Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.660
Filter
1.
Future Cardiol ; 20(3): 151-161, 2024.
Article in English | MEDLINE | ID: mdl-38923885

ABSTRACT

Aim: Ursolic acid (UA) has an important biological role in the fight against fat accumulation, insulin resistance, obesity and inflammation. Therefore, in the current review and meta-analysis work, we investigate the effects of UA (dosage range is 50.94 to 450 mg/day) on cardiometabolic risk factors. Materials & methods: After searching the studies up to February 2023, six articles were included in the study. Results: The pooled effect size showed that UA supplementation didn't significantly change body weight, body mass index, waist circumference, body fat percentage, lean body mass, systolic blood pressure, diastolic blood pressure, fasting blood glucose, insulin, triglyceride and high-density lipoprotein compared with control groups. Conclusion: UA supplementation had no significant effect on the cardiometabolic risk factors in adults.


Cardiovascular disease (CVD) is a significant reason for morbidity and mortality. Ursolic acid (UA) has been shown to play important biological roles in the fight against fat accumulation, oxidative stress, insulin resistance via insulin-like growth factor 1, cancer, muscle atrophy, obesity and inflammation responsible for CVD. A systematic review and meta-analysis were conducted up to February 2023; six articles were included in the study and eleven cardiometabolic risk factors were identified. The pooled effect size showed that UA supplementation (dosage range is 50.94 to 450 mg/day) didn't significantly change body weight, body mass index, waist circumference, body fat percentage, lean body mass, systolic blood pressure, diastolic blood pressure, fasting blood glucose, insulin, triglyceride, and high-density lipoprotein compared with control groups.


Subject(s)
Cardiometabolic Risk Factors , Triterpenes , Ursolic Acid , Humans , Body Mass Index , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/etiology , Dietary Supplements , Triterpenes/pharmacology , Triterpenes/therapeutic use
2.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 487-494, 2024 Jun 18.
Article in Chinese | MEDLINE | ID: mdl-38864135

ABSTRACT

OBJECTIVE: To unveil the pathological changes associated with demyelination in schizophrenia (SZ) and its consequential impact on interstitial fluid (ISF) drainage, and to investigate the therapeutic efficacy of ursolic acid (UA) in treating demyelination and the ensuing abnormalities in ISF drainage in SZ. METHODS: Female C57BL/6J mice, aged 6-8 weeks and weighing (20±2) g, were randomly divided into three groups: control, SZ model, and UA treatment. The control group received intraperitoneal injection (ip) of physiological saline and intragastric administration (ig) of 1% carboxymethylcellulose sodium (CMC-Na). The SZ model group was subjected to ip injection of 2 mg/kg dizocilpine maleate (MK-801) and ig administration of 1% CMC-Na. The UA treatment group underwent ig administration of 25 mg/kg UA and ip injection of 2 mg/kg MK-801. The treatment group received UA pretreatment via ig administration for one week, followed by a two-week drug intervention for all the three groups. Behavioral assessments, including the open field test and prepulse inhibition experiment, were conducted post-modeling. Subsequently, changes in the ISF partition drainage were investigated through fluorescent tracer injection into specific brain regions. Immunofluorescence analysis was employed to examine alterations in aquaporin 4 (AQP4) polarity distribution in the brain and changes in protein expression. Myelin reflex imaging using Laser Scanning Confocal Microscopy (LSCM) was utilized to study modifications in myelin within the mouse brain. Quantitative data underwent one-way ANOVA, followed by TukeyHSD for post hoc pairwise comparisons between the groups. RESULTS: The open field test revealed a significantly longer total distance [(7 949.39±1 140.55) cm vs. (2 831.01±1 212.72) cm, P < 0.001] and increased central area duration [(88.43±22.06) s vs. (56.85±18.58) s, P=0.011] for the SZ model group compared with the controls. The UA treatment group exhibited signifi-cantly reduced total distance [(2 415.80±646.95) cm vs. (7 949.39±1 140.55) cm, P < 0.001] and increased central area duration [(54.78±11.66) s vs. (88.43±22.06) s, P=0.007] compared with the model group. Prepulse inhibition test results demonstrated a markedly lower inhibition rate of the startle reflex in the model group relative to the controls (P < 0.001 for both), with the treatment group displaying significant improvement (P < 0.001 for both). Myelin sheath analysis indicated significant demyelination in the model group, while UA treatment reversed this effect. Fluorescence tracing exhibited a significantly larger tracer diffusion area towards the rostral cortex and reflux area towards the caudal thalamus in the model group relative to the controls [(13.93±3.35) mm2 vs. (2.79±0.94) mm2, P < 0.001 for diffusion area; (2.48±0.38) mm2 vs. (0.05±0.12) mm2, P < 0.001 for reflux area], with significant impairment of drainage in brain regions. The treatment group demonstrated significantly reduced tracer diffusion and reflux areas [(7.93±2.48) mm2 vs. (13.93±3.35) mm2, P < 0.001 for diffusion area; (0.50±0.30) mm2 vs. (2.48±0.38) mm2, P < 0.001 for reflux area]. Immunofluorescence staining revealed disrupted AQP4 polarity distribution and reduced AQP4 protein expression in the model group compared with the controls [(3 663.88±733.77) µm2 vs. (13 354.92±4 054.05) µm2, P < 0.001]. The treatment group exhibited restored AQP4 polarity distribution and elevated AQP4 protein expression [(11 104.68±3 200.04) µm2 vs. (3 663.88±733.77) µm2, P < 0.001]. CONCLUSION: UA intervention ameliorates behavioral performance in SZ mice, Thus alleviating hyperactivity and anxiety symptoms and restoring sensorimotor gating function. The underlying mechanism may involve the improvement of demyelination and ISF drainage dysregulation in SZ mice.


Subject(s)
Demyelinating Diseases , Disease Models, Animal , Extracellular Fluid , Mice, Inbred C57BL , Schizophrenia , Triterpenes , Ursolic Acid , Animals , Mice , Triterpenes/therapeutic use , Triterpenes/pharmacology , Schizophrenia/drug therapy , Female , Demyelinating Diseases/drug therapy , Extracellular Fluid/drug effects , Extracellular Fluid/metabolism , Dizocilpine Maleate , Aquaporin 4/metabolism
3.
Molecules ; 29(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38893392

ABSTRACT

Neurodegenerative diseases represent a cluster of conditions characterized by the progressive degeneration of the structure and function of the nervous system. Despite significant advancements in understanding these diseases, therapeutic options remain limited. The medicinal mushroom Ganoderma lucidum has been recognized for its comprehensive array of bioactive compounds with anti-inflammatory and antioxidative effects, which possess potential neuroprotective properties. This literature review collates and examines the existing research on the bioactivity of active compounds and extracts from Ganoderma lucidum in modulating the pathological hallmarks of neurodegenerative diseases. The structural information and preparation processes of specific components, such as individual ganoderic acids and unique fractions of polysaccharides, are presented in detail to facilitate structure-activity relationship research and scale up the investigation of in vivo pharmacology. The mechanisms of these components against neurodegenerative diseases are discussed on multiple levels and elaborately categorized in different patterns. It is clearly presented from the patterns that most polysaccharides of Ganoderma lucidum possess neurotrophic effects, while ganoderic acids preferentially target specific pathogenic proteins as well as regulating autophagy. Further clinical trials are necessary to assess the translational potential of these components in the development of novel multi-target drugs for neurodegenerative diseases.


Subject(s)
Neurodegenerative Diseases , Neuroprotective Agents , Reishi , Neurodegenerative Diseases/drug therapy , Humans , Reishi/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/therapeutic use , Animals , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/therapeutic use , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/therapeutic use
4.
Immun Inflamm Dis ; 12(6): e1309, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860765

ABSTRACT

BACKGROUND: Astragaloside IV (AS-IV) is the most active monomer in the traditional Chinese herbal medicine Radix Astragali, which has a wide range of antiviral, anti-inflammatory, and antifibrosis pharmacological effects, and shows protective effects in acute lung injury. METHODS: This study utilized the immunofluorescence, flow cytometry, enzyme-linked immunosorbent assay, quantitative reverse transcription-polymerase chain reaction, western blot, and hematoxylin and eosin staining methods to investigate the mechanism of AS-IV in reducing viral pneumonia caused by influenza A virus in A549 cells and BALB/c mice. RESULTS: The results showed that AS-IV suppressed reactive oxygen species production in influenza virus-infected A549 cells in a dose-dependent manner, and subsequently inhibited the activation of nucleotide-binding oligomerization domain-like receptor thermal protein domain associated protein 3 inflammasome and Caspase-1, decreased interleukin (IL) -1ß and IL-18 secretion. In BALB/c mice infected with Poly (I:C), oral administration of AS-IV can significantly reduce Poly (I:C)-induced acute pneumonia and lung pathological injury. CONCLUSIONS: AS-IV alleviates the inflammatory response induced by influenza virus in vitro and lung flammation and structural damage caused by poly (I:C) in vivo.


Subject(s)
Caspase 1 , Mice, Inbred BALB C , NLR Family, Pyrin Domain-Containing 3 Protein , Orthomyxoviridae Infections , Reactive Oxygen Species , Saponins , Signal Transduction , Triterpenes , Animals , Saponins/pharmacology , Triterpenes/pharmacology , Triterpenes/therapeutic use , Mice , Signal Transduction/drug effects , Humans , Reactive Oxygen Species/metabolism , A549 Cells , Caspase 1/metabolism , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammation/drug therapy , Influenza A virus/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
5.
Discov Med ; 36(184): 1070-1079, 2024 May.
Article in English | MEDLINE | ID: mdl-38798265

ABSTRACT

BACKGROUND: Atherosclerosis (AS) is a chronic inflammatory vascular disease with a complex pathogenesis. Astragaloside IV (AST IV), the primary active component of Astragalus, possesses anti-inflammatory, antioxidant, and immunomodulatory properties. This research aims to investigate the outcome of AST IV on AS and its potential molecular mechanism. METHODS: A high-fat diet (21% fat, 50% carbohydrate, 20% protein, 0.15% cholesterol, and 34% sucrose) was utilized to feed Apolipoprotein E deficient (ApoE-/-) SD rats for 8 weeks, followed by continuous intragastric administration of AST IV for 8 weeks. Biochemical detection was conducted for serum lipid levels and changes in vasoactive substances. After Masson staining, aortic root oil red O staining, and Hematoxylin Eosin (HE) staining, the efficacy of AST IV was verified using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The mRNA expression levels of inflammatory factors and endothelial dysfunction-related biomarkers in rat aortic root tissues were appraised. The changes in the composition of intestinal flora in rats after AST IV treatment were appraised using Image J (Multi-point Tool). Western blot was used to evaluate phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway-related protein levels in rat aortic root tissues. RESULTS: AST IV administration alleviated the pathological symptoms of AS rats. AST IV administration reduced serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), endothelin-1 (ET-1) and angiotensin (Ang)-II (Ang-II) levels, and augmented serum high-density lipoprotein cholesterol (HDL-C) and nitric oxide (NO) levels. At the same time, AST IV administration inhibited the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1ß, vascular cell adhesion molecule-1 (VCAM-1), matrix metalloproteinase-2 (MMP-2), macrophage inflammatory protein-1 (MCP-1), and intercellular adhesion molecule-1 (ICAM-1) in the aortic root tissue of AS rats. In addition, the intestinal flora changed significantly after AST IV administration. The number of Bifidobacterium, Lactobacillus, and Bacteroides augmented significantly, and Enterobacter, Enterococcus, Fusobacterium, and Clostridium significantly decreased. Mechanistically, AST IV administration inhibited the phosphorylation of PI3K, Akt, and mTOR in AS rats. When combined with Dactolisib (BEZ235) (a PI3K/Akt/mTOR pathway inhibitor), AST IV could further inhibit phosphorylation and reduce inflammation. CONCLUSION: AST IV has a potential anti-AS effect, which can improve the pathological changes of the aorta in ApoE-/- rats fed with a high-fat diet, reduce the level of inflammatory factors, and modulate the composition of intestinal flora via the PI3K/Akt/mTOR pathway.


Subject(s)
Apolipoproteins E , Atherosclerosis , Disease Models, Animal , Gastrointestinal Microbiome , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Saponins , Signal Transduction , TOR Serine-Threonine Kinases , Triterpenes , Animals , Saponins/pharmacology , Saponins/therapeutic use , Saponins/administration & dosage , TOR Serine-Threonine Kinases/metabolism , Rats , Triterpenes/pharmacology , Triterpenes/therapeutic use , Triterpenes/administration & dosage , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Proto-Oncogene Proteins c-akt/metabolism , Gastrointestinal Microbiome/drug effects , Male , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Apolipoproteins E/genetics , Diet, High-Fat/adverse effects
6.
Int Immunopharmacol ; 134: 112118, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705029

ABSTRACT

This study aims to explore the protective machinery of pegylated polymeric micelles of boswellic acid-selenium (PMBS) against secondary neuronal damage triggered by mild repetitive traumatic brain injury (RTBI). After PMBS characterization in terms of particle size, size distribution, zeta potential, and transmission electronic microscopy, the selected formula was used to investigate its potency against experimental RTBI. Five groups of rats were used; group 1 (control) and the other four groups were subjected to RTBI. Groups 2 was RTBI positive control, while 3, 4, and 5 received boswellic acid (BSA), selenium (SEL), and PMBS, respectively. The open-field behavioral test was used for behavioral assessment. Subsequently, brain tissues were utilized for hematoxylin and eosin staining, Nissl staining, Western blotting, and ELISA in addition to evaluating microRNA expression (miR-155 and miR-146a). The behavioral changes, oxidative stress, and neuroinflammation triggered by RTBI were all improved by PMBS. Moreover, PMBS mitigated excessive glutamate-induced excitotoxicity and the dysregulation in miR-155 and miR-146a expression. Besides, connexin43 (Cx43) expression as well as klotho and brain-derived neurotrophic factor (BDNF) were upregulated with diminished neuronal cell death and apoptosis because of reduced Forkhead Box class O3a(Foxo3a) expression in the PMBS-treated group. The current study has provided evidence of the benefits produced by incorporating BSA and SEL in PEGylated polymeric micelles formula. PMBS is a promising therapy for RTBI. Its beneficial effects are attributed to the manipulation of many pathways, including the regulation of miR-155 and miR-146a expression, as well as the BDNF /Klotho/Foxo3a signaling pathway.


Subject(s)
Brain-Derived Neurotrophic Factor , Forkhead Box Protein O3 , Klotho Proteins , Micelles , MicroRNAs , Polyethylene Glycols , Selenium , Triterpenes , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Male , Rats , Selenium/chemistry , Triterpenes/pharmacology , Triterpenes/therapeutic use , Signal Transduction/drug effects , Rats, Sprague-Dawley , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Disease Models, Animal , Oxidative Stress/drug effects , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Brain/drug effects , Brain/metabolism , Brain/pathology , Polymers/chemistry
7.
Int Immunopharmacol ; 134: 112147, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38718656

ABSTRACT

The neuronal and renal deteriorations observed in patients exposed to methotrexate (MTX) therapy highlight the need for medical interventions to counteract these complications. Boswellic acid (BA) and apigenin (APG) are natural phytochemicals with prominent neuronal and renal protective impacts in various ailments. However, their impacts on MTX-provoked renal and hippocampal toxicity have not been reported. Thus, the present work is tailored to clarify the ability of BA and APG to counteract MTX-provoked hippocampal and renal toxicity. BA (250 mg/kg) or APG (20 mg/kg) were administered orally in rats once a day for 10 days, while MTX (20 mg/kg, i.p.) was administered once on the sixth day of the study. At the histopathological level, BA and APG attenuated MTX-provoked renal and hippocampal aberrations. They also inhibited astrocyte activation, as proven by the inhibition of glial fibrillary acidic protein (GFAP). These impacts were partially mediated via the activation of autophagy flux, as proven by the increased expression of beclin1, LC3-II, and the curbing of p62 protein, alongside the regulation of the p-AMPK/mTOR nexus. In addition, BA and APG displayed anti-inflammatory features as verified by the damping of NOD-2 and p-NF-κB p65 to reduce TNF-α, IL-6, and NLRP3/IL-1ß cue. These promising effects were accompanied with a notable reduction in one of the gap junction proteins, connexin-43 (Conx-43). These positive impacts endorse BA and APG as adjuvant modulators to control MTX-driven hippocampal and nephrotoxicity.


Subject(s)
Apigenin , Autophagy , Connexin 43 , Hippocampus , Kidney , Methotrexate , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Triterpenes , Animals , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Methotrexate/adverse effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Apigenin/pharmacology , Apigenin/therapeutic use , Triterpenes/pharmacology , Triterpenes/therapeutic use , NF-kappa B/metabolism , Male , Rats , Connexin 43/metabolism , Autophagy/drug effects , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Rats, Wistar , Signal Transduction/drug effects
8.
Int Immunopharmacol ; 134: 112175, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38733821

ABSTRACT

BACKGROUND: Our previous study has revealed that asiaticoside (AC) promotes endoplasmic reticulum stress and antagonizes proliferation and migration of gastric cancer (GC) via miR-635/HMGA1 axis. However, the effect and mechanism of AC on other progressions of GC, such as ferroptosis and immune escape, are still unknown. METHODS: AGS and HGC27 cells were incubated with 1, 2 and 4 µM of AC for 24 h. Mice xenografted with AGS cells were intragastrically injected with AC. The effect and mechanism of AC on GC were determined by the measurement of the ferrous iron level, the ROS level and the glutathione peroxidase (GSH) content, flow cytometry, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry and western blotting assays. RESULTS: AC increased the Fe2+ level and the ROS level, but decreased the expression of GPX4 and SLC7A11 and the GSH level. Besides, AC enhanced the percent of CD8+ T cells and the IFN-γ concentration, but reduced the PD-L1 expression and the IL-10 level. Mechanically, AC downregulated the relative levels of ß-catenin, active-ß-catenin, p-GSK3ß/GSK3ß, cyclin D1 and c-Myc in GC cells, which were rescued with the application of LiCl (an activator of Wnt/ß-catenin pathway) in AGS cells. Moreover, activation of Wnt/ß-catenin pathway by LiCl or the ß-catenin overexpression inverted the effect of AC on ferroptosis and immune escape in GC cells. In vivo, AC treatment declined the tumor size and weight, the level of GPX4, SLC7A11, PD-L1 and IFN-γ, and the expression of Wnt/ß-catenin pathway. CONCLUSION: AC enhanced ferroptosis and repressed immune escape by downregulating the Wnt/ß-catenin signaling in GC.


Subject(s)
Down-Regulation , Ferroptosis , Stomach Neoplasms , Triterpenes , Tumor Escape , Wnt Signaling Pathway , Ferroptosis/drug effects , Stomach Neoplasms/drug therapy , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , Animals , Humans , Wnt Signaling Pathway/drug effects , Cell Line, Tumor , Triterpenes/pharmacology , Triterpenes/therapeutic use , Tumor Escape/drug effects , Mice , Down-Regulation/drug effects , Mice, Inbred BALB C , beta Catenin/metabolism , Xenograft Model Antitumor Assays , Mice, Nude , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Male , Reactive Oxygen Species/metabolism , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects
9.
Int Immunopharmacol ; 135: 112281, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38762925

ABSTRACT

The administration of nonsteroidal anti-inflammatory drugs (NSAIDs) may cause significant intestinal alteration and inflammation and lead to the occurrence of inflammatory diseases resembling duodenal ulcers. Astragaloside IV (AS-IV) is a glycoside of cycloartane-type triterpene isolated from the dried root of Astragalus membranaceus (Fisch.) Bge. (family Fabaceae), and has been used for ameliorating the NSAID-induced inflammation in the small intestine. The present study aimed to investigate the effects of AS-IV on indomethacin (IND)-induced inflammation in the small intestine of rats and its underlying mechanisms. Hematoxylin-eosin (H&E) staining, transmission and scanning electron microscopy were carried out to observe the surface morphology and ultrastructure of the small intestinal mucosa. Immunofluorescence and ELISA tests were employed to detect the expressions of NLRP3, ASC, caspase-1, and NF-κB proteins, as well as inflammatory factors IL-1ß and IL-18, to uncover potential molecular mechanisms responsible for mitigating small intestinal inflammation. The results demonstrated that AS-IV significantly decreased the ulcer index, improved the surface morphology and microstructure of the small intestinal mucosa, and increased mucosal blood flow. Molecular docking revealed a strong and stable binding capacity of AS-IV to NLRP3, ASC, caspase-1, and NF-κB proteins. Further experimental validation exhibited that AS-IV markedly decreased levels of IL-1ß and IL-18, and inhibited the protein expression of NLRP3, ASC, caspase-1, and NF-κB. Our data demonstrate that AS-IV ameliorates IND-induced intestinal inflammation in rats by inhibiting the activation of NLRP3 inflammasome and reducing the release of IL-1ß and IL-18, thereby representing a promising therapy for IND-induced intestinal inflammation.


Subject(s)
Indomethacin , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Sprague-Dawley , Saponins , Triterpenes , Animals , Saponins/pharmacology , Saponins/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Triterpenes/pharmacology , Triterpenes/therapeutic use , Inflammasomes/metabolism , Inflammasomes/drug effects , Male , Rats , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Intestine, Small/drug effects , Intestine, Small/pathology , Intestine, Small/metabolism , Intestine, Small/immunology , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , NF-kappa B/metabolism , Interleukin-1beta/metabolism , Molecular Docking Simulation , Caspase 1/metabolism , Inflammation/drug therapy , Inflammation/chemically induced
10.
Biol Pharm Bull ; 47(5): 1043-1053, 2024.
Article in English | MEDLINE | ID: mdl-38811190

ABSTRACT

Mogroside, the main component of Siraitia grosvenorii (Swingle) C. Jeffrey (Cucurbitaceae) is a natural product with hypoglycemic and intestinal microbiota regulating properties. However, whether the alteration of intestinal microbiota is associated with the antidiabetic effect of mogroside remains poorly understood. This study investigated the mechanism underlying the hypoglycemic effect of mogroside in regulating intestinal flora and attenuating metabolic endotoxemia. Kunming mice with type 2 diabetes mellitus (T2DM) induced by high-fat diet and intraperitoneal injection of streptozotocin were randomly divided into model, pioglitazone (2.57 mg/kg) and mogroside (200, 100, and 50 mg/kg) groups. After 28 d of administration, molecular changes related to glucose metabolism and metabolic endotoxemia in mice were evaluated. The levels of insulin receptor substrate-1 (IRS-1), cluster of differentiation 14 (CD14) and toll-like receptor 4 (TLR4) mRNAs were measured, and the composition of intestinal microflora was determined by 16s ribosomal DNA (rDNA) sequencing. The results showed that mogroside treatment significantly improved hepatic glucose metabolism in T2DM mice. More importantly, mogroside treatment considerably reduced plasma endotoxin (inhibition rate 65.93%, high-dose group) and inflammatory factor levels, with a concomitant decrease in CD14 and TLR4 mRNA levels. Moreover, mogroside treatment reduced the relative abundance of Firmicutes and Proteobacteria (the inhibition rate of Proteobacteria was 85.17% in the low-dose group) and increased the relative abundance of Bacteroidetes (growth rate up to 40.57%, high-dose group) in the intestines of diabetic mice. This study reveals that mogroside can relieve T2DM, regulating intestinal flora and improving intestinal mucosal barrier, indicating that mogroside can be a potential therapeutic agent or intestinal microbiota regulator in the treatment of T2DM.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Hypoglycemic Agents , Animals , Gastrointestinal Microbiome/drug effects , Male , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/blood , Mice , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Diet, High-Fat/adverse effects , Blood Glucose/drug effects , Triterpenes/pharmacology , Triterpenes/therapeutic use , Toll-Like Receptor 4/metabolism , Endotoxemia/drug therapy , Liver/drug effects , Liver/metabolism
11.
J Transl Med ; 22(1): 488, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773576

ABSTRACT

Ulcerative colitis (UC) is an idiopathic, chronic inflammatory condition of the colon, characterized by repeated attacks, a lack of effective treatment options, and significant physical and mental health complications for patients. The endoplasmic reticulum (ER) is a vital intracellular organelle in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) is induced when the body is exposed to adverse external stimuli. Numerous studies have shown that ERS-induced apoptosis plays a vital role in the pathogenesis of UC. Mogroside V (MV), an active ingredient of Monk fruit, has demonstrated excellent anti-inflammatory and antioxidant effects. In this study, we investigated the therapeutic effects of MV on dextran sulfate sodium (DSS)-induced UC and its potential mechanisms based on ERS. The results showed that MV exerted a protective effect against DSS-induced UC in mice as reflected by reduced DAI scores, increased colon length, reduced histological scores of the colon, and levels of pro-inflammatory cytokines, as well as decreased intestinal permeability. In addition, the expression of ERS pathway including BIP, PERK, eIF2α, ATF4, CHOP, as well as the apoptosis-related protein including Caspase-12, Bcl-2 and Bax, was found to be elevated in UC. However, MV treatment significantly inhibited the UC and reversed the expression of inflammation signaling pathway including ERS and ERS-induced apoptosis. Additionally, the addition of tunicamycin (Tm), an ERS activator, significantly weakened the therapeutic effect of MV on UC in mice. These findings suggest that MV may be a therapeutic agent for the treatment of DSS-induced UC by inhibiting the activation of the ERS-apoptosis pathway, and may provide a novel avenue for the treatment of UC.


Subject(s)
Apoptosis , Colitis, Ulcerative , Dextran Sulfate , Endoplasmic Reticulum Stress , Animals , Endoplasmic Reticulum Stress/drug effects , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Apoptosis/drug effects , Male , Mice, Inbred C57BL , Colon/pathology , Colon/drug effects , Triterpenes/pharmacology , Triterpenes/therapeutic use , Mice , Cytokines/metabolism , Permeability/drug effects , Signal Transduction/drug effects
12.
J Ethnopharmacol ; 330: 118225, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38670408

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Neuroinflammation is involved in the pathogenesis of depression disorder by activating microglia cells, increasing proinflammatory cytokines, effecting serotonin synthesis and metabolism, and neuronal apoptosis and neurogenesis. Arjunolic acid (ARG) is a triterpenoid derived from the fruits of Akebia trifoliata for treating psychiatric disorders in TCM clinic, which exhibits anti-inflammatory and neuroprotective effects. However, its anti-depressive effect and underlying mechanism are unknown. AIM OF THE STUDY: The aim of this study is to explore the effect of arjunolic acid on depression and its possible mechanisms. METHODS: Intraperitoneal injection of LPS in mice and LPS stimulated-BV2 microglia were utilized to set up in vivo and in vitro models. Behavioral tests, H&E staining and ELISA were employed to evaluate the effect of arjunolic acid on depression. RT-qPCR, immunofluorescence, molecular docking and Western blot were performed to elucidate the molecular mechanisms. RESULTS: Arjunolic acid dramatically ameliorated depressive behavior in LPS-induced mice. The levels of BDNF and 5-HT in the hippocampus of the mice were increased, while the number of iNOS + IBA1+ cells in the brain were decreased and Arg1+IBA1+ positive cells were increased after arjunolic acid treatment. In addition, arjunolic acid promoted the polarization of BV2 microglia from M1 to M2 type. Notably, drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA) and molecular docking technologies identified SIRT1 as the target of arjunolic acid. Moreover, after SIRT1 inhibition by using EX-527, the effects of arjunolic acid on ameliorating LPS-induced depressive behavior in mice and promoting M2 Microglia polarization were blocked. In addition, arjunolic acid activated AMPK and decreased Notch1 expression, however, inhibition of AMPK, the effect of arjunolic acid on the downregulation of Notch1 expression were weaken. CONCLUSIONS: This study elucidates that arjunolic acid suppressed neuroinflammation through modulating the SIRT1/AMPK/Notch1 signaling pathway. Our study demonstrates that arjunolic acid might serve as a potiential anti-depressant.


Subject(s)
Depression , Lipopolysaccharides , Microglia , Signal Transduction , Animals , Male , Mice , AMP-Activated Protein Kinases/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Behavior, Animal/drug effects , Cell Line , Depression/drug therapy , Depression/chemically induced , Depression/metabolism , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Molecular Docking Simulation , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Receptor, Notch1/metabolism , Signal Transduction/drug effects , Sirtuin 1/metabolism , Triterpenes/pharmacology , Triterpenes/therapeutic use
13.
Eur J Pharmacol ; 972: 176560, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38604543

ABSTRACT

Obese asthma is a unique asthma phenotype that decreases sensitivity to inhaled corticosteroids, and currently lacks efficient therapeutic medication. Celastrol, a powerful bioactive substance obtained naturally from the roots of Tripterygium wilfordii, has been reported to possess the potential effect of weight loss in obese individuals. However, its role in the treatment of obese asthma is not fully elucidated. In the present study, diet-induced obesity (DIO) mice were used with or without ovalbumin (OVA) sensitization, the therapeutic effects of celastrol on airway hyperresponsiveness (AHR) and airway inflammation were examined. We found celastrol significantly decreased methacholine-induced AHR in obese asthma, as well as reducing the infiltration of inflammatory cells and goblet cell hyperplasia in the airways. This effect was likely due to the inhibition of M1-type alveolar macrophages (AMs) polarization and the promotion of M2-type macrophage polarization. In vitro, celastrol yielded equivalent outcomes in Lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells, featuring a reduction in the expression of M1 macrophage makers (iNOS, IL-1ß, TNF-α) and heightened M2 macrophage makers (Arg-1, IL-10). Mechanistically, the PI3K/AKT signaling pathway has been implicated in these processes. In conclusion, we demonstrated that celastrol assisted in mitigating various parameters of obese asthma by regulating the balance of M1/M2 AMs polarization.


Subject(s)
Asthma , Macrophages, Alveolar , Obesity , Pentacyclic Triterpenes , Triterpenes , Animals , Asthma/drug therapy , Pentacyclic Triterpenes/pharmacology , Obesity/drug therapy , Obesity/complications , Mice , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Triterpenes/pharmacology , Triterpenes/therapeutic use , RAW 264.7 Cells , Inflammation/drug therapy , Inflammation/pathology , Proto-Oncogene Proteins c-akt/metabolism , Respiratory Hypersensitivity/drug therapy , Signal Transduction/drug effects , Male , Phosphatidylinositol 3-Kinases/metabolism , Mice, Inbred C57BL , Ovalbumin , Cell Polarity/drug effects
14.
J Transl Med ; 22(1): 406, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689349

ABSTRACT

BACKGROUND: The specific pathogenesis of UC is still unclear, but it has been clear that defects in intestinal barrier function play an important role in it. There is a temporary lack of specific drugs for clinical treatment. Astragaloside IV (AS-IV) is one of the main active ingredients extracted from Astragalus root and is a common Chinese herbal medicine for the treatment of gastrointestinal diseases. This study aimed to determine whether AS-IV has therapeutic value for DSS or LPS-induced intestinal epithelial barrier dysfunction in vivo and in vitro and its potential molecular mechanisms. METHODS: The intestinal tissues from UC patients and colitis mice were collected, intestinal inflammation was observed by colonoscopy, and mucosal barrier function was measured by immunofluorescence staining. PI3K/AKT signaling pathway activator YS-49 and inhibitor LY-29 were administered to colitic mice to uncover the effect of this pathway on gut mucosal barrier modulation. Then, network pharmacology was used to screen Astragaloside IV (AS-IV), a core active component of the traditional Chinese medicine Astragalus membranaceus. The potential of AS-IV for intestinal barrier function repairment and UC treatment through blockade of the PI3K/AKT pathway was further confirmed by histopathological staining, FITC-dextran, transmission electron microscopy, ELISA, immunofluorescence, qRT-PCR, and western blotting. Finally, 16 S rRNA sequencing was performed to uncover whether AS-IV can ameliorate UC by regulating gut microbiota homeostasis. RESULTS: Mucosal barrier function was significantly damaged in UC patients and murine colitis, and the activated PI3K/AKT signaling pathway was extensively involved. Both in vivo and vitro showed that the AS-IV-treated group significantly relieved inflammation and improved intestinal epithelial permeability by inhibiting the activation of the PI3K/AKT signaling pathway. In addition, microbiome data found that gut microbiota participates in AS-IV-mediated intestinal barrier recovery as well. CONCLUSIONS: Our study highlights that AS-IV exerts a protective effect on the integrality of the mucosal barrier in UC based on the PI3K/AKT pathway, and AS-IV may serve as a novel AKT inhibitor to provide a potential therapy for UC.


Subject(s)
Colitis, Ulcerative , Intestinal Mucosa , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Saponins , Signal Transduction , Triterpenes , Animals , Humans , Male , Mice , Caco-2 Cells , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Signal Transduction/drug effects , Triterpenes/pharmacology , Triterpenes/therapeutic use
15.
Int J Biol Macromol ; 268(Pt 1): 131644, 2024 May.
Article in English | MEDLINE | ID: mdl-38642691

ABSTRACT

Diabetes is a chronic metabolic disorder. Diabetes complications can affect many organs and systems in the body. Ganoderma lucidum (G. lucidum) contains various compounds that have been studied for their potential antidiabetic effects, including polysaccharides, triterpenoids (ganoderic acids, ganoderol B), proteoglycans, and G. lucidum extracts. G. lucidum polysaccharides (GLPs) and triterpenoids have been shown to act through distinct mechanisms, such as improving glucose metabolism, modulating the mitogen-activated protein kinase (MAPK) system, inhibiting the nuclear factor-kappa B (NF-κB) pathway, and protecting the pancreatic beta cells. While GLPs exhibit a significant role in controlling diabetic nephropathy and other associated complications. This review states the G. lucidum antidiabetic mechanisms of action and potential biologically active compounds that contribute to diabetes management and associated complications. To make G. lucidum an appropriate replacement for the treatment of diabetes with fewer side effects, more study is required to completely comprehend the number of physiologically active compounds present in it as well as the underlying cellular mechanisms that influence their effects on diabetes.


Subject(s)
Diabetes Mellitus , Hypoglycemic Agents , Polysaccharides , Reishi , Triterpenes , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/therapeutic use , Humans , Reishi/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/chemistry , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Animals , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/therapeutic use , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/therapeutic use
16.
APMIS ; 132(6): 452-464, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38563150

ABSTRACT

Multiple sclerosis (MS) is a condition where the central nervous system loses its myelin coating due to autoimmune inflammation. The experimental autoimmune encephalomyelitis (EAE) simulates some aspects of human MS. Boswellic acids are natural compounds derived from frankincense extract, known for their anti-inflammatory properties. The purpose of this research was to investigate therapeutic potential of boswellic acids. Mice were divided into three groups: low-dose (LD), high-dose (HD), and control groups (CTRL). Following EAE induction, the mice received daily doses of boswellic acid for 25 days. Brain tissue damage, clinical symptoms, and levels of TGF-ß, IFN-γ, and IL-17 cytokines in cell cultured supernatant of lymphocytes were assessed. Gene expression of transcription factors in brain was measured using real-time PCR. The levels of brain demyelination were significantly lower in the treatment groups compared to the CTRL group. Boswellic acid reduced the severity and duration of EAE symptoms. Furthermore, boswellic acid decreased the amounts of IFN-γ and IL-17, also the expression of T-bet and ROR-γt in brain. On the contrary, it increased the levels of TGF-ß and the expression FoxP3 and GATA3. Our findings suggest that boswellic acids possess therapeutic potential for EAE by modulating the immune response and reducing inflammation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Triterpenes , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Triterpenes/pharmacology , Triterpenes/therapeutic use , Mice , Female , Mice, Inbred C57BL , Brain/drug effects , Brain/pathology , Brain/metabolism , Brain/immunology , Cytokines/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Immunomodulating Agents/pharmacology , Immunomodulating Agents/therapeutic use , Interleukin-17/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
17.
Antimicrob Agents Chemother ; 68(5): e0154523, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38557112

ABSTRACT

Ibrexafungerp (formerly SCY-078) is the first member of the triterpenoid class that prevents the synthesis of the fungal cell wall polymer ß-(1,3)-D-glucan by inhibiting the enzyme glucan synthase. We evaluated the in vivo efficacy of ibrexafungerp against pulmonary mucormycosis using an established murine model. Neutropenic mice were intratracheally infected with either Rhizopus delemar or Mucor circinelloides. Treatment with placebo (diluent control), ibrexafungerp (30 mg/kg, PO BID), liposomal amphotericin B (LAMB 10 mg/kg IV QD), posaconazole (PSC 30 mg/kg PO QD), or a combination of ibrexafungerp plus LAMB or ibrexafungerp plus PSC began 16 h post-infection and continued for 7 days for ibrexafungerp or PSC and through day 4 for LAMB. Ibrexafungerp was as effective as LAMB or PSC in prolonging median survival (range: 15 days to >21 days) and enhancing overall survival (30%-65%) vs placebo (9 days and 0%; P < 0.001) in mice infected with R. delemar. Furthermore, median survival and overall percent survival resulting from the combination of ibrexafungerp plus LAMB were significantly greater compared to all monotherapies (P ≤ 0.03). Similar survival results were observed in mice infected with M. circinelloides. Monotherapies also reduce the lung and brain fungal burden by ~0.5-1.0log10 conidial equivalents (CE)/g of tissue vs placebo in mice infected with R. delemar (P < 0.05), while a combination of ibrexafungerp plus LAMB lowered the fungal burden by ~0.5-1.5log10 CE/g compared to placebo or any of the monotherapy groups (P < 0.03). These results are promising and warrant continued investigation of ibrexafungerp as a novel treatment option against mucormycosis.


Subject(s)
Amphotericin B , Antifungal Agents , Glycosides , Mucormycosis , Neutropenia , Triterpenes , Animals , Amphotericin B/therapeutic use , Amphotericin B/pharmacology , Mucormycosis/drug therapy , Mice , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Triterpenes/pharmacology , Triterpenes/therapeutic use , Neutropenia/drug therapy , Neutropenia/complications , Disease Models, Animal , Drug Therapy, Combination , Female , Rhizopus/drug effects , Lung Diseases, Fungal/drug therapy , Lung Diseases, Fungal/microbiology , Mucor/drug effects , Triazoles/therapeutic use , Triazoles/pharmacology
18.
Eur J Pharmacol ; 973: 176564, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38614383

ABSTRACT

Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease that is characterized by vascular remodeling of the pulmonary artery. Pulmonary vascular remodeling is primarily caused by the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which are facilitated by perivascular inflammatory cells including macrophages. Corosolic acid (CRA) is a natural pentacyclic triterpenoid that exerts anti-inflammatory effects. In the present study, the effects of CRA on the viability of macrophages were examined using monocrotaline (MCT)-induced PAH rats and human monocyte-derived macrophages. Although we previously reported that CRA inhibited signal transducer and activator of transcription 3 (STAT3) signaling and ameliorated pulmonary vascular remodeling in PAH, the inhibitory mechanism remains unclear. Therefore, the underlying mechanisms were investigated using PASMCs from idiopathic PAH (IPAH) patients. In MCT-PAH rats, CRA inhibited the accumulation of macrophages around remodeled pulmonary arteries. CRA reduced the viability of human monocyte-derived macrophages. In IPAH-PASMCs, CRA attenuated cell proliferation and migration facilitated by platelet-derived growth factor (PDGF)-BB released from macrophages and PASMCs. CRA also downregulated the expression of PDGF receptor ß and its signaling pathways, STAT3 and nuclear factor-κB (NF-κB). In addition, CRA attenuated the phosphorylation of PDGF receptor ß and STAT3 following the PDGF-BB simulation. The expression and phosphorylation levels of PDGF receptor ß after the PDGF-BB stimulation were reduced by the small interfering RNA knockdown of NF-κB, but not STAT3, in IPAH-PASMCs. In conclusion, CRA attenuated the PDGF-PDGF receptor ß-STAT3 and PDGF-PDGF receptor ß-NF-κB signaling axis in macrophages and PASMCs, and thus, ameliorated pulmonary vascular remodeling in PAH.


Subject(s)
Cell Movement , Cell Proliferation , Macrophages , Myocytes, Smooth Muscle , STAT3 Transcription Factor , Signal Transduction , Triterpenes , Triterpenes/pharmacology , Triterpenes/therapeutic use , Animals , Signal Transduction/drug effects , Humans , STAT3 Transcription Factor/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Rats , Macrophages/drug effects , Macrophages/metabolism , Male , Cell Movement/drug effects , Cell Proliferation/drug effects , Rats, Sprague-Dawley , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Platelet-Derived Growth Factor/metabolism , Cell Survival/drug effects , Monocrotaline , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Becaplermin/pharmacology , Vascular Remodeling/drug effects , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology
19.
Int Immunopharmacol ; 132: 111939, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38608471

ABSTRACT

BACKGROUND: In this study, we investigated whether Exo regulate the proliferation and invasion of PC. METHODS: In this study, we isolated the Eriobotrya japonica Exo using Ultra-high speed centrifugal method. Mass spectrum were used for Exo active components analysis. PC (Capan-1 and Bxpc-3) cells proliferation, migration, and apoptosis were detected using CCK8, ethynyldeoxyuridine, transwell, wound healing, and flow cytometry analyses. We also constructed a lung metastatic mouse model and subcutaneous tumor model to illustrate the regulation effect of Exo or active components. Proteomics were used to reveal the regulatory mechanism responsible for the observed effects. RESULTS: We isolated Eriobotrya japonica Exo and found that Exo treatment significantly suppressed cell migration and proliferation in both in vivo and in vitro using Capan-1. Mass spectrum for Exo active components analysis found that Exo contains high amounts of corosolic acid (CRA). The further study found that CRA treatment inhibit the proliferation, migration, and increased cell death of both Capan-1 and Bxpc-3 cells in a concentration-dependent manner. In vivo experiments confirmed that CRA inhibited pulmonary metastasis by decreasing the number of metastatic foci. Cell proteomics analysis showed that CRA treatment induced spermidine/spermine N1-acetyltransferase 1 (SAT1)-dependent ferroptosis. Treatment with the ferroptosis suppressor ferrostatin-1 significantly reversed CRA-induced cell apoptosis. CONCLUSION: The data suggested that corosolic acid delivered by exosomes from Eriobotrya japonica decreased pancreatic cancer cell proliferation and invasion by inducing SAT1-mediated ferroptosis.


Subject(s)
Acetyltransferases , Cell Proliferation , Eriobotrya , Exosomes , Ferroptosis , Lung Neoplasms , Pancreatic Neoplasms , Animals , Ferroptosis/drug effects , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Humans , Cell Proliferation/drug effects , Exosomes/metabolism , Mice , Cell Line, Tumor , Acetyltransferases/metabolism , Acetyltransferases/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Lung Neoplasms/pathology , Cell Movement/drug effects , Triterpenes/pharmacology , Triterpenes/therapeutic use , Neoplasm Invasiveness , Xenograft Model Antitumor Assays , Mice, Nude , Mice, Inbred BALB C , Male , Apoptosis/drug effects
20.
J Ethnopharmacol ; 328: 118080, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38521426

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The use of antineoplastic drugs, such as cisplatin, in clinical practice can cause adverse effects in patients, such as liver injury, which limits their long-term use. Therefore, there is an urgent need to develop alternative therapeutic strategies or drugs to minimize cisplatin-induced liver injury. Huangqi, the root of Astragalus membranaceus, is extensively used in traditional Chinese medicine (TCM) and has been employed in treating diverse liver injuries. Astragalus membranaceus contains several bioactive constituents, including triterpenoid saponins, one of which, astragaloside IV (ASIV), has been reported to have anti-inflammatory and antioxidant stress properties. However, its potential in ameliorating cisplatin-induced liver injury has not been explored. AIM OF THE STUDY: The objective of this study was to examine the mechanism by which ASIV protects against cisplatin-induced liver injury. MATERIALS AND METHODS: This study established a model of cisplatin-induced liver injury in mice, followed by treatment with various doses of astragaloside IV (40 mg/kg, 80 mg/kg). In addition, a model of hepatocyte ferroptosis in AML-12 cells was established using RSL3. The mechanism of action of astragaloside IV was investigated using a range of methods, including Western blot assay, qPCR, immunofluorescence, histochemistry, molecular docking, and high-content imaging system. RESULTS: The findings suggested a significant improvement in hepatic injury, inflammation and oxidative stress phenotypes with the administration of ASIV. Furthermore, network pharmacological analyses provided evidence that a major pathway for ASIV to attenuate cisplatin-induced hepatic injury entailed the cell death cascade pathway. It was observed that ASIV effectively inhibited ferroptosis both in vivo and in vitro. Subsequent experimental outcomes provided further validation of ASIV's ability to hinder ferroptosis through the inhibition of PPARα/FSP1 signaling pathway. The current findings suggest that ASIV could function as a promising phytotherapy composition to alleviate cisplatin-induced liver injury. CONCLUSIONS: The current findings suggest that astragaloside IV could function as a promising phytotherapy composition to alleviate cisplatin-induced liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Ferroptosis , Saponins , Triterpenes , Humans , Mice , Animals , Cisplatin/toxicity , Molecular Docking Simulation , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Saponins/pharmacology , Saponins/therapeutic use , Saponins/chemistry , Triterpenes/pharmacology , Triterpenes/therapeutic use , Triterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...