Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 29(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38398508

ABSTRACT

Tryptophan synthase (TRPS) is a complex enzyme responsible for tryptophan biosynthesis. It occurs in bacteria, plants, and fungi as an αßßα heterotetramer. Although encoded by independent genes in bacteria and plants, in fungi, TRPS is generated by a single gene that concurrently expresses the α and ß entities, which are linked by an elongated peculiar segment. We conducted 1 µs all-atom molecular dynamics simulations on Hemileia vastatrix TRPS to address two questions: (i) the role of the linker segment and (ii) the comparative mode of action. Since there is not an experimental structure, we started our simulations with homology modeling. Based on the results, it seems that TRPS makes use of an already-existing tunnel that can spontaneously move the indole moiety from the α catalytic pocket to the ß one. Such behavior was completely disrupted in the simulation without the linker. In light of these results and the αß dimer's low stability, the full-working TRPS single genes might be the result of a particular evolution. Considering the significant losses that Hemileia vastatrix causes to coffee plantations, our next course of action will be to use the TRPS to look for substances that can block tryptophan production and therefore control the disease.


Subject(s)
Basidiomycota , Molecular Dynamics Simulation , Tryptophan Synthase , Tryptophan Synthase/chemistry , Tryptophan Synthase/genetics , Tryptophan Synthase/metabolism , Tryptophan , Fungi/metabolism
2.
FEMS Microbiol Ecol ; 92(6): fiw077, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27090758

ABSTRACT

During synthetic mutualistic interactions between the microalga Chlorella sorokiniana and the plant growth-promoting bacterium (PGPB) Azospirillum brasilense, mutual exchange of resources involved in producing and releasing the phytohormone indole-3-acetic acid (IAA) by the bacterium, using tryptophan and thiamine released by the microalga, were measured. Although increased activities of tryptophan synthase in C. sorokiniana and indole pyruvate decarboxylase (IPDC) in A. brasilense were observed, we could not detect tryptophan or IAA in the culture medium when both organisms were co-immobilized. This indicates that no extra tryptophan or IAA is produced, apart from the quantities required to sustain the interaction. Over-expression of the ipdC gene occurs at different incubation times: after 48 h, when A. brasilense was immobilized alone and grown in exudates of C. sorokiniana and at 96 h, when A. brasilense was co-immobilized with the microalga. When A. brasilense was cultured in exudates of C. sorokiniana, increased expression of the ipdC gene, corresponding increase in activity of IPDC encoded by the ipdC gene, and increase in IAA production were measured during the first 48 h of incubation. IAA production and release by A. brasilense was found only when tryptophan and thiamine were present in a synthetic growth medium (SGM). The absence of thiamine in SGM yielded no detectable IAA. In summary, this study demonstrates that C. sorokiniana can exude sufficient tryptophan and thiamine to allow IAA production by a PGPB during their interaction. Thiamine is essential for IAA production by A. brasilense and these three metabolites are part of a communication between the two microorganisms.


Subject(s)
Azospirillum brasilense/metabolism , Chlorella/metabolism , Indoleacetic Acids/metabolism , Symbiosis/physiology , Thiamine/metabolism , Tryptophan/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Culture Media/metabolism , Plant Development , Tryptophan Synthase/genetics , Tryptophan Synthase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL