Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 695
Filter
1.
Molecules ; 29(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38930828

ABSTRACT

The development of new compounds to treat Chagas disease is imperative due to the adverse effects of current drugs and their low efficacy in the chronic phase. This study aims to investigate nitroisoxazole derivatives that produce oxidative stress while modifying the compounds' lipophilicity, affecting their ability to fight trypanosomes. The results indicate that these compounds are more effective against the epimastigote form of T. cruzi, with a 52 ± 4% trypanocidal effect for compound 9. However, they are less effective against the trypomastigote form, with a 15 ± 3% trypanocidal effect. Additionally, compound 11 interacts with a higher number of amino acid residues within the active site of the enzyme cruzipain. Furthermore, it was also found that the presence of a nitro group allows for the generation of free radicals; likewise, the large size of the compound enables increased interaction with aminoacidic residues in the active site of cruzipain, contributing to trypanocidal activity. This activity depends on the size and lipophilicity of the compounds. The study recommends exploring new compounds based on the nitroisoxazole skeleton, with larger substituents and lipophilicity to enhance their trypanocidal activity.


Subject(s)
Isoxazoles , Trypanocidal Agents , Trypanosoma cruzi , Trypanosoma cruzi/drug effects , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/chemical synthesis , Isoxazoles/chemistry , Isoxazoles/pharmacology , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/antagonists & inhibitors , Structure-Activity Relationship , Chagas Disease/drug therapy , Chagas Disease/parasitology , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Animals , Catalytic Domain , Molecular Structure
2.
Inorg Chem ; 63(25): 11667-11687, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38860314

ABSTRACT

Human African trypanosomiasis (HAT, sleeping sickness) and American trypanosomiasis (Chagas disease) are endemic zoonotic diseases caused by genomically related trypanosomatid protozoan parasites (Trypanosoma brucei and Trypanosoma cruzi, respectively). Just a few old drugs are available for their treatment, with most of them sharing poor safety, efficacy, and pharmacokinetic profiles. Only fexinidazole has been recently incorporated into the arsenal for the treatment of HAT. In this work, new multifunctional Ru(II) ferrocenyl compounds were rationally designed as potential agents against these pathogens by including in a single molecule 1,1'-bis(diphenylphosphino)ferrocene (dppf) and two bioactive bidentate ligands: pyridine-2-thiolato-1-oxide ligand (mpo) and polypyridyl ligands (NN). Three [Ru(mpo)(dppf)(NN)](PF6) compounds and their derivatives with chloride as a counterion were synthesized and fully characterized in solid state and solution. They showed in vitro activity on bloodstream T. brucei (EC50 = 31-160 nM) and on T. cruzi trypomastigotes (EC50 = 190-410 nM). Compounds showed the lowest EC50 values on T. brucei when compared to the whole set of metal-based compounds previously developed by us. In addition, several of the Ru compounds showed good selectivity toward the parasites, particularly against the highly proliferative bloodstream form of T. brucei. Interaction with DNA and generation of reactive oxygen species (ROS) were ruled out as potential targets and modes of action of the Ru compounds. Biochemical assays and in silico analysis led to the insight that they are able to inhibit the NADH-dependent fumarate reductase from T. cruzi. One representative hit induced a mild oxidation of low molecular weight thiols in T. brucei. The compounds were stable for at least 72 h in two different media and more lipophilic than both bioactive ligands, mpo and NN. An initial assessment of the therapeutic efficacy of one of the most potent and selective candidates, [Ru(mpo)(dppf)(bipy)]Cl, was performed using a murine infection model of acute African trypanosomiasis. This hit compound lacks acute toxicity when applied to animals in the dose/regimen described, but was unable to control parasite proliferation in vivo, probably because of its rapid clearance or low biodistribution in the extracellular fluids. Future studies should investigate the pharmacokinetics of this compound in vivo and involve further research to gain deeper insight into the mechanism of action of the compounds.


Subject(s)
Ferrous Compounds , Ruthenium , Trypanocidal Agents , Trypanosoma cruzi , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Ferrous Compounds/chemical synthesis , Trypanosoma cruzi/drug effects , Ligands , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/chemical synthesis , Animals , Ruthenium/chemistry , Ruthenium/pharmacology , Mice , Metallocenes/chemistry , Metallocenes/pharmacology , Metallocenes/chemical synthesis , Trypanosoma brucei brucei/drug effects , Parasitic Sensitivity Tests , Molecular Structure , Organometallic Compounds/pharmacology , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis
3.
Bioorg Med Chem Lett ; 109: 129825, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823730

ABSTRACT

Human African trypanosomiasis, or sleeping sickness, is a neglected tropical disease caused by Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense and is invariably fatal unless treated. Current therapies present limitations in their application, parasite resistance, or require further clinical investigation for wider use. Our work, informed by previous findings, presents novel 4-[4-(4-methylpiperazin-1-yl)phenyl]-6-arylpyrimidine derivatives with promising antitrypanosomal activity. In particular, 32 exhibits an in vitro EC50 value of 0.5 µM against Trypanosoma brucei rhodesiense, and analogues 29, 30 and 33 show antitrypanosomal activities in the <1 µM range. We have demonstrated that substituted 4-[4-(4-methylpiperazin-1-yl)phenyl]-6-arylpyrimidines present promising antitrypanosomal hit molecules with potential for further preclinical development.


Subject(s)
Pyrimidines , Trypanocidal Agents , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/chemical synthesis , Structure-Activity Relationship , Parasitic Sensitivity Tests , Molecular Structure , Trypanosoma brucei brucei/drug effects , Humans , Trypanosoma brucei rhodesiense/drug effects , Dose-Response Relationship, Drug , Trypanosomiasis, African/drug therapy
4.
Bioorg Med Chem ; 107: 117751, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38762979

ABSTRACT

In previous studies, we developed anti-trypanosome tubulin inhibitors with promising in vitro selectivity and activity against Human African Trypanosomiasis (HAT). However, for such agents, oral activity is crucial. This study focused on further optimizing these compounds to enhance their ligand efficiency, aiming to reduce bulkiness and hydrophobicity, which should improve solubility and, consequently, oral bioavailability. Using Trypanosoma brucei brucei cells as the parasite model and human normal kidney cells and mouse macrophage cells as the host model, we evaluated 30 new analogs synthesized through combinatorial chemistry. These analogs have fewer aromatic moieties and lower molecular weights than their predecessors. Several new analogs demonstrated IC50s in the low micromolar range, effectively inhibiting trypanosome cell growth without harming mammalian cells at the same concentration. We conducted a detailed structure-activity relationship (SAR) analysis and a docking study to assess the compounds' binding affinity to trypanosome tubulin homolog. The results revealed a correlation between binding energy and anti-Trypanosoma activity. Importantly, compound 7 displayed significant oral activity, effectively inhibiting trypanosome cell proliferation in mice.


Subject(s)
Trypanocidal Agents , Trypanosoma brucei brucei , Animals , Trypanosoma brucei brucei/drug effects , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Structure-Activity Relationship , Mice , Humans , Administration, Oral , Cell Proliferation/drug effects , Molecular Structure , Molecular Docking Simulation , Tubulin/metabolism , Parasitic Sensitivity Tests , Dose-Response Relationship, Drug , Tubulin Modulators/pharmacology , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Trypanosomiasis, African/drug therapy
5.
Pak J Pharm Sci ; 37(1(Special)): 173-184, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38747267

ABSTRACT

Hydrazones 1-6, azo-pyrazoles 7-9 and azo-pyrimidines 10-15 are compounds that exhibit antibacterial activity. The mode of action and structures of these derivatives have been previously confirmed as antibacterial. In this investigation, biological screening and molecular docking studies were performed for derivatives 1-15, with compounds 2, 7, 8, 14 and 15 yielding the best energy scores (from -20.7986 to -10.5302 kcal/mol). Drug-likeness and in silico ADME prediction for the most potent derivatives, 2, 7, 8, 14 and 15, were predicted (from 84.46 to 96.85%). The latter compounds showed good recorded physicochemical properties and pharmacokinetics. Compound 8 demonstrated the strongest inhibition, which was similar to the positive control (eflornithine) against Trypanosoma brucei brucei (WT), with an EC50 of 25.12 and 22.52µM, respectively. Moreover, compound 14 exhibited the best activity against Leishmania mexicana promastigotes and Leishmania major promastigotes (EC50 =46.85; 40.78µM, respectively).


Subject(s)
Molecular Docking Simulation , Pyrazoles , Pyrimidines , Trypanocidal Agents , Trypanosoma brucei brucei , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Trypanosoma brucei brucei/drug effects , Pyrazoles/pharmacology , Pyrazoles/chemistry , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/chemical synthesis , Leishmania mexicana/drug effects , Leishmania major/drug effects , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Computer Simulation , Azo Compounds/pharmacology , Azo Compounds/chemistry , Azo Compounds/chemical synthesis , Structure-Activity Relationship , Parasitic Sensitivity Tests
6.
An Acad Bras Cienc ; 96(2): e20230375, 2024.
Article in English | MEDLINE | ID: mdl-38747836

ABSTRACT

In pursuit of potential agents to treat Chagas disease and leishmaniasis, we report the design, synthesis, and identification novel naphthoquinone hydrazide-based molecular hybrids. The compounds were subjected to in vitro trypanocide and leishmanicidal activities. N'-(1,4-Dioxo-1,4-dihydronaphthalen-2-yl)-3,5-dimethoxybenzohydrazide (13) showed the best performance against Trypanosoma cruzi (IC50 1.83 µM) and Leishmania amazonensis (IC50 9.65 µM). 4-Bromo-N'-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)benzohydrazide (16) exhibited leishmanicidal activity (IC50 12.16 µM). Regarding trypanocide activity, compound 13 was low cytotoxic to LLC-MK2 cells (SI = 95.28). Furthermore, through molecular modeling studies, the cysteine proteases cruzain, rhodesain and CPB2.8 were identified as the potential biological targets.


Subject(s)
Drug Design , Hydrazines , Leishmania , Naphthoquinones , Trypanocidal Agents , Trypanosoma cruzi , Naphthoquinones/pharmacology , Naphthoquinones/chemistry , Naphthoquinones/chemical synthesis , Trypanosoma cruzi/drug effects , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Leishmania/drug effects , Hydrazines/chemistry , Hydrazines/pharmacology , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Parasitic Sensitivity Tests , Inhibitory Concentration 50 , Structure-Activity Relationship , Cysteine Endopeptidases
7.
Molecules ; 29(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731562

ABSTRACT

Leishmaniasis and Human African trypanosomiasis pose significant public health threats in resource-limited regions, accentuated by the drawbacks of the current antiprotozoal treatments and the lack of approved vaccines. Considering the demand for novel therapeutic drugs, a series of BODIPY derivatives with several functionalizations at the meso, 2 and/or 6 positions of the core were synthesized and characterized. The in vitro activity against Trypanosoma brucei and Leishmania major parasites was carried out alongside a human healthy cell line (MRC-5) to establish selectivity indices (SIs). Notably, the meso-substituted BODIPY, with 1-dimethylaminonaphthalene (1b) and anthracene moiety (1c), were the most active against L. major, displaying IC50 = 4.84 and 5.41 µM, with a 16 and 18-fold selectivity over MRC-5 cells, respectively. In contrast, the mono-formylated analogues 2b and 2c exhibited the highest toxicity (IC50 = 2.84 and 6.17 µM, respectively) and selectivity (SI = 24 and 11, respectively) against T. brucei. Further insights on the activity of these compounds were gathered from molecular docking studies. The results suggest that these BODIPYs act as competitive inhibitors targeting the NADPH/NADP+ linkage site of the pteridine reductase (PR) enzyme. Additionally, these findings unveil a range of quasi-degenerate binding complexes formed between the PRs and the investigated BODIPY derivatives. These results suggest a potential correlation between the anti-parasitic activity and the presence of multiple configurations that block the same site of the enzyme.


Subject(s)
Antiprotozoal Agents , Boron Compounds , Leishmania major , Molecular Docking Simulation , Trypanosoma brucei brucei , Boron Compounds/chemistry , Boron Compounds/pharmacology , Boron Compounds/chemical synthesis , Trypanosoma brucei brucei/drug effects , Humans , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Leishmania major/drug effects , Drug Design , Structure-Activity Relationship , Cell Line , Molecular Structure , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/chemical synthesis , Oxidoreductases
8.
ACS Infect Dis ; 10(5): 1808-1838, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38606978

ABSTRACT

Chagas disease, or American trypanosomiasis, is a neglected tropical disease which is a top priority target of the World Health Organization. The disease, endemic mainly in Latin America, is caused by the protozoan Trypanosoma cruzi and has spread around the globe due to human migration. There are multiple transmission routes, including vectorial, congenital, oral, and iatrogenic. Less than 1% of patients have access to treatment, relying on two old redox-active drugs that show poor pharmacokinetics and severe adverse effects. Hence, the priorities for the next steps of R&D include (i) the discovery of novel drugs/chemical classes, (ii) filling the pipeline with drug candidates that have new mechanisms of action, and (iii) the pressing need for more research and access to new chemical entities. In the present work, we first identified a hit (4a) with a potent anti-T. cruzi activity from a library of 3-benzylmenadiones. We then designed a synthetic strategy to build a library of 49 3-(4-monoamino)benzylmenadione derivatives via reductive amination to obtain diazacyclic benz(o)ylmenadiones. Among them, we identified by high content imaging an anti-amastigote "early lead" 11b (henceforth called cruzidione) revealing optimized pharmacokinetic properties and enhanced specificity. Studies in a yeast model revealed that a cruzidione metabolite, the 3-benzoylmenadione (cruzidione oxide), enters redox cycling with the NADH-dehydrogenase, generating reactive oxygen species, as hypothesized for the early hit (4a).


Subject(s)
Chagas Disease , Oxidation-Reduction , Trypanocidal Agents , Trypanosoma cruzi , Trypanosoma cruzi/drug effects , Chagas Disease/drug therapy , Animals , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/chemical synthesis , Humans , Mice
9.
Arch Pharm (Weinheim) ; 357(7): e2400059, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38627301

ABSTRACT

Chagas disease is a neglected tropical parasitic disease caused by the protozoan Trypanosoma cruzi. Worldwide, an estimated 8 million people are infected with T. cruzi, causing more than 10,000 deaths per year. Currently, only two drugs, nifurtimox and benznidazole (BNZ), are approved for its treatment. However, both are ineffective during the chronic phase, show toxicity, and produce serious side effects. This work aimed to obtain and evaluate novel 2-nitroimidazole-N-acylhydrazone derivatives analogous to BNZ. The design of these compounds used the two important pharmacophoric subunits of the BNZ prototype, the 2-nitroimidazole nucleus and the benzene ring, and the bioisosterism among the amide group of BNZ and N-acylhydrazone. The 27 compounds were obtained by a three-step route in 57%-98% yields. The biological results demonstrated the potential of this new class of compounds, since eight compounds were potent and selective in the in vitro assay against T. cruzi amastigotes and trypomastigotes using a drug-susceptible strain of T. cruzi (Tulahuen) (IC50 = 4.3-6.25 µM) and proved to be highly selective with low cytotoxicity on L929 cells. The type I nitroreductase (TcNTR) assay suggests that the new compounds may act as substrates for this enzyme.


Subject(s)
Hydrazones , Nitroimidazoles , Parasitic Sensitivity Tests , Trypanocidal Agents , Trypanosoma cruzi , Trypanosoma cruzi/drug effects , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Nitroimidazoles/pharmacology , Nitroimidazoles/chemistry , Nitroimidazoles/chemical synthesis , Structure-Activity Relationship , Animals , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Hydrazones/chemistry , Chagas Disease/drug therapy , Chagas Disease/parasitology , Mice , Molecular Structure , Dose-Response Relationship, Drug , Humans
10.
Bioorg Med Chem ; 105: 117736, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38677111

ABSTRACT

Leishmaniasis and Chagas disease are neglected tropical diseases caused by Trypanosomatidae parasites. Given the numerous limitations associated with current treatments, such as extended treatment duration, variable efficacy, and severe side effects, there is an urgent imperative to explore novel therapeutic options. This study details the early stages of hit-to-lead optimization for a benzenesulfonyl derivative, denoted as initial hit, against Trypanossoma cruzi (T. cruzi), Leishmania infantum (L. infantum) and Leishmania braziliensis (L. braziliensis). We investigated structure - activity relationships using a series of 26 newly designed derivatives, ultimately yielding potential lead candidates with potent low-micromolar and sub-micromolar activities against T. cruzi and Leishmania spp, respectively, and low in vitro cytotoxicity against mammalian cells. These discoveries emphasize the significant promise of this chemical class in the fight against Chagas disease and leishmaniasis.


Subject(s)
Drug Design , Leishmania infantum , Parasitic Sensitivity Tests , Trypanosoma cruzi , Trypanosoma cruzi/drug effects , Leishmania infantum/drug effects , Structure-Activity Relationship , Molecular Structure , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Dose-Response Relationship, Drug , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Humans , Animals , Sulfones/pharmacology , Sulfones/chemical synthesis , Sulfones/chemistry
11.
ChemMedChem ; 19(9): e202300667, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38326914

ABSTRACT

Nagana and Human African Trypanosomiasis (HAT), caused by (sub)species of Trypanosoma, are diseases that impede human and animal health, and economic growth in Africa. The few drugs available have drawbacks including suboptimal efficacy, adverse effects, drug resistance, and difficult routes of administration. New drugs are needed. A series of 20 novel quinolone compounds with affordable synthetic routes was made and evaluated in vitro against Trypanosoma brucei and HEK293 cells. Of the 20 compounds, 12 had sub-micromolar potencies against the parasite (EC50 values=0.051-0.57 µM), and most were non-toxic to HEK293 cells (CC50 values>5 µM). Two of the most potent compounds presented sub-micromolar activities against other trypanosome (sub)species (T. cruzi and T. b. rhodesiense). Although aqueous solubility is poor, both compounds possess good logD values (2-3), and either robust or poor microsomal stability profiles. These varying attributes will be addressed in future reports.


Subject(s)
Parasitic Sensitivity Tests , Quinolones , Trypanocidal Agents , Trypanosoma brucei brucei , Humans , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/chemical synthesis , HEK293 Cells , Trypanosoma brucei brucei/drug effects , Structure-Activity Relationship , Quinolones/chemistry , Quinolones/pharmacology , Quinolones/chemical synthesis , Molecular Structure , Hydrazines/chemistry , Hydrazines/pharmacology , Hydrazines/chemical synthesis , Trypanosoma cruzi/drug effects , Dose-Response Relationship, Drug
12.
Bioorg Med Chem ; 58: 116577, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35189560

ABSTRACT

Chagas disease (CD) is a centenarian neglected parasitosis caused by the protozoan Trypanosoma cruzi (T. cruzi). Despite the continuous efforts of many organizations and institutions, CD is still an important human health problem worldwide. A lack of a safe and affordable treatment has led drug discovery programmes to focus, for years, on the search for molecules enabling interference with enzymes that are essential for T. cruzi survival. In this work, the authors want to offer a brief overview of the different validated targets that are involved in diverse parasite pathways: glycolysis, sterol synthesis, the de novo biosynthesis of pyrimidine nucleotides, the degradative processing of peptides and proteins, oxidative stress damage and purine salvage and nucleotide synthesis and metabolism. Their structural aspects, function, active sites, etc. were studied and considered with the aim of defining molecular bases in the search for new effective treatments for CD. This review also compiles, as much as possible, all the inhibitors reported to date against these T. cruzi targets, serving as a reference for future research in this field.


Subject(s)
Chagas Disease/drug therapy , Drug Discovery , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Chagas Disease/metabolism , Humans , Molecular Structure , Oxidative Stress/drug effects , Parasitic Sensitivity Tests , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
13.
J Inorg Biochem ; 229: 111726, 2022 04.
Article in English | MEDLINE | ID: mdl-35065320

ABSTRACT

Leishmania amazonensis and L. braziliensis are the main etiological agents of the American Tegumentary Leishmaniasis (ATL). Taking into account the limited effectiveness and high toxicity of the current drug arsenal to treat ATL, novel options are urgently needed. Inspired by the fact that gold-based compounds are promising candidates for antileishmanial drugs, we studied the biological action of a systematic series of six (1)-(6) symmetric Au(I) benzyl and aryl-N-heterocyclic carbenes. All compounds were active at low micromolar concentrations with 50% effective concentrations ranging from 1.57 to 8.30 µM against Leishmania promastigotes. The mesityl derivative (3) proved to be the best candidate from this series, with a selectivity index ~13 against both species. The results suggest an effect of the steric and electronic parameters of the N-substituent in the activity. Intracellular infections were drastically reduced after 24h of (2)-(5) incubation in terms of infection rate and amastigote burden. Further investigations showed that our compounds induced significant parasites' morphological alterations and membrane permeability. Also, (3) and (6) were able to reduce the residual activity of three Leishmania recombinant cysteine proteases, known as possible targets for Au(I) complexes. Our promising results open the possibility of exploring gold complexes as leishmanicidal molecules to be further screened in in vivo models of infection.


Subject(s)
Imidazoles/pharmacology , Organogold Compounds/pharmacology , Trypanocidal Agents/pharmacology , Animals , Cell Membrane/drug effects , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/pharmacology , Female , Gold/chemistry , Imidazoles/chemical synthesis , Leishmania braziliensis/drug effects , Mice, Inbred BALB C , Molecular Structure , Organogold Compounds/chemical synthesis , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis
14.
Bioorg Med Chem Lett ; 58: 128521, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34968675

ABSTRACT

The synthesis and biological evaluation of eleven derivatives of the natural polyether ionophore monensin A (MON), modified at the C-26 position, is presented. Eight urethane and three ester derivatives were tested for their antimicrobial activity against different strains of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa. In addition, their antiparasitic activity was also evaluated with bloodstream forms of Trypanosoma brucei. The majority of the modified ionophores were active against a variety of Gram-positive bacterial strains, including methicillin-resistant S. epidermidis, and showed better antibacterial activity than the unmodified MON. The phenyl urethane derivative of MON exhibited the most promising antibacterial activity of all tested compounds, with minimal inhibitory concentration values of 0.25-0.50 µg/ml. In contrast, none of the MON derivatives displayed higher antitrypanosomal activity than the unmodified ionophore.


Subject(s)
Anti-Bacterial Agents/pharmacology , Monensin/pharmacology , Trypanocidal Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Escherichia coli/drug effects , Microbial Sensitivity Tests , Molecular Structure , Monensin/analogs & derivatives , Monensin/chemistry , Parasitic Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanosoma brucei brucei/drug effects
15.
Chem Biol Interact ; 351: 109690, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34637778

ABSTRACT

The currently available treatment options for leishmaniasis are associated with high costs, severe side effects, and high toxicity. In previous studies, thiohydantoins demonstrated some pharmacological activities and were shown to be potential hit compounds with antileishmanial properties. The present study further explored the antileishmanial effect of acetyl-thiohydantoins against Leishmania amazonensis and determined the main processes involved in parasite death. We observed that compared to thiohydantoin nuclei, acetyl-thiohydantoin treatment inhibited the proliferation of promastigotes. This treatment caused alterations in cell cycle progression and parasite size and caused morphological and ultrastructural changes. We then investigated the mechanisms involved in the death of the protozoan; there was an increase in ROS production, phosphatidylserine exposure, and plasma membrane permeabilization and a loss of mitochondrial membrane potential, resulting in an accumulation of lipid bodies and the formation of autophagic vacuoles on these parasites and confirming an apoptosis-like process. In intracellular amastigotes, selected acetyl-thiohydantoins reduced the percentage of infected macrophages and the number of amastigotes/macrophages by increasing ROS production and reducing TNF-α levels. Moreover, thiohydantoins did not induce cytotoxicity in murine macrophages (J774A.1), human monocytes (THP-1), or sheep erythrocytes. In silico and in vitro analyses showed that acetyl-thiohydantoins exerted in vitro antileishmanial effects on L. amazonensis promastigotes in apoptosis-like and amastigote forms by inducing ROS production and reducing TNF-α levels, indicating that they are good candidates for drug discovery studies in leishmaniasis treatment. Additionally, we carried out molecular docking analyses of acetyl-thiohydantoins on two important targets of Leishmania amazonensis: arginase and TNF-alpha converting enzyme. The results suggested that the acetyl groups in the N1-position of the thiohydantoin ring and the ring itself could be pharmacophoric groups due to their affinity for binding amino acid residues at the active site of both enzymes via hydrogen bond interactions. These results demonstrate that thiohydantoins are promising hit compounds that could be used as antileishmanial agents.


Subject(s)
Thiohydantoins/pharmacology , Trypanocidal Agents/pharmacology , ADAM17 Protein/metabolism , Animals , Arginase/metabolism , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Leishmania/drug effects , Leishmania/enzymology , Mice , Mitochondria/drug effects , Molecular Docking Simulation , Protozoan Proteins/metabolism , Sheep , Thiohydantoins/chemical synthesis , Thiohydantoins/metabolism , Thiohydantoins/toxicity , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/metabolism , Trypanocidal Agents/toxicity , Tumor Necrosis Factor-alpha/metabolism
16.
Chem Biol Interact ; 351: 109758, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34826397

ABSTRACT

We report the synthesis and in vitro evaluation of 1,3-disubstituted-4-hydroxy-6-methylpyridin-2(1H)-one derivatives against Leishmania donovani. Amongst the compound library synthesized, molecules 3d, 3f, 3h, 3i, 3l, and 3m demonstrated substantial dose-dependent killing of the promastigotes. Their IC50 values range from 55.0 to 77.0 µg/ml, with 3m (IC50 55.75 µg/ml) being equipotent with amphotericin B (IC50 50.0 µg/ml, used as standard). The most active compound 3m, is metabolically stable in rat liver microsomes. Furthermore, the molecules are highly specific against leishmania as shown by their weak antibacterial and antifungal activity. In vitro cytotoxicity studies show the compounds lack any cytotoxicity. Furthermore, molecular modeling studies show plausibility of binding to Leishmania donovani topoisomerase 1 (LdTop1). Structure activity relationships reveal bulky substitutions on the pyridone nitrogen are well-tolerated, and such compounds have better binding affinity. Intramolecular hydrogen bonds confer some rigidity to the molecules, rendering a degree of planarity akin to topotecan. Taken together, we emphasis the merits of molecules possessing the 1,3-disubstituted-4-hydroxy-6-methylpyridin-2(1H)-one skeleton as potential antileishmanial agents warranting further investigation.


Subject(s)
Pyridones/pharmacology , Trypanocidal Agents/pharmacology , Animals , DNA Topoisomerases, Type I/metabolism , Drug Stability , HEK293 Cells , Humans , Leishmania donovani/drug effects , Leishmania donovani/enzymology , Microsomes, Liver/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Parasitic Sensitivity Tests , Protein Binding , Pyridones/chemical synthesis , Pyridones/metabolism , Rats , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/metabolism , Topoisomerase I Inhibitors/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/metabolism
17.
Bioorg Chem ; 119: 105492, 2022 02.
Article in English | MEDLINE | ID: mdl-34838333

ABSTRACT

Chemical scaffolds of natural products have historically been sources of inspiration for the development of novel molecules of biological relevance, including hit and lead compounds. To identify new compounds active against Trypanosoma cruzi, we designed and synthesized 46 synthetic derivatives based on the structure of two classes of natural products: tetrahydrofuran lignans (Series 1) and oxazole alkaloids (Series 2). Compounds were screened in vitro using a cellular model of T. cruzi infection. In the first series of compounds, 11 derivatives of hit compound 5 (EC50 = 1.1 µM) were found to be active; the most potent (7, 8, and 13) had EC50 values of 5.1-34.2 µM. In the second series, 17 analogs were found active at 50 µM; the most potent compounds (47, 49, 59, and 63) showed EC50 values of 24.2-49.1 µM. Active compounds were assessed for selectivity, hemocompatibility, synergistic potential, effects on mitochondrial membrane potential, and inhibitory effect on trypanothione reductase. All active compounds showed low toxicity against uninfected THP-1 cells and human erythrocytes. The potency of compounds 5 and 8 increased steadily in combination with benznidazole, indicating a synergistic effect. Furthermore, compounds 8, 47, 49, 59, and 63 inhibited parasitic mitochondria in a dose-dependent manner. Although increased reactive oxygen species levels might lead to mitochondrial effects, the results indicate that the mechanism of action of the compounds is not dependent on trypanothione reductase inhibition. In silico calculation of chemical descriptors and principal component analysis showed that the active compounds share common chemical features with other trypanocidal molecules and are predicted to have a good ADMET profile. Overall, the results suggest that the compounds are important candidates to be further studied for their potential against T. cruzi.


Subject(s)
Biological Products/pharmacology , Drug Design , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Alkaloids/chemical synthesis , Alkaloids/chemistry , Alkaloids/pharmacology , Biological Products/chemical synthesis , Biological Products/chemistry , Dose-Response Relationship, Drug , Furans/chemical synthesis , Furans/chemistry , Furans/pharmacology , Humans , Lignans/chemical synthesis , Lignans/chemistry , Lignans/pharmacology , Molecular Structure , Oxazoles/chemical synthesis , Oxazoles/chemistry , Oxazoles/pharmacology , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
18.
ChemMedChem ; 17(4): e202100664, 2022 02 16.
Article in English | MEDLINE | ID: mdl-34927802

ABSTRACT

There is an urgent need for the development of new treatments against trypanosomatid parasites; the causative agents of some of the most debilitating diseases in the developing world. This work targets an interesting 6-5-6-6 fused carboline scaffold, accessing a range of substituted derivatives through stereospecific intramolecular Pictet-Spengler condensation. Modification of the cyclisation conditions allowed retention of the carbamate protecting group and gave insight into the reaction mechanism. Compounds' bioactivities were measured against T. brucei, T. cruzi, L. major and HeLa cells. We have identified promising pan-trypanocidal lead compounds based on the core scaffold, and highlight key SAR trends which will be useful for the future development of these compounds as potent trypanocidal agents.


Subject(s)
Leishmania major/drug effects , Piperazines/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma cruzi/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , HeLa Cells , Humans , Molecular Structure , Parasitic Sensitivity Tests , Piperazines/chemical synthesis , Piperazines/chemistry , Stereoisomerism , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
19.
Eur J Med Chem ; 227: 113913, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34656043

ABSTRACT

Human African trypanosomiasis is a vector-borne tropical disease of African origin. Presently, due to human migration and climate change, the disease might present global health and economic burdens as current chemotherapy of trypanosomiasis remains a challenge due to limited existing drugs, which are of poor efficacy, cause severe adverse events and are very costly. Recently, Beteck and co-workers identified a small library of 1,3,6-substituted non-fluoroquinolones that showed moderate to weak trypanocidal activity without cytotoxic effects. The current study further explored SARs of the quinolone scaffold in search for more potent trypanocidal agents. Fifteen novel quinolone derivatives bearing a heteroarylidene moiety at positon-6 and varied chemical entities at positions -1 and -3 of the quinolone scaffold were synthesized and evaluated in vitro for antitrypanosomal activity. The compounds exhibit exceptionally good antitrypanosomal activity with IC50 values in the low-micromolar to sub-micromolar range (0.08-15.26 µM), with compound 6d being the most active having an IC50 value of 80 nM against T.b. brucei. Compounds in this study generally have molecular weight less than 600Da, ClogP value of 2-4 and a BBB score of 1-5, hence they could be potentially effective against both stages of trypanosomiasis.


Subject(s)
Quinolones/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Animals , Chlorocebus aethiops , Dose-Response Relationship, Drug , Molecular Structure , Parasitic Sensitivity Tests , Quinolones/chemical synthesis , Quinolones/chemistry , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Vero Cells
20.
Chem Pharm Bull (Tokyo) ; 69(12): 1195-1199, 2021.
Article in English | MEDLINE | ID: mdl-34853286

ABSTRACT

A series of quinone derivatives with a variety of side chains were synthesized. These synthetic quinone compounds were evaluated for in vitro antitrypanosomal activity against trypomastigotes and amastigotes of Trypanosoma cruzi, the causative agent of Chagas disease. Measurement of solubility of quinones and their ability to permeate cell membranes were assessed to address their possible use as oral drugs. Some synthesized compounds exhibited potent antitrypanosomal activity. However, most compounds with a promising activity showed poor solubility that did not seem suitable for oral usage. Meanwhile, compound 5a, an N-tert-butoxycarbonylpiperidine derivative, exhibited good antitrypanosomal activity, ability to permeate membranes, and good solubility.


Subject(s)
Benzoquinones/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Benzoquinones/chemical synthesis , Benzoquinones/chemistry , Molecular Structure , Parasitic Sensitivity Tests , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...