an analgesic agent has been well documented in animals and humans. However, the underlying mechanisms by which melatonin exerts antinociceptive effects on inflammatory pain are poorly understood. Here, we investigated the potential of melatonin to ameliorate inflammatory pain. MATERIALS AND METHODS: In vitro, ND7/23 neurons were treated with capsaicin. We used PCR and Western blot analyses to detect the expression of neuronal nitric oxide synthase (nNOS) in response to melatonin. Orofacial inflammatory pain was induced by 4% formalin administration on the right whisker pad of Sprague Dawley (SD) rats. The analgesic effect of melatonin was evaluated using mechanical threshold analyses. The expression level of nNOS in the trigeminal ganglion (TG) and trigeminal nucleus caudalis (Vc) neurons was assessed by RNAscope and immunohistochemistry. RESULTS: In vitro, capsaicin upregulated the expression of nNOS, which was dose-dependently reversed by melatonin pretreatment (p < 0.001). In a rat model of orofacial inflammatory pain, melatonin pretreatment significantly attenuated mechanical allodynia in both the acute and chronic phases (p < 0.05). Furthermore, melatonin decreased the formalin-evoked elevated nNOS mRNA and protein levels in the TG and Vc neurons in the acute and chronic phases (p < 0.05). CONCLUSIONS: Taken together, these results suggest that nNOS may play an active role in both peripheral and central processing of nociceptive information following orofacial inflammatory pain induction. The regulatory effect of melatonin on nNOS in inflammatory pain may have potential implications for the development of novel analgesic strategies.


Subject(s)
Analgesics/pharmacology , Facial Pain/prevention & control , Hyperalgesia/prevention & control , Melatonin/pharmacology , Nitric Oxide Synthase Type I/metabolism , Nociceptive Pain/prevention & control , Pain Threshold/drug effects , Sensory Receptor Cells/drug effects , Trigeminal Ganglion/drug effects , Trigeminal Nuclei/drug effects , Animals , Cell Line , Disease Models, Animal , Facial Pain/enzymology , Facial Pain/physiopathology , Hyperalgesia/enzymology , Hyperalgesia/physiopathology , Nociceptive Pain/enzymology , Nociceptive Pain/physiopathology , Rats, Sprague-Dawley , Sensory Receptor Cells/enzymology , Trigeminal Ganglion/metabolism , Trigeminal Ganglion/physiopathology , Trigeminal Nuclei/enzymology , Trigeminal Nuclei/physiopathology
14.
J Headache Pain ; 21(1): 71, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32522164

ABSTRACT

Migraine is a leading cause of disability worldwide, but it is still underdiagnosed and undertreated. Research on the pathophysiology of this neurological disease led to the discovery that calcitonin gene-related peptide (CGRP) is a key neuropeptide involved in pain signaling during a migraine attack. CGRP-mediated neuronal sensitization and glutamate-based second- and third-order neuronal signaling may be an important component involved in migraine pain. The activation of several serotonergic receptor subtypes can block the release of CGRP, other neuropeptides, and neurotransmitters, and can relieve the symptoms of migraine. Triptans were the first therapeutics developed for the treatment of migraine, working through serotonin 5-HT1B/1D receptors. The discovery that the serotonin 1F (5-HT1F) receptor was expressed in the human trigeminal ganglion suggested that this receptor subtype may have a role in the treatment of migraine. The 5-HT1F receptor is found on terminals and cell bodies of trigeminal ganglion neurons and can modulate the release of CGRP from these nerves. Unlike 5-HT1B receptors, the activation of 5-HT1F receptors does not cause vasoconstriction.The potency of different serotonergic agonists towards 5-HT1F was correlated in an animal model of migraine (dural plasma protein extravasation model) leading to the development of lasmiditan. Lasmiditan is a newly approved acute treatment for migraine in the United States and is a lipophilic, highly selective 5-HT1F agonist that can cross the blood-brain barrier and act at peripheral nervous system (PNS) and central nervous system (CNS) sites.Lasmiditan activation of CNS-located 5-HT1F receptors (e.g., in the trigeminal nucleus caudalis) could potentially block the release of CGRP and the neurotransmitter glutamate, thus preventing and possibly reversing the development of central sensitization. Activation of 5-HT1F receptors in the thalamus can block secondary central sensitization of this region, which is associated with progression of migraine and extracephalic cutaneous allodynia. The 5-HT1F receptors are also elements of descending pain modulation, presenting another site where lasmiditan may alleviate migraine. There is emerging evidence that mitochondrial dysfunction might be implicated in the pathophysiology of migraine, and that 5-HT1F receptors can promote mitochondrial biogenesis. While the exact mechanism is unknown, evidence suggests that lasmiditan can alleviate migraine through 5-HT1F agonist activity that leads to inhibition of neuropeptide and neurotransmitter release and inhibition of PNS trigeminovascular and CNS pain signaling pathways.


Subject(s)
Benzamides/pharmacology , Migraine Disorders/physiopathology , Piperidines/pharmacology , Pyridines/pharmacology , Receptors, Serotonin , Serotonin Receptor Agonists/pharmacology , Animals , Calcitonin Gene-Related Peptide/metabolism , Humans , Neurons/metabolism , Trigeminal Ganglion/metabolism , Trigeminal Ganglion/physiopathology , Tryptamines , Vasoconstriction/drug effects , Receptor, Serotonin, 5-HT1F
15.
J Headache Pain ; 21(1): 65, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32503421

ABSTRACT

The fifth cranial nerve is the common denominator for many headaches and facial pain pathologies currently known. Projecting from the trigeminal ganglion, in a bipolar manner, it connects to the brainstem and supplies various parts of the head and face with sensory innervation. In this review, we describe the neuroanatomical structures and pathways implicated in the sensation of the trigeminal system. Furthermore, we present the current understanding of several primary headaches, painful neuropathies and their pharmacological treatments. We hope that this overview can elucidate the complex field of headache pathologies, and their link to the trigeminal nerve, to a broader field of young scientists.


Subject(s)
Facial Pain/pathology , Headache/pathology , Trigeminal Ganglion/pathology , Trigeminal Nerve/pathology , Animals , Brain Stem/metabolism , Brain Stem/pathology , Brain Stem/physiopathology , Facial Pain/metabolism , Facial Pain/physiopathology , Headache/metabolism , Headache/physiopathology , Humans , Trigeminal Ganglion/metabolism , Trigeminal Ganglion/physiopathology , Trigeminal Nerve/metabolism , Trigeminal Nerve/physiopathology
16.
Sci Rep ; 10(1): 2759, 2020 02 17.
Article in English | MEDLINE | ID: mdl-32066827

ABSTRACT

Injury of the tooth pulp is excruciatingly painful and yet the receptors and neural circuit mechanisms that transmit this form of pain remain poorly defined in both the clinic and preclinical rodent models. Easily quantifiable behavioral assessment in the mouse orofacial area remains a major bottleneck in uncovering molecular mechanisms that govern inflammatory pain in the tooth. In this study we sought to address this problem using the Mouse Grimace Scale and a novel approach to the application of mechanical Von Frey hair stimuli. We use a dental pulp injury model that exposes the pulp to the outside environment, a procedure we have previously shown produces inflammation. Using RNAscope technology, we demonstrate an upregulation of genes that contribute to the pain state in the trigeminal ganglia of injured mice. We found that mice with dental pulp injury have greater Mouse Grimace Scores than sham within 24 hours of injury, suggestive of spontaneous pain. We developed a scoring system of mouse refusal to determine thresholds for mechanical stimulation of the face with Von Frey filaments. This method revealed that mice with a unilateral dental injury develop bilateral mechanical allodynia that is delayed relative to the onset of spontaneous pain. This work demonstrates that tooth pain can be quantified in freely behaving mice using approaches common for other types of pain assessment. Harnessing these assays in the orofacial area during gene manipulation should assist in uncovering mechanisms for tooth pulp inflammatory pain and other forms of trigeminal pain.


Subject(s)
Dental Pulp/physiopathology , Hyperalgesia/diagnosis , Nerve Tissue Proteins/genetics , Pain Measurement/methods , Pain/diagnosis , Tooth Injuries/diagnosis , Animals , Behavior, Animal , Dental Pulp/injuries , Dental Pulp/innervation , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation , Humans , Hyperalgesia/genetics , Hyperalgesia/physiopathology , Inflammation , Male , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Pain/genetics , Pain/physiopathology , Severity of Illness Index , Tooth Injuries/genetics , Tooth Injuries/physiopathology , Trigeminal Ganglion/metabolism , Trigeminal Ganglion/physiopathology
17.
J Neurosurg Anesthesiol ; 32(4): 344-348, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31145173

ABSTRACT

BACKGROUND: Percutaneous compression of the trigeminal ganglion (PCTG) has been used to treat trigeminal neuralgia since 1983. A PCTG-related trigeminocardiac reflex (TCR) can induce dramatic hemodynamic disturbances. This study investigates the effects of depth of propofol anesthesia on hemodynamic changes during PCTG. MATERIALS AND METHODS: A total of 120 patients who underwent PTCG for trigeminal neuralgia were randomly assigned to control group-intravenous saline pretreatment before PCTG puncture and anesthesia targeted to bispectral index (BIS) 40 to 60 throughout, and study group-intravenous propofol 1 to 2 mg/kg pretreatment to deepen anesthesia to BIS<40 before PCTG. Mean arterial pressure, heart rate (HR), cardiac output, system vascular resistance, and BIS were measured at 9 time points during the procedure, and the incidence of the TCR was observed at T5 and T6. RESULTS: BIS was lower in the study group compared with the control after pretreatment with propofol or saline, respectively. Compared with the control group, mean arterial pressure was lower in the study group at several points during the procedure, but there was no difference in HR between the 2 groups at any point. Cardiac output was higher and system vascular resistance lower in the study compared with the control group. In the control group, 42 (70.0%) and 52 (86.7%) of patients developed a TCR at the 2 points, and 37 (67.1%) and 45 (75.0%) in the study group. There was no difference in the incidence of TCR between the 2 groups. CONCLUSION: Increasing the depth of propofol anesthesia partially attenuated PTCG-related elevation of blood pressure but did not modify the abrupt reduction in HR.


Subject(s)
Anesthetics, Intravenous/administration & dosage , Hemodynamics/drug effects , Hemodynamics/physiology , Propofol/administration & dosage , Trigeminal Ganglion/physiopathology , Trigeminal Neuralgia/therapy , Dose-Response Relationship, Drug , Female , Humans , Male , Middle Aged , Prospective Studies , Saline Solution/administration & dosage , Trigeminal Neuralgia/physiopathology
18.
Curr Eye Res ; 45(3): 291-302, 2020 03.
Article in English | MEDLINE | ID: mdl-31566418

ABSTRACT

The cornea is a transparent outermost structure of the eye anterior segment comprising the highest density of innervated tissue. In the process of corneal innervation, trigeminal ganglion originated corneal nerves diligently traverse different corneal cell types in different corneal layers including the corneal stroma and epithelium. While crossing the stromal and epithelial cell layers during innervation, due to the existing physical contacts, close interactions occur between stromal keratocytes, epithelial cells, resident immune cells and corneal nerves. Furthermore, by producing various trophic and growth factors corneal cells assist in maintaining the growth and function of corneal nerves. Similarly, corneal nerve generated growth factors critically modify the corneal cell function in all the corneal layers. Due to their close association and contacts, on-going cross-communication between these cell types and corneal nerves play a vital role in the modulation of corneal nerve function, regeneration during wound healing. The present review highlights the influence of different corneal cell types and growth factors released from these cells on corneal nerve regeneration and function.


Subject(s)
Cornea/innervation , Corneal Diseases/physiopathology , Nerve Regeneration/physiology , Trigeminal Ganglion/physiopathology , Animals , Corneal Stroma/pathology , Corneal Stroma/physiopathology , Humans
19.
J Neuroinflammation ; 16(1): 268, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31847868

