Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 686
Filter
2.
BMC Genomics ; 25(1): 762, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107682

ABSTRACT

Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis), represents a significant problem for the agriculture industry as well as posing a risk for human health. Current diagnostic tests for bTB target the cell-mediated immune (CMI) response to infection with M. bovis, primarily through screening of animals with the tuberculin skin test. Epigenetic modifications have been shown to alter the course of the immune response and differentially methylated regions (DMRs) might also influence the outcome of the skin test in cattle. Whole Genome Bisulphite Sequencing (WGBS) was used to profile DNA methylation levels from peripheral blood of a group of cattle identified as test positive for M. bovis (positive for the single intradermal comparative tuberculin test (SICTT) and/or the interferon-γ release assay compared to a test negative control group [n = 8/group, total of 16 WGBS libraries]. Although global methylation profiles were similar for both groups across the genome, 223 DMRs and 159 Differentially Promoter Methylated Genes (DPMGs) were identified between groups with an excess of hypermethylated sites in SICTT positive cattle (threshold > 15% differential methylation). Genes located within these DMRs included the Interleukin 1 receptor (IL1R1) and MHC related genes (BOLA and BOLA-DQB). KEGG pathway analysis identified enrichment of genes involved in Calcium and MAPK signalling, as well as metabolism pathways. Analysis of DMRs in a subset of SICTT negative cattle that were IFN-γ positive showed differential methylation of genes including Interleukin 10 Receptor, alpha (IL10RA), Interleukin 17 F (IL17F) and host defence peptides (DEFB and BDEF109). This study has identified a number of immune gene loci at which differential methylation is associated with SICTT test results and the degree of methylation could influence effective host immune responses.


Subject(s)
DNA Methylation , Tuberculin Test , Tuberculosis, Bovine , Cattle , Animals , Tuberculosis, Bovine/genetics , Tuberculosis, Bovine/diagnosis , Tuberculosis, Bovine/immunology , Tuberculin Test/veterinary , Mycobacterium bovis/immunology , Epigenesis, Genetic , Promoter Regions, Genetic
4.
Vet Immunol Immunopathol ; 273: 110788, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838485

ABSTRACT

Bovine tuberculosis (bTB) represents a threat to livestock production. Mycobacterium bovis is the main causative agent of bTB and a pathogen capable of infecting wildlife and humans. Eradication programs based on surveillance in slaughterhouses with mandatory testing and culling of reactive cattle have failed to eradicate bTB in many regions worldwide. Therefore, developing effective tools to control this disease is crucial. Using a computational tool, we identified proteins in the M. bovis proteome that carry predictive binding peptides to BoLADRB3.2 and selected Mb0309, Mb1090, Mb1810 and Mb3810 from all the identified proteins. The expression of these proteins in a baculovirus-insect cell expression system was successful only for Mb0309 and Mb3810. In parallel, we expressed the ESAT-6 family proteins EsxG and EsxH in this system. Among the recombinant proteins, Mb0309 and EsxG exhibited moderate performance in distinguishing between cattle that test positive and negative to bTB using the official test, the intradermal tuberculin test (IDT), when used to stimulate interferon-gamma production in blood samples from cattle. However, when combined as a protein cocktail, Mb0309 and EsxG were reactive in 50 % of positive cattle. Further assessments in cattle that evade the IDT (false negative) and cattle infected with Mycobacterium avium paratuberculosis are necessary to determine the potential utility of this cocktail as an additional tool to assist the accurate diagnosis of bTB.


Subject(s)
Antigens, Bacterial , Mycobacterium bovis , Tuberculosis, Bovine , Mycobacterium bovis/immunology , Animals , Cattle , Antigens, Bacterial/immunology , Tuberculosis, Bovine/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Tuberculin Test/veterinary , Recombinant Proteins/immunology , Recombinant Proteins/genetics
5.
Vet Rec ; 194(9): 359, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38700184

ABSTRACT

Neil J Watt and Keith Cutler argue that Defra's aim of achieving officially bovine tuberculosis (bTB)-free status for England by 2038 is unlikely to be met without a drastic change to testing and policy.


Subject(s)
Health Policy , Tuberculosis, Bovine , Tuberculosis, Bovine/prevention & control , Animals , Cattle , England , Disease Eradication , United Kingdom , Tuberculin Test/veterinary
7.
PLoS One ; 19(4): e0301609, 2024.
Article in English | MEDLINE | ID: mdl-38687765

ABSTRACT

Bovine tuberculosis is usually diagnosed using tuberculin skin tests or at post-mortem. Recently, we have developed a serological test for bovine tuberculosis in cattle which shows a high degree of accuracy using serum samples. Here, we have assessed the performance of the test using individual bovine milk samples. The diagnostic specificity estimate using the high sensitivity setting of the test was 99.7% (95% CI: 99.2-99.9). This estimate was not altered significantly by tuberculin boosting. The relative sensitivity estimates of the test using the high sensitivity setting in milk samples from comparative skin test positive animals was 90.8% (95% CI: 87.1-93.6) with boosting. In animals with lesions, the relative sensitivity was 96.0% (95% CI: 89.6-98.7). Analysis of paired serum and milk samples from skin test positive animals showed correlation coefficients ranging from 0.756-0.955 for individual antigens used in the test. Kappa analysis indicated almost perfect agreement between serum and milk results, while McNemar marginal homogeneity analysis showed no statistically significant differences between the two media. The positive and negative likelihood ratio were 347.8 (95% CI: 112.3-1077.5) and 0.092 (95% CI: 0.07-0.13) respectively for boosted samples from skin test positive animals. The results show that the test has high sensitivity and specificity in individual milk samples and thus milk samples could be used for the diagnosis of bovine tuberculosis.


Subject(s)
Milk , Sensitivity and Specificity , Tuberculosis, Bovine , Animals , Cattle , Milk/immunology , Tuberculosis, Bovine/diagnosis , Tuberculosis, Bovine/immunology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Tuberculin Test/veterinary , Tuberculin Test/methods , Mycobacterium bovis/immunology , Female , Antigens, Bacterial/immunology , Antigens, Bacterial/analysis
8.
Sci Rep ; 14(1): 5155, 2024 03 02.
Article in English | MEDLINE | ID: mdl-38431678

ABSTRACT

Although several brands of tuberculin purified protein derivatives (PPDs) are available for diagnosing bovine tuberculosis (bTB), comparative studies to determine their diagnostic accuracy are infrequent. In Ecