ABSTRACT
PURPOSE: Cardiac transition from concentric (C-LVH) to eccentric left ventricle hypertrophy (E-LVH) is a maladaptive response of hypertension. Matrix metalloproteinases (MMPs), in particular MMP-2, may contribute to tissue remodeling by proteolyzing extra- and intracellular proteins. Troponin I and dystrophin are two potential targets of MMP-2 examined in this study and their proteolysis would impair cardiac contractile function. We hypothesized that MMP-2 contributes to the decrease in troponin I and dystrophin in the hypertensive heart and thereby controls the transition from C-LVH to E-LVH and cardiac dysfunction. METHODS: Male Wistar rats were divided into sham or two kidney-1 clip (2K-1C) hypertensive groups and treated with water (vehicle) or doxycycline (MMP inhibitor, 15 mg/kg/day) by gavage from the tenth to the sixteenth week post-surgery. Tail-cuff plethysmography, echocardiography, gelatin zymography, confocal microscopy, western blot, mass spectrometry, in silico protein analysis and immunofluorescence were performed. RESULTS: 6 out of 23 2K-1C rats (26%) had E-LVH followed by reduced ejection fraction. The remaining had C-LVH with preserved cardiac function. Doxycycline prevented the transition from C-LVH to E-LVH. MMP activity is increased in C-LVH and E-LVH hearts which was inhibited by doxycycline. This effect was associated with an increase in troponin I cleavage products and a decline in dystrophin in the left ventricle of E-LVH rats, which was prevented by doxycycline. CONCLUSION: Hypertension causes increased cardiac MMP-2 activity which proteolyzes troponin I and dystrophin, contributing to the transition from C-LVH to E-LVH and cardiac dysfunction.
Subject(s)
Doxycycline/pharmacology , Dystrophin/metabolism , Hypertension/complications , Hypertrophy, Left Ventricular/etiology , Matrix Metalloproteinase 2/metabolism , Troponin I/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Dystrophin/genetics , Gene Expression Regulation, Enzymologic/drug effects , Hypertrophy, Left Ventricular/metabolism , Male , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase Inhibitors/pharmacology , Rats , Rats, Wistar , Troponin I/geneticsABSTRACT
Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) resemble fetal cardiomyocytes and electrical stimulation (ES) has been explored to mature the differentiated cells. Here, we hypothesize that ES applied at the beginning of the differentiation process, triggers both differentiation of the hiPSC-CMs into a specialized conduction system (CS) phenotype and cell maturation. We applied ES for 15 days starting on day 0 of the differentiation process and found an increased expression of transcription factors and proteins associated with the development and function of CS including Irx3, Nkx2.5 and contactin 2, Hcn4 and Scn5a, respectively. We also found activation of intercalated disc proteins (Nrap and ß-catenin). We detected ES-induced CM maturation as indicated by increased Tnni1 and Tnni3 expression. Confocal micrographs showed a shift towards expression of the gap junction protein connexin 40 in ES hiPSC-CM compared to the more dominant expression of connexin 43 in controls. Finally, analysis of functional parameters revealed that ES hiPSC-CMs exhibited faster action potential (AP) depolarization, longer intracellular Ca2+ transients, and slower AP duration at 90% of repolarization, resembling fast conducting fibers. Altogether, we provided evidence that ES during the differentiation of hiPSC to cardiomyocytes lead to development of cardiac conduction-like cells with more mature cytoarchitecture. Thus, hiPSC-CMs exposed to ES during differentiation can be instrumental to develop CS cells for cardiac disease modelling, screening individual drugs on a precison medicine type platform and support the development of novel therapeutics for arrhythmias.
Subject(s)
Action Potentials/physiology , Calcium/metabolism , Induced Pluripotent Stem Cells/physiology , Myocytes, Cardiac/physiology , Biomarkers/metabolism , Cell Differentiation , Cell- and Tissue-Based Therapy/methods , Connexins/genetics , Connexins/metabolism , Contactin 2/genetics , Contactin 2/metabolism , Electric Stimulation , Gene Expression , Heart Conduction System/cytology , Heart Conduction System/physiology , Homeobox Protein Nkx-2.5/genetics , Homeobox Protein Nkx-2.5/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Induced Pluripotent Stem Cells/cytology , Muscle Proteins/genetics , Muscle Proteins/metabolism , Myocytes, Cardiac/cytology , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Potassium Channels/genetics , Potassium Channels/metabolism , Primary Cell Culture , Transcription Factors/genetics , Transcription Factors/metabolism , Troponin I/genetics , Troponin I/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Gap Junction alpha-5 ProteinABSTRACT
IMPACT STATEMENT: The incidence of HFpEF continues to increase and â¼2/3 of the patient population are post-menopausal women. Unfortunately, most studies focus on the use of male animal models of remodeling. In this study, however, using female rats to set a model of pre-HFpEF, we provide insights to possible mechanisms that contribute to HFpEF development in humans that will lead us to a better understanding of the underlying pathophysiology of HFpEF.
Subject(s)
Cytokines/metabolism , Heart Failure/metabolism , Heart Ventricles/metabolism , Ventricular Remodeling , Animals , Apoptosis , Cytokines/genetics , Female , Heart Failure/pathology , Heart Ventricles/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Stress , Protein Carbonylation , Rats , Rats, Inbred F344 , Troponin I/genetics , Troponin I/metabolismABSTRACT
Neonatal cardiomyocytes are instrumental for disease modeling, but the effects of different cell extraction methods on basic cell biological processes remain poorly understood. We assessed the influence of two popular methods to extract rat neonatal cardiomyocytes, Pre-plating (PP), and Percoll (PC) on cell structure, metabolism, and function. Cardiomyocytes obtained from PP showed higher gene expression for troponins, titin, and potassium and sodium channels compared to PC. Also, PP cells displayed higher levels of troponin I protein. Cells obtained from PC displayed higher lactate dehydrogenase activity and lactate production than PP cells, indicating higher anaerobic metabolism after 8 days of culture. In contrast, reactive oxygen species levels were higher in PP cells as indicated by ethidium and hydroxyethidium production. Consistent with these data, protein nitration was higher in PP cells, as well as nitrite accumulation in cell medium. Moreover, PP cells showed higher global intracellular calcium under basal and 1 mM isoprenaline conditions. In a calcium-transient assessment under electrical stimulation (0.5 Hz), PP cells displayed higher calcium amplitude than cardiomyocytes obtained from PC and using a traction force microscope technique we observed that PP cardiomyocytes showed the highest relaxation. Collectively, we demonstrated that extraction methods influence parameters related to cell structure, metabolism, and function. Overall, PP derived cells are more active and mature than PC cells, displaying higher contractile function and generating more reactive oxygen species. On the other hand, PC derived cells display higher anaerobic metabolism, despite comparable high yields from both protocols.
Subject(s)
Calcium/metabolism , Myocytes, Cardiac/cytology , Troponin I/genetics , Animals , Animals, Newborn , Cells, Cultured , Cytoplasm/genetics , Isoproterenol/pharmacology , Myocytes, Cardiac/physiology , Rats , Reactive Oxygen SpeciesABSTRACT
The aims of this study were to evaluate the effects of nandrolone (ND) on cardiac inflammatory cytokines, ACE activity, troponin I, and the sensitivity of the Bezold-Jarisch reflex (BJR). Male Wistar rats were administered either ND (20 mg/kg; DECA) or vehicle (control animals; CONT) for 4 weeks. BJR was analyzed by measuring the bradycardia and hypotension responses elicited by serotonin administration (2-32 µg/kg). Mean arterial pressure (MAP) was assessed and myocyte hypertrophy was determined by the heart weight/body weight ratio and by morphometric analysis. Matrix collagen deposition was assessed by histological analysis of the picrosirius red-stained samples. Mesenteric vascular reactivity was performed and central venous pressure (CVP) evaluated. Cardiac inflammatory cytokine levels and angiotensin-converting enzyme (ACE) activity were studied as well the biomarker of cardiac lesion, troponin I. DECA group showed enhancement of matrix type I collagen deposition (p < 0.01) and cardiac ACE activity (p < 0.01) compared with the CONT. Interleukin (IL)-10 was reduced (p < 0.01) and pro-inflammatory cytokines (TNF-α and IL-6; p < 0.01) were increased in the DECA group compared with CONT. Cardiac injury was observed in the DECA group shown by the reduction in cardiac troponin I (p < 0.01) compared with the CONT group. Animals in the DECA group also developed myocyte hypertrophy and reduction of BJR sensitivity. The MAP of animals treated with ND reached hypertensive levels (p < 0.01; compared with CONT). No changes in CVP and vascular reactivity were observed in both experimental groups. We conclude that high doses of ND elicit cardiotoxic effects with cardiac remodelling and injury. Cardiac changes reduce the BJR sensitivity. Together, these abnormalities contributed to the development of hypertension in animals in the DECA group.
Subject(s)
Anabolic Agents/adverse effects , Bradycardia/physiopathology , Hypertension/physiopathology , Nandrolone/analogs & derivatives , Reflex/drug effects , Sleep Apnea Syndromes/physiopathology , Animals , Arterial Pressure/drug effects , Bradycardia/etiology , Bradycardia/immunology , Gene Expression/drug effects , Heart Rate/drug effects , Hypertension/etiology , Hypertension/immunology , Interleukin-10/biosynthesis , Interleukin-10/immunology , Interleukin-6/biosynthesis , Interleukin-6/immunology , Male , Nandrolone/adverse effects , Nandrolone Decanoate , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Rats , Rats, Wistar , Serotonin/pharmacology , Sleep Apnea Syndromes/etiology , Sleep Apnea Syndromes/immunology , Troponin I/genetics , Troponin I/metabolism , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/immunology , Ventricular Remodeling/drug effectsABSTRACT
Tetanic electrical stimulation induces two separate calcium signals in rat skeletal myotubes, a fast one, dependent on Cav 1.1 or dihydropyridine receptors (DHPRs) and ryanodine receptors and related to contraction, and a slow signal, dependent on DHPR and inositol trisphosphate receptors (IP(3)Rs) and related to transcriptional events. We searched for slow calcium signals in adult muscle fibers using isolated adult flexor digitorum brevis fibers from 5-7-wk-old mice, loaded with fluo-3. When stimulated with trains of 0.3-ms pulses at various frequencies, cells responded with a fast calcium signal associated with muscle contraction, followed by a slower signal similar to one previously described in cultured myotubes. Nifedipine inhibited the slow signal more effectively than the fast one, suggesting a role for DHPR in its onset. The IP(3)R inhibitors Xestospongin B or C (5 µM) also inhibited it. The amplitude of post-tetanic calcium transients depends on both tetanus frequency and duration, having a maximum at 10-20 Hz. At this stimulation frequency, an increase of the slow isoform of troponin I mRNA was detected, while the fast isoform of this gene was inhibited. All three IP(3)R isoforms were present in adult muscle. IP(3)R-1 was differentially expressed in different types of muscle fibers, being higher in a subset of fast-type fibers. Interestingly, isolated fibers from the slow soleus muscle did not reveal the slow calcium signal induced by electrical stimulus. These results support the idea that IP(3)R-dependent slow calcium signals may be characteristic of distinct types of muscle fibers and may participate in the activation of specific transcriptional programs of slow and fast phenotype.
Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Muscle Fibers, Skeletal/physiology , Animals , Electric Stimulation , Macrocyclic Compounds/metabolism , Mice , Mice, Inbred BALB C , Nifedipine/metabolism , Nifedipine/pharmacology , Oxazoles/metabolism , RNA, Messenger/metabolism , Tetany/metabolism , Troponin I/genetics , Troponin I/metabolismABSTRACT
The troponin (Tn) complex is formed by TnC, TnI and TnT and is responsible for the calcium-dependent inhibition of muscle contraction. TnC and TnI interact in an antiparallel fashion in which the N domain of TnC binds in a calcium-dependent manner to the C domain of TnI, releasing the inhibitory effect of the latter on the actomyosin interaction. While the crystal structure of the core cardiac muscle troponin complex has been determined, very little high resolution information is available regarding the skeletal muscle TnI-TnC complex. With the aim of obtaining structural information regarding specific contacts between skeletal muscle TnC and TnI regulatory domains, we have constructed two recombinant chimeric proteins composed of the residues 1-91 of TnC linked to residues 98-182 or 98-147 of TnI. The polypeptides were capable of binding to the thin filament in a calcium-dependent manner and to regulate the ATPase reaction of actomyosin. Small angle X-ray scattering results showed that these chimeras fold into compact structures in which the inhibitory plus the C domain of TnI, with the exception of residues 148-182, were in close contact with the N-terminal domain of TnC. CD and fluorescence analysis were consistent with the view that the last residues of TnI (148-182) are not well folded in the complex. MS analysis of fragments produced by limited trypsinolysis showed that the whole TnC N domain was resistant to proteolysis, both in the presence and in the absence of calcium. On the other hand the TnI inhibitory and C-terminal domains were completely digested by trypsin in the absence of calcium while the addition of calcium results in the protection of only residues 114-137.
Subject(s)
Recombinant Fusion Proteins/metabolism , Troponin C/metabolism , Troponin I/metabolism , Amino Acid Sequence , Base Sequence , Binding Sites , DNA Primers , Hydrolysis , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Scattering, Radiation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Troponin C/chemistry , Troponin C/genetics , Troponin I/chemistry , Troponin I/geneticsABSTRACT
The Ca2+-induced transition in the troponin complex (Tn) regulates vertebrate striated muscle contraction. Tn was reconstituted with recombinant forms of troponin I (TnI) containing a single intrinsic 5-hydroxytryptophan (5HW). Fluorescence analysis of these mutants of TnI demonstrate that the regions in TnI that respond to Ca2+ binding to the regulatory N-domain of TnC are the inhibitory region (residues 96-116) and a neighboring region that includes position 121. Our data confirms the role of TnI as a modulator of the Ca2+ affinity of TnC; we show that point mutations and incorporation of 5HW in TnI can affect both the affinity and the cooperativity of Ca2+ binding to TnC. We also discuss the possibility that the regulatory sites in the N-terminal domain of TnC might be the high affinity Ca2+-binding sites in the troponin complex.
Subject(s)
Calcium/pharmacology , Tropomyosin/physiology , Troponin I/physiology , Troponin/physiology , 5-Hydroxytryptophan/chemistry , 5-Hydroxytryptophan/metabolism , Allosteric Regulation , Binding Sites , Calcium/chemistry , Calcium/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Mutagenesis, Site-Directed , Point Mutation/physiology , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrometry, Fluorescence , Tropomyosin/metabolism , Troponin/metabolism , Troponin I/genetics , Troponin I/metabolismABSTRACT
Skeletal muscle contraction is regulated by a complex of five polypeptides which are stably associated with the actin filament. This complex consists of two proteins: troponin with three subunits (TnC; TnI and TnT) and tropomyosin (a dimer of two chains). Using deletion mutants of TnC, TnI and TnT we determined that each of these polypeptides can be divided into at least two domains. One domain is responsible for the regulatory properties of the protein. Its interaction with the other components of the system change upon calcium binding to TnC. A second domain present in each of these proteins is responsible for the stable association of the complex to the actin filament. The interactions among this second set of domains is not influenced by calcium binding to TnC. The structural interactions are: 1) interactions between the C-domain of TnC with the N-domain of TnI; 2) interactions of the N-domain of TnI with the C-terminal domain of TnT and 3) interactions between the N-domain of TnT (T1) and actin/tropomyosin.