ABSTRACT

BACKGROUND: Dry eye disease (DED) is a multifactorial disease associated with ocular surface inflammation, pain, and nerve abnormalities. We studied the peripheral and central neuroinflammatory responses that occur during persistent DED using molecular, cellular, behavioral, and electrophysiological approaches. METHODS: A mouse model of DED was obtained by unilateral excision of the extraorbital lachrymal gland (ELG) and Harderian gland (HG) of adult female C57BL/6 mice. In vivo tests were conducted at 7, 14, and 21 days (d) after surgery. Tear production was measured by a phenol red test and corneal alterations and inflammation were assessed by fluorescein staining and in vivo confocal microscopy. Corneal nerve morphology was evaluated by nerve staining. Mechanical corneal sensitivity was monitored using von Frey filaments. Multi-unit extracellular recording of ciliary nerve fiber activity was used to monitor spontaneous corneal nerve activity. RT-qPCR and immunostaining were used to determine RNA and protein levels at d21. RESULTS: We observed a marked reduction of tear production and the development of corneal inflammation at d7, d14, and d21 post-surgery in DED animals. Chronic DE induced a reduction of intraepithelial corneal nerve terminals. Behavioral and electrophysiological studies showed that the DED animals developed time-dependent mechanical corneal hypersensitivity accompanied by increased spontaneous ciliary nerve fiber electrical activity. Consistent with these findings, DED mice exhibited central presynaptic plasticity, demonstrated by a higher Piccolo immunoreactivity in the ipsilateral trigeminal brainstem sensory complex (TBSC). At d21 post-surgery, mRNA levels of pro-inflammatory (IL-6 and IL-1ß), astrocyte (GFAP), and oxidative (iNOS2 and NOX4) markers increased significantly in the ipsilateral trigeminal ganglion (TG). This correlated with an increase in Iba1, GFAP, and ATF3 immunostaining in the ipsilateral TG of DED animals. Furthermore, pro-inflammatory cytokines (IL-6, TNFα, IL-1ß, and CCL2), iNOS2, neuronal (ATF3 and FOS), and microglial (CD68 and Itgam) markers were also upregulated in the TBSC of DED animals at d21, along with increased immunoreactivity against GFAP and Iba1. CONCLUSIONS: Overall, these data highlight peripheral sensitization and neuroinflammatory responses that participate in the development and maintenance of dry eye-related pain. This model may be useful to identify new analgesic molecules to alleviate ocular pain.


Subject(s)
Cornea/physiopathology , Dry Eye Syndromes/physiopathology , Hyperalgesia/physiopathology , Neuronal Plasticity/physiology , Trigeminal Nuclei/physiopathology , Animals , Chronic Disease , Female , Inflammation/physiopathology , Mice , Mice, Inbred C57BL , Trigeminal Ganglion/physiopathology
20.
Neurochem Int ; 131: 104567, 2019 12.
Article in English | MEDLINE | ID: mdl-31586590

ABSTRACT

P2Y purinergic receptors expressed in neurons and satellite glial cells (SGCs) of the trigeminal ganglion (TG) contribute to inflammatory and neuropathic pain. P2Y14 receptor expression is reported in the spinal cord, dorsal root ganglion (DRG), and TG. In present study, the role of P2Y14 receptor in the TG in inflammatory orofacial pain of Sprague-Dawley (SD) rats was investigated. Peripheral injection of complete Freund's adjuvant (CFA) induced mechanical hyperalgesia with the rapid upregulation of P2Y14 receptor, glial fibrillary acidic protein (GFAP), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), C-C chemokine CCL2, phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), and phosphorylated p38 (p-p38) proteins in the TG. Furthermore, immunofluorescence staining confirmed the CFA-induced upregulation of P2Y14 receptor. Double immunostaining showed that P2Y14 receptor colocalized with glutamine synthetase (GS) and neuronal nuclei (NeuN). Finally, trigeminal injection of a selective antagonist (PPTN) of P2Y14 receptor attenuated CFA-induced mechanical hyperalgesia. PPTN also decreased the upregulation of the GFAP, IL-1ß, TNF-α, CCL2, p-ERK1/2, and p-p38 proteins. Our findings showed that P2Y14 receptor in TG may contribute to orofacial inflammatory pain via regulating SGCs activation, releasing cytokines (IL-1ß, TNF-α, and CCL2), and phosphorylating ERK1/2 and p38.


Subject(s)
Facial Pain/physiopathology , Receptors, Purinergic P2Y/genetics , Trigeminal Ganglion/physiopathology , Trigeminal Neuralgia/physiopathology , Animals , Behavior, Animal , Cytokines/metabolism , Facial Pain/chemically induced , Facial Pain/psychology , Freund's Adjuvant , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Inflammation/chemically induced , Inflammation/physiopathology , MAP Kinase Signaling System/genetics , Male , Phosphorylation , Rats , Rats, Sprague-Dawley , Receptors, Purinergic P2Y/metabolism , Trigeminal Ganglion/metabolism , Trigeminal Neuralgia/chemically induced , Trigeminal Neuralgia/psychology , Up-Regulation , p38 Mitogen-Activated Protein Kinases/drug effects , p38 Mitogen-Activated Protein Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL