Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.120
Filter
1.
Sci Rep ; 14(1): 16843, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039119

ABSTRACT

Trypanosoma evansi infection has started to become a wide spread phenomena around the camel-rearing areas of North Africa and the Middle East. The disease caused by trypanosomes is locally known as "Surra" and it can seriously impact not only the health of domestic animals but the local economy as well. After taking over the management of a farm containing approximately 700 camels, it was found that a large number were suffering from trypanosome infection and it was of the utmost importance to find the source of this infection. An extensive dive into the records and observations were initially made to identify the infected population. Under closer inspection it was found that the infection was limited mostly to female individuals that had undergone extended reproductive analysis or treatment. Blood samples were taken from each of the individuals for buffy coat test and blood smears. Among the total number of tested camels (n = 590), almost 40% were infected with trypanosomes. The number and percentage of infection correlate with the number of fertility and pregnancy treatments that the camels had undergone. The most severely infected group, underwent between 17 and 20 instances of treatment or tests, had an infection rate of almost 90%. The devastating effect of trypanosomiasis on camel pregnancy and birth were also verified with 61% of all abortions and 82% of all neonatal deaths coming from trypanosome infected individuals. These results clearly demonstrate how damaging iatrogenic infections of T. evansi can be and how simply they could have been prevented.


Subject(s)
Camelus , Trypanosoma , Trypanosomiasis , Animals , Camelus/parasitology , Trypanosomiasis/transmission , Trypanosomiasis/veterinary , Trypanosomiasis/parasitology , Trypanosomiasis/epidemiology , Trypanosoma/pathogenicity , Female , Pregnancy , Iatrogenic Disease/epidemiology , Male
2.
Trop Anim Health Prod ; 56(7): 223, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060802

ABSTRACT

Trypanosomosis due to Trypanosoma evansi (surra) is one of the most important diseases with a significant impact on camel health and production. Trypanosoma-induced immunosuppression mechanisms, which are key factors of disease pathogenesis, have been characterized in several animal species. The present study investigated, therefore, the impact of trypanosomosis on the immunophenotype of blood leukocytes in camels. For this, the relative and absolute values of blood leukocyte populations, their expression pattern of cell surface molecules, and the numbers of the main lymphocyte subsets were compared between healthy camels and camels with clinical symptoms of chronic surra and serological evidence of exposure to Trypanosoma infection. Leukocytes were separated from the blood of healthy and diseased camels, labeled with fluorochrome-conjugated antibodies, and analyzed by flow cytometry. Compared to healthy camels, the leukogram of diseased camels was characterized by a slightly increased leukocyte count with moderate neutrophilia and monocytosis indicating a chronic inflammatory pattern that may reflect tissue injury due to the long-lasting inflammation. In addition, the analysis of lymphocyte subsets revealed a lower number and percentage of B cells in diseased than healthy camels. In vitro incubation of camel mononuclear cells with fluorochrome-labeled T. evansi revealed a higher capacity of camel B cells than T cells to bind the parasite in vitro. Furthermore, cell viability analysis of camel PBMC incubated in vitro with T. evansi whole parasites but not the purified antigens resulted in Trypanosoma-induced apoptosis and necrosis of camel B cells. Here we demonstrate an association between trypanosomosis in camels and reduced numbers of blood B cells. In vitro analysis supports a high potential of T. evansi to bind to camel B cells and induce their elimination by apoptosis and necrosis.


Subject(s)
B-Lymphocytes , Camelus , Flow Cytometry , Trypanosoma , Trypanosomiasis , Animals , Camelus/parasitology , Trypanosoma/isolation & purification , Trypanosomiasis/veterinary , Trypanosomiasis/parasitology , Trypanosomiasis/blood , Trypanosomiasis/immunology , B-Lymphocytes/immunology , Flow Cytometry/veterinary , Male , Female , Cell Death , Apoptosis
3.
Rev Bras Parasitol Vet ; 33(2): e001324, 2024.
Article in English | MEDLINE | ID: mdl-38958293

ABSTRACT

Trypanosoma evansi is reportedly divided into two genotypes: types A and B. The type B is uncommon and reportedly limited to Africa: Kenya Sudan, and Ethiopia. In contrast, type A has been widely reported in Africa, South America, and Asia. However, Trypanosoma evansi type non-A/B has never been reported. Therefore, this study aims to determine the species and genotype of the Trypanozoon subgenus using a robust identification algorithm. Forty-three trypanosoma isolates from Indonesia were identified as Trypanosoma evansi using a molecular identification algorithm. Further identification showed that 39 isolates were type A and 4 isolates were possibly non-A/B types. The PML, AMN-SB1, and STENT3 isolates were likely non-A/B type Trypanosoma evansi isolated from buffalo, while the PDE isolates were isolated from cattle. Cladistic analysis revealed that Indonesian Trypanosoma evansi was divided into seven clusters based on the gRNA-kDNA minicircle gene. Clusters 6 and 7 are each divided into two sub-clusters. The areas with the highest genetic diversity are the provinces of Banten, Central Java (included Yogyakarta), and East Nusa Tenggara. The Central Java (including Yogyakarta) and East Nusa Tenggara provinces, each have four sub-clusters, while Banten has three.


Subject(s)
Buffaloes , Trypanosoma , Animals , Buffaloes/parasitology , Cattle/parasitology , Trypanosoma/genetics , Trypanosoma/classification , Trypanosoma/isolation & purification , Indonesia , Genotype , Phylogeny , Trypanosomiasis/veterinary , Trypanosomiasis/parasitology , Trypanosomiasis/epidemiology
4.
Parasitol Res ; 123(7): 280, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037445

ABSTRACT

Bats are hosts for diverse Trypanosoma species, including trypanosomes of the Trypanosoma cruzi clade. This clade is believed to have originated in Africa and diversified in many lineages worldwide. In several geographical areas, including Cameroon, no data about trypanosomes of bats has been collected yet. In this study, we investigated the diversity and phylogenetic relationships of trypanosomes of different bat species in the central region of Cameroon. Trypanosome infections were detected in six bat species of four bat families, namely Hipposideridae, Pteropodidae, Rhinolophidae, and Vespertilionidae, with an overall prevalence of 29% and the highest infection rate in hipposiderid bat species. All trypanosomes were identified as belonging to the Trypanosoma livingstonei species group with one clade that might represent an additional subspecies of T. livingstonei. Understanding the prevalence, distribution, and host range of parasites of this group contributes to our overall knowledge of the diversity and host specificity of trypanosome species that phylogenetically group at the base of the T. cruzi clade.


Subject(s)
Chiroptera , Phylogeny , Trypanosoma , Trypanosomiasis , Cameroon/epidemiology , Chiroptera/parasitology , Animals , Trypanosoma/genetics , Trypanosoma/classification , Trypanosoma/isolation & purification , Trypanosomiasis/veterinary , Trypanosomiasis/parasitology , Trypanosomiasis/epidemiology , DNA, Protozoan/genetics , Sequence Analysis, DNA , Prevalence , Molecular Sequence Data , Genetic Variation , Cluster Analysis
5.
Vet Ital ; 60(2)2024 07 31.
Article in English | MEDLINE | ID: mdl-38898790

ABSTRACT

Trypanosomosis is a well-known sub-Saharan disease. The human form was discovered in The Gambia over 100 years ago. Canine trypanosomosis in The Gambia has never been mentioned in the scientific literature, let alone the involvement of veranus species in its transmission to dogs. The disease's most important vector is the tsetse fly. This fly is abundant in The Gambia, and its infamy for transmitting the disease has been well established. A lot of research efforts have been put into understanding the critical role of this pest in the transmission of the protozoan and the disease in livestock. This report confirms the presence of the disease in domestic dogs in The Gambia, and three canine cases with varied clinical signs, different hematological pictures accompanying the disease, and different effective treatment approaches are reported. Early detection can prevent severe illness and help patients to recover better. This report enhances our understanding on canine trypanosomosis, transmission of the pathogen, and strategies for managing the disease. This report is significant, as it is the first mention of monitor lizards in the 'transmission of trypanosome parasites to dogs during the fighting between them.


Subject(s)
Dog Diseases , Lizards , Dogs , Animals , Dog Diseases/parasitology , Dog Diseases/transmission , Male , Lizards/parasitology , Female , Gambia , Trypanosomiasis/veterinary , Trypanosomiasis/transmission , Trypanosomiasis/diagnosis , Insect Vectors/parasitology
6.
An Acad Bras Cienc ; 96(3): e20230629, 2024.
Article in English | MEDLINE | ID: mdl-38922254

ABSTRACT

The current study proposes to investigate the diversity and phylogeny of trypanosomes parasitizing wild birds from the Brazilian Atlantic Forest. Cytological examination was carried out by light microscopy of blood smears and positive birds were selected for amplification of the 18S rDNA sequence through PCR. The resulting amplicons were subjected to purification, cloning, and sequencing analysis. Phylogenetic reconstruction was conducted, including all avian trypanosomes representative's lineages. A total of ten bird samples from species of Turdus flavipes (N=1/12), T. albicollis (N=1/8), Tachyphonus coronatus (N=6/121), Thamnophilus caerulescens (N=1/22) and Synallaxis spixi (N=1/8) were positive for Trypanosoma spp. In the six specimens of T. coronatus, five distinct lineages of Trypanosoma spp. 18S-rRNA were observed in ninety sequences obtained, and using the strategy of cloning independent PCR, it was possible to observe that two of them were related to T. avium (JB01/JB02), and three were closed related to T. bennetti (JB03/ JB04/JB05). Addionaly, all fifteen sequences obtained from T. caerulescens/ S. spixi/T. flavipes/T. albicollis were identical. The present research is the first study to access molecular diversity and polyparasitism by avian trypanosomes in Brazil. The current research exhibits the wide genetic variability in avian trypanosomes and its non-specific relationship with its avian hosts.


Subject(s)
Birds , Phylogeny , Polymerase Chain Reaction , Trypanosoma , Animals , Brazil , Trypanosoma/classification , Trypanosoma/genetics , Trypanosoma/isolation & purification , Birds/parasitology , Rainforest , RNA, Ribosomal, 18S/genetics , DNA, Protozoan/genetics , Trypanosomiasis/veterinary , Trypanosomiasis/parasitology , Bird Diseases/parasitology , Genetic Variation , DNA, Ribosomal/genetics , Sequence Analysis, DNA
7.
Vet Parasitol ; 330: 110236, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38889668

ABSTRACT

Four strains (SB-PR, SB-RS, SB-RD, and SB-RM) of Trypanosoma evansi (T. evansi) were used in this study. SB-PR is known to be trypanocide-sensitive, while the others are trypanocide-resistant to suramin, diminazene diaceturate, and melarsomine hydrochloride, respectively. SB-RS, SB-RD, and SB-RM are derivatives of a single field isolate of SB-PR. Trypanocide resistance will not only increase costs and decrease production efficiency but will also affect effective treatment strategies. Therefore, studies on this topic are important to avoid inefficient production and ineffective treatment. This paper aims to presents a comparative molecular characterization of the trypanocide-resistant strains compared to the parent population. Comparative molecular characterization of these strains based on a protein profile analysis performed with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), DNA fingerprinting of random amplified polymorphic DNA (RAPD), and the molecular characterization of expression-site-associated 6 (ESAG6), variant surface glycoprotein (VSG), and T. evansi adenosine transporter-1 (TevAT1) gene sequences. The results show three derived strains (SB-RS, SB-RD, and SB-RM) exhibit different banding patterns than SB-PR. According to the RAPD results, SB-RS and SB-RD are different strains with DNA fingerprint similarities of about 77.8 %, while the DNA fingerprint of SB-RM has a similarity of 44.4 % to SB-RS and SB-RD. No differences in VSG were found among the four strains; however, ESAG6 showed differences in both nucleotide and amino acid sequences, as well as in its secondary and 3D structure. In conclusion, all molecular analyses of the ESAG6 gene showed that SB-PR, SB-RS, SB-RD, and SB-RM are different strains. Furthermore, SB-PR, SB-RS, SB-RD, and SB-RM did not exhibit the TevAT1 gene, so the resistance mechanism was determined to be unrelated to that gene.


Subject(s)
Drug Resistance , Trypanocidal Agents , Trypanosoma , Trypanosoma/drug effects , Trypanosoma/genetics , Trypanocidal Agents/pharmacology , Drug Resistance/genetics , Animals , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Random Amplified Polymorphic DNA Technique , Diminazene/analogs & derivatives , Diminazene/pharmacology , Trypanosomiasis/parasitology , Trypanosomiasis/veterinary , Trypanosomiasis/drug therapy
8.
J Vector Borne Dis ; 61(2): 259-266, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38922661

ABSTRACT

BACKGROUND OBJECTIVES: Vector-borne haemoprotozoan diseases comprise diverse group of single celled organism transmitted by haematophagus invertebrates. The current study was aimed at the identification of major haemoprotozoan (Babesia, Theileria and Trypanosoma) in dromedary camel of North Gujarat region in India using microscopy and Polymerase Chain Reaction (PCR). METHODS: A total of 234 blood samples were screened by the microscopic and molecular detection assays. Molecular prevalence studies of Theileria, Trypanosoma spp and Babesia was undertaken using 18s ribosomal DNA, RoTat 1.2 and SS rRNA gene respectively. The data relating to microscopic and molecular prevalence along with associated risk factors were analysed by statistical methods. RESULTS: The overall prevalence of hamoprotozoan disease based on microscopic and molecular investigation was 23.50%. The sensitivity and specificity (95% Confidence Interval) of PCR assay was 100% in comparison to microscopy (45.45 % sensitive and 100 % specific). The kappa coefficient between PCR and microscopy indicated good level of agreement with a value of 0.704 and SE of 0.159. INTERPRETATION CONCLUSION: Despite holding much significance to the animal sector, little work has been undertaken in regional parts of India regarding camel parasites. The present study offers first preliminary research data investigating haemoprotozoan disease using parasitological and molecular methods in camels in the region.


Subject(s)
Babesia , Camelus , Microscopy , Polymerase Chain Reaction , RNA, Ribosomal, 18S , Theileria , Theileriasis , Trypanosoma , Animals , Camelus/parasitology , India/epidemiology , Trypanosoma/genetics , Trypanosoma/isolation & purification , Trypanosoma/classification , Theileria/genetics , Theileria/isolation & purification , Theileria/classification , Babesia/genetics , Babesia/isolation & purification , Babesia/classification , Theileriasis/epidemiology , Theileriasis/parasitology , RNA, Ribosomal, 18S/genetics , DNA, Protozoan/genetics , Babesiosis/epidemiology , Babesiosis/parasitology , Prevalence , Male , Sensitivity and Specificity , Trypanosomiasis/veterinary , Trypanosomiasis/epidemiology , Trypanosomiasis/parasitology , Female , Vector Borne Diseases/epidemiology , Vector Borne Diseases/parasitology , DNA, Ribosomal/genetics
9.
Parasit Vectors ; 17(1): 214, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730303

ABSTRACT

BACKGROUND: Triatomines (kissing bugs) are natural vectors of trypanosomes, which are single-celled parasitic protozoans, such as Trypanosoma cruzi, T. conorhini and T. rangeli. The understanding of the transmission cycle of T. conorhini and Triatoma rubrofasciata in China is not fully known. METHODS: The parasites in the faeces and intestinal contents of the Tr. rubrofasciata were collected, and morphology indices were measured under a microscope to determine the species. DNA was extracted from the samples, and fragments of 18S rRNA, heat shock protein 70 (HSP70) and glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) were amplified and sequenced. The obtained sequences were then identified using the BLAST search engine, followed by several phylogenetic analyses. Finally, laboratory infections were conducted to test whether Tr. rubrofasciata transmit the parasite to rats (or mice) through bites. Moreover, 135 Tr. rubrofasciata samples were collected from the Guangxi region and were used in assays to investigate the prevalence of trypanosome infection. RESULTS: Trypanosoma sp. were found in the faeces and intestinal contents of Tr. rubrofasciata, which were collected in the Guangxi region of southern China and mostly exhibited characteristics typical of epimastigotes, such as the presence of a nucleus, a free flagellum and a kinetoplast. The body length ranged from 6.3 to 33.9 µm, the flagellum length ranged from 8.7 to 29.8 µm, the nucleus index was 0.6 and the kinetoplast length was -4.6. BLAST analysis revealed that the 18S rRNA, HSP70 and gGAPDH sequences of Trypanosoma sp. exhibited the highest degree of similarity with those of T. conorhini (99.7%, 99.0% and 99.0%, respectively) and formed a well-supported clade close to T. conorhini and T. vespertilionis but were distinct from those of T. rangeli and T. cruzi. Laboratory experiments revealed that both rats and mice developed low parasitaemia after inoculation with Trypanosoma sp. and laboratory-fed Tr. rubrofasciata became infected after feeding on trypanosome-positive rats and mice. However, the infected Tr. rubrofasciata did not transmit Trypanosoma sp. to their offspring. Moreover, our investigation revealed a high prevalence of Trypanosoma sp. infection in Tr. rubrofasciata, with up to 36.3% of specimens tested in the field being infected. CONCLUSIONS: Our study is the first to provide a solid record of T. conorhini from Tr. rubrofasciata in China with morphological and molecular evidence. This Chinese T. conorhini is unlikely to have spread through transovarial transmission in Tr. rubrofasciata, but instead, it is more likely that the parasite is transmitted between Tr. rubrofasciata and mice (or rats). However, there was a high prevalence of T. conorhini in the Tr. rubrofasciata from our collection sites and numerous human cases of Tr. rubrofasciata bites were recorded. Moreover, whether these T. conorhini strains are pathogenic to humans has not been investigated.


Subject(s)
Insect Vectors , Phylogeny , RNA, Ribosomal, 18S , Triatoma , Trypanosoma , Animals , China/epidemiology , Rats , Mice , Trypanosoma/genetics , Trypanosoma/isolation & purification , Trypanosoma/classification , Triatoma/parasitology , RNA, Ribosomal, 18S/genetics , Insect Vectors/parasitology , Trypanosomiasis/parasitology , Trypanosomiasis/transmission , Trypanosomiasis/veterinary , Trypanosomiasis/epidemiology , Feces/parasitology , HSP70 Heat-Shock Proteins/genetics , DNA, Protozoan/genetics , Female , Male
10.
Parasitol Res ; 123(4): 174, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561560

ABSTRACT

Several species of horse flies (Diptera: Tabanidae) are known as vectors of Trypanosoma (Megatrypanum) theileri and T. theileri-like trypanosomes; these host-parasite relationships were established based on the developmental stages of these parasites discovered in the hindgut of horse flies. T. theileri and T. theileri-like trypanosomes have been detected in cattle and wild deer in Japan; however, the vector horse fly species remains unidentified. Therefore, in this study, we aimed to identify the potential horse fly species serving as vectors of T. theileri in Japan. A total of 176 horse flies were collected between June to September 2020 and 2021 in Tokachi, Hokkaido, Japan. The T. theileri infection in the captured horse flies was determined by PCR and microscopic analyses of their midgut and hindgut. Additionally, the trypanosome, microscopically detected in a horse fly, was molecularly characterized and phylogenetically analyzed using 18S rRNA and partial cathepsin L-like protein gene (CATL) sequence of the trypanosome. The microscopy and PCR analyses revealed 0.57% and 35.8% prevalence of T. theileri in horse flies, respectively. Epimastigote stages of T. theileri, adhered to the hindgut epithelial cells of Tabanus chrysurus via flagella or actively moving in the lumen of the gut, were detected. Phylogenetic analysis revealed the connection of isolated trypanosomes with T. theileri in the TthI clade. These results suggest that Ta. chrysurus is a potential vector of T. theileri.


Subject(s)
Deer , Diptera , Trypanosoma , Trypanosomiasis , Animals , Cattle , Trypanosomiasis/epidemiology , Trypanosomiasis/veterinary , Trypanosomiasis/parasitology , Phylogeny , Japan , Deer/parasitology , Diptera/parasitology
11.
Res Vet Sci ; 171: 105227, 2024 May.
Article in English | MEDLINE | ID: mdl-38513458

ABSTRACT

African animal trypanosomosis is a parasitic disease that causes significant economic losses in livestock due to anaemia, loss of condition, emaciation, and mortality. It is a key impediment to increased cattle output and productivity in Ethiopia. Cross-sectional entomological and parasitological studies were performed in the Gambella Region state of southwestern Ethiopia to estimate the prevalence of bovine trypanosomosis, apparent fly density, and potential risk factors. Blood samples were taken from 546 cattle for the parasitological study and analyzed using the buffy coat technique and stained with Giemsa. A total of 189 biconical (89) and NGU (100) traps were deployed in the specified districts for the entomological survey. The overall prevalence of trypanosomosis at the animal level was 5.5% (95% CI: 3.86-7.75). Trypanosoma vivax (50.0%), T. congolense (30.0%), T. brucei (20.0%), and no mixed trypanosome species were found. The prevalence of trypanosomosis was significantly (p < 0.05) affected by altitude, body score conditions, age, mean packed cell volume (PCV), and peasant associations, while sex and coat color had no significant effect. According to the entomological survey results, a total of 2303 flies were captured and identified as tsetse (Glossina pallidipes (5.3%)) and G. fuscipes fuscipes (3.3%) and other biting flies (Tabanus (60.1%) and Stomoxys (31.3%)). In the current study, the overall apparent density was 4.1 flies/trap/day. This study shows that trypanosomosis remains a significant cattle disease in the Gambella regional state even during the dry season. Thus, the findings support the necessity to improve vector and parasite control measures in the area.


Subject(s)
Cattle Diseases , Trypanosomiasis, African , Trypanosomiasis, Bovine , Trypanosomiasis , Tsetse Flies , Cattle , Animals , Cross-Sectional Studies , Ethiopia/epidemiology , Tsetse Flies/parasitology , Insect Vectors , Trypanosomiasis, Bovine/epidemiology , Trypanosomiasis, Bovine/parasitology , Trypanosomiasis/veterinary , Prevalence , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/veterinary , Cattle Diseases/epidemiology
12.
Vector Borne Zoonotic Dis ; 24(4): 219-225, 2024 04.
Article in English | MEDLINE | ID: mdl-38416509

ABSTRACT

Background: Trypanosoma (T.) evansi infection is endemic in dromedary camels (Camelus dromedaries) of southern Algeria. Materials and Methods: In order to assess the presence of T. evansi in other domestic animals living together with dromedary camels, a study was conducted in the wilayate of Béchar, El Bayadh, Ouargla and Tamanrasset, between 2015 and 2017. Authorisation to conduct the survey was obtained from the Direction des Services Vétérinaires (DSV, Ministry of Agriculture, Rural Development and Fisheries). A total of 190 animals were sampled, including 42 cattle (Bos taurus), 11 dogs (Canis familiaris), 44 horses (Equus caballus), 3 donkeys (Equus asinus) and 1 mule, 49 goats (Capra hircus) and 40 sheep (Ovis aries). These animals were examined by parasitological (Giemsa stained thin smear, GST), serological (card agglutination test for trypanosomosis (CATT/T. evansi), enzyme-linked immunosorbent assay/Variant Surface Glycoprotein/Rode Trypanozoon antigen type 1.2 [ELISA/VSG RoTat 1.2], immune trypanolysis [TL]) and molecular tests (T. evansi type A specific RoTat 1.2 PCR). Results and Conclusions: The CATT/T. evansi was positive in 10/42 cattle, 0/11 dogs, 2/48 equids, 27/49 goats and 15/40 sheep. On the other hand, 20/38 cattle, 1/9 dogs, 21/42 equids, 17/44 goats and 31/39 sheep were positive in ELISA/VSG RoTat 1.2. However, no single animal was positive in TL. In addition, the T. evansi parasite could not be demonstrated by either GST or RoTat 1.2 PCR in any of the examined animals. This may suggest cross-reactions of CATT/T. evansi and ELISA/VSG RoTat 1.2 with other pathogenic or commensal trypanosome species such as T. vivax or other parasites. Based on these data, in particular taking into account the high specificity of the TL for T. evansi type A, this study does not support the hypothesis that T. evansi circulates in the studied domestic animal species and that they would act as reservoirs for the parasite that causes trypanosomosis in dromedary camels.


Subject(s)
Cattle Diseases , Dog Diseases , Goat Diseases , Horse Diseases , Kinetoplastida , Sheep Diseases , Trypanosoma , Trypanosomatina , Trypanosomiasis , Cattle , Animals , Horses , Dogs , Sheep , Animals, Domestic , Camelus , Algeria/epidemiology , Trypanosomiasis/epidemiology , Trypanosomiasis/veterinary , Trypanosomiasis/parasitology , Goats , Horse Diseases/epidemiology
13.
Vet Res Commun ; 48(3): 1891-1898, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38369611

ABSTRACT

Trypanosomosis is a tropical disease caused by various protozoan haemoparasites, which affects wild and domestic animals, the latter ones related to worldwide livestock production systems. Species such as Trypanosoma vivax and Trypanosoma evansi have been described using serological and molecular tools in several countries from South and Central America. However, Ecuador presents a relevant knowledge gap in the associated general epidemiology and risk factors of the disease. Therefore, the objective of this study was to determine the seroprevalence of trypanosomosis in cattle from different regions of Ecuador. 745 serum samples from 7 Coastal and 3 Amazon provinces were screened for IgG anti-Trypanosoma spp. antibodies, using an in-house indirect ELISA. The seropositivity was explored and associated with several variables such as sex, age, breed, region, management, and province, using statistical tools. The general seroprevalence of trypanosomosis was 19.1% (95% CI: 16.30-22.1%). The Amazonian provinces of Sucumbíos and Napo and the Coastal province of Esmeraldas presented the highest seroprevalence values of 36.7% (95% CI: 27.67-46.47%), 23.64% (95% CI: 16.06-32.68%) and 25% (95% CI: 15.99-35.94%), respectively. Statistical significance was found for the region, province, and management variables, indicating as relevant risk factors the extensive management and Amazon location of the cattle analyzed. Specific actions should be taken to identify the exact species on reservoirs and susceptible hosts, evaluate the implication of farm management and cattle movement as risk factors, and implement surveillance and treatment plans for affected herds.


Subject(s)
Trypanosoma , Animals , Cattle , Seroepidemiologic Studies , Ecuador/epidemiology , Risk Factors , Female , Male , Trypanosoma/isolation & purification , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Cattle Diseases/blood , Trypanosomiasis, Bovine/epidemiology , Trypanosomiasis, Bovine/blood , Trypanosomiasis/veterinary , Trypanosomiasis/epidemiology , Trypanosomiasis/parasitology , Antibodies, Protozoan/blood , Enzyme-Linked Immunosorbent Assay/veterinary
14.
Acta Trop ; 252: 107148, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354996

ABSTRACT

Trypanosoma evansi is a flagellate protozoan that infects a wide range of hosts, especially horses. Clinically, the infection is characterized by rapid weight loss, anemia and mobility disorders. This study evaluated the efficacy of treatment gallium maltolate (GaM) in rats infected with T. evansi in the acute and chronic phases of the disease and its influence on the enzyme and blood parameters. 48 animals (Rattus norvegicus) were divided into 8 groups (A-H) of 6 animals each, namely: A: (negative control) uninfected; B: acutely infected positive control; C: chronically infected positive control; D: acutely infected, treated with GaM for 7 days post infection (p.i.); E: acutely infected treated with GaM for 3 days before infection (b.i) and 7 days p.i.; F: chronically infected, treated with GaM for 7 days p.i.; G: chronically infected, treated with GaM for 3 days b.i. and 7 days p.i.; and H: uninfected treated with GaM for 10 days. Acute infected animals (B, D and E) had a progressive increase in parasitemia and were died or euthanized before completing treatment days (5th days p.i.) as they had high parasitemia (over 100 field trypanosomes in the blood smear). Thus, it can be concluded that GaM was not effective against an acute infection. In untreated chronically infected animals (C) the parasitemia also increased progressively and they were euthanized on the 7th day p.i.. The chronically infected and treated animals (F and G) showed low parasitemia and after treatment became negative, showing no trypanosomes in the bloodstream until the 50th day of the experiment. Thus, we conclude that GaM was effective against chronic infections. In uninfected and treated animals (H) hematological, biochemical and enzymatic parameters had no significant changes when compared to the negative control group (A) demonstrating the low toxicity of GaM.


Subject(s)
Anemia , Organometallic Compounds , Pyrones , Trypanosoma , Trypanosomiasis , Mice , Rats , Horses , Animals , Trypanosomiasis/drug therapy , Trypanosomiasis/veterinary , Parasitemia/drug therapy
15.
Acta Parasitol ; 69(1): 465-470, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38190015

ABSTRACT

PURPOSE: This study was carried out to assess the prevalence of Trypanosoma evansi infection in naturally diseased Dromedary camels in Dammam, Eastern region of Saudi Arabia. The detection of Trypanosoma evansi was performed using the parasitological, serological, and molecular diagnosis and a comparison between such methods were analyzed. In addition, evaluation of therapeutic efficacy of selected antitrypanosomal drugs, cymelarsan and quinapyrmine (aquin-1.5), was trialed for treatment of diagnosed infected cases. METHODS: A total 350 randomly selected camels were evaluated using thin blood smear (TBS), RoTat1.2 PCR and CATT/T. evansi techniques. RESULTS: The total prevalence was 6.9%, 7.7%, and 32.8% by TBS, RoTat1.2 PCR and CATT/T. evansi techniques, respectively. Although PCR detect T. evansi in more samples than TBS, the agreement was good (K = 0.9). Among the CATT/T. evansi results, PCR detect T. evansi in 12 and 15 CATT positive and negative camels, respectively, with low agreement (Kappa = 0.1). The use of cymelarsan and quinapyramine sulfate in the treatment of naturally infected cases demonstrated a very efficient therapeutic response. CONCLUSION: It was found that 1. Comparing the CATT/T. evansi and PCR results, the positivity of CATT was higher than PCR detection, while the agreement was poor (K = 0.1). 2. Cymelarsan and aquin-1.5 proved to be effective in the treatment of naturally infected camels, but cymelarsan presented with higher effectiveness (100%) than aquin-treated camels (83.3%). a 3. The use of cymelarsan and CATT is recommended for disease treatment and control.


Subject(s)
Camelus , Quinolinium Compounds , Triazines , Trypanocidal Agents , Trypanosoma , Trypanosomiasis , Animals , Camelus/parasitology , Trypanosoma/drug effects , Trypanosoma/genetics , Trypanosomiasis/veterinary , Trypanosomiasis/epidemiology , Trypanosomiasis/drug therapy , Trypanosomiasis/parasitology , Saudi Arabia/epidemiology , Trypanocidal Agents/therapeutic use , Trypanocidal Agents/pharmacology , Prevalence , Polymerase Chain Reaction/veterinary , Arsenicals/therapeutic use , Male
16.
J Vet Med Sci ; 86(1): 35-38, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38008465

ABSTRACT

Goat production is an important source of livelihood and food. Goats may serve as reservoir of surra affecting livestock production. Here, forty-two free-roaming goats from Cavite, Philippines were screened using two primer sets, Trypanosoma brucei minisatellite chromosome for initial detection and the internal transcribed spacer 1 (ITS-1) to determine phylogeny. Initial PCR detection showed that 19/42 (45%) goats were positive, much higher than the rate previously reported in goats from Cebu (34%). The infectivity rate was higher in male (56%) than in female (42%) and the rate was higher in young ≤1 year old (100%) than in adult >1 year old (43%). Phylogenetic analysis of the ITS-1 sequences between T. evansi goat samples and other isolates indicate potential interspecies transmission.


Subject(s)
Goat Diseases , Trypanosoma , Trypanosomiasis , Female , Male , Animals , Goats , Philippines/epidemiology , Phylogeny , DNA, Protozoan/genetics , Trypanosoma/genetics , Trypanosomiasis/epidemiology , Trypanosomiasis/veterinary , Goat Diseases/epidemiology , Goat Diseases/diagnosis
17.
Eur J Pharm Sci ; 192: 106668, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38065268

ABSTRACT

African trypanosomiasis is a significant vector-borne disease of humans and animals in the tsetse fly belt of Africa, particularly affecting production animals such as cattle, and thus, hindering food security. Trypanosoma congolense (T. congolense), the causative agent of nagana, is livestock's most virulent trypanosome species. There is currently no vaccine against trypanosomiasis; its treatment relies solely on chemotherapy. However, pathogenic resistance has been established against trypanocidal agents in clinical use. This underscores the need to develop new therapeutics to curb trypanosomiasis. Many nitroheterocyclic drugs or compounds, including nitrofurantoin, possess antiparasitic activities in addition to their clinical use as antibiotics. The current study evaluated the in vitro trypanocidal potency and in vivo treatment efficacy of previously synthesized antileishmanial active oligomeric ethylene glycol derivatives of nitrofurantoin. The trypanocidal potency of analogues 2a-o varied among the trypanosome species; however, T. congolense strain IL3000 was more susceptible to these drug candidates than the other human and animal trypanosomes. The arylated analogues 2k (IC50 0.04 µM; SI >6365) and 2l (IC50 0.06 µM; SI 4133) featuring 4-chlorophenoxy and 4-nitrophenoxy moieties, respectively, were revealed as the most promising antitrypanosomal agents of all analogues against T. congolense strain IL3000 trypomastigotes with nanomolar activities. In a preliminary in vivo study involving T. congolense strain IL3000 infected BALB/c mice, the oral administration of 100 mg/kg/day of 2k caused prolonged survival up to 18 days post-infection relative to the infected but untreated control mice which survived 9 days post-infection. However, no cure was achieved due to its poor solubility in the in vivo testing medium, assumably leading to low oral bioavailability. These results confirm the importance of the physicochemical properties lipophilicity and water solubility in attaining not only in vitro trypanocidal potency but also in vivo treatment efficacy. Future work will focus on the chemical optimization of 2k through the investigation of analogues containing solubilizing groups at certain positions on the core structure to improve solubility in the in vivo testing medium which, in the current investigation, is the biggest stumbling block in successfully treating either animal or human Trypanosoma infections.


Subject(s)
Trypanosomiasis, African , Trypanosomiasis , Humans , Animals , Cattle , Mice , Nitrofurantoin , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/veterinary , Trypanosomiasis/drug therapy , Trypanosomiasis/veterinary , Treatment Outcome , Ethylene Glycols/therapeutic use
18.
Parasitol Res ; 123(1): 54, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38102492

ABSTRACT

Uganda's diverse small mammalian fauna thrives due to its rich habitat diversity, which hosts a wide range of blood parasites, including trypanosomes, particularly the subgenus Herpetosoma typical for rodent hosts. We screened a total of 711 small mammals from various habitats for trypanosomes, with 253 microscopically examined blood smears and 458 tissue samples tested by nested PCR of the 18S rRNA gene. Of 51 rodent and 12 shrew species tested, microscopic screening reaches 7% overall prevalence (with four rodent species positive out of 15 and none of the shrew species out of four), while nested PCR indicated a prevalence of 13% (17 rodent and five shrew species positive out of 49 and 10, respectively). We identified 27 genotypes representing 11 trypanosome species, of which the majority (24 genotypes/9 species) belong to the Herpetosoma subgenus. Among these, we detected 15 new genotypes and two putative new species, labeled AF24 (found in Lophuromys woosnami) and AF25 (in Graphiurus murinus). Our finding of three new genotypes of the previously detected species AF01 belonging to the subgenus Ornithotrypanum in two Grammomys species and Oenomys hypoxanthus clearly indicates the consistent occurrence of this avian trypanosome in African small mammals. Additionally, in Aethomys hindei, we detected the putative new species of the subgenus Aneza. Within the T. lewisi subclade, we detected eleven genotypes, including six new; however, only the genotype AF05b from Mus and Rattus represents the invasive T. lewisi. Our study has improved our understanding of trypanosome diversity in African small mammals. The detection of T. lewisi in native small mammals expands the range of host species and highlighting the need for a broader approach to the epidemiology of T. lewisi.


Subject(s)
Trypanosoma lewisi , Trypanosoma , Trypanosomiasis , Rats , Animals , Trypanosoma lewisi/genetics , Shrews , Uganda/epidemiology , Trypanosoma/genetics , Trypanosomiasis/epidemiology , Trypanosomiasis/veterinary , Trypanosomiasis/parasitology , Murinae/parasitology , Phylogeny
19.
Rev Bras Parasitol Vet ; 33(1): e013723, 2023.
Article in English | MEDLINE | ID: mdl-38126573

ABSTRACT

Bovine trypanosomosis, caused by Trypanosoma vivax, is a disease that originated in Africa and currently affects cattle in several South American countries, including almost all Brazilian states. Despite the reports on T. vivax infection in southern Brazil, data on its circulation status is currently unavailable. In this study, we aimed to detect anti-Trypanosoma spp. IgG antibodies in cattle from Rio Grande do Sul and suggest areas with T. vivax transmission risk. A total of 691 serum samples from cattle in the intermediate regions of Rio Grande do Sul were analyzed using indirect immunofluorescence assay (IFA). The overall seroprevalence of anti-Trypanosoma antibodies in cattle was 24.6% (170/691). The detection rate ranged from 0-37.3%, with a high prevalence in the intermediate regions of Ijuí (37.3%), Uruguaiana (30.7%), and Passo Fundo (28.9%). Thus, these regions were suggested as possible bovine trypanosomosis risk areas due to the high seroprevalence. This is the first serological study to determine Trypanosoma spp. infection status in cattle from Rio Grande do Sul, providing data on the epidemiology of trypanosomosis in the state.


Subject(s)
Cattle Diseases , Trypanosoma , Trypanosomiasis, Bovine , Trypanosomiasis , Cattle , Animals , Brazil/epidemiology , Seroepidemiologic Studies , Trypanosomiasis/epidemiology , Trypanosomiasis/veterinary , Trypanosomiasis, Bovine/diagnosis , Trypanosomiasis, Bovine/epidemiology , Trypanosomiasis, Bovine/parasitology , Trypanosoma vivax , Cattle Diseases/diagnosis , Cattle Diseases/epidemiology
20.
Res Vet Sci ; 165: 105055, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37862863

ABSTRACT

Parasitic blood diseases (theileriosis, babesiosis, anaplasmosis, and trypanosomiasis) are common in regions where the distributions of the hosts, parasites, and vectors are convergent. They endanger animal production, and a few are also harmful to public health. The acute phase reaction (APR) is a complex, non-specific reaction that occurs in various events, including surgical trauma, infection, stress, inflammation, and neoplasia. To understand pathogenesis, we must study APR effects and acute phase proteins (APPs) alterations in naturally occurring and experimental infections. The elevation of haptoglobin (Hp), Serum amyloid A (SAA), and fibrinogen concentrations was markedly significant in bovine and ovine theileriosis. Hp, SAA, ceruloplasmin, and fibrinogen concentrations in anaplasmosis were dramatically elevated. A significant increase in SAA was observed in bovine babesiosis, while ovine babesiosis showed a significant rise in sialic acid levels. In cases of trypanosomiasis caused by T. vivax, there have been reports of elevated levels of Hp, complement C3, and antitrypsin. Improving our understanding of APR could result in more effective methods for diagnosis, treatment, control, and eradication of diseases. The article provides an overview of APPs alterations and other inflammation-related parameters (some cytokines, adenosine deaminase, and sialic acids) in parasitic blood diseases of ruminants.


Subject(s)
Anaplasmosis , Babesiosis , Cattle Diseases , Hematologic Diseases , Parasites , Sheep Diseases , Theileriasis , Trypanosomiasis , Animals , Sheep , Cattle , Acute-Phase Reaction/veterinary , Babesiosis/parasitology , Serum Amyloid A Protein/metabolism , Ruminants , Haptoglobins/metabolism , Fibrinogen , Trypanosomiasis/veterinary , Hematologic Diseases/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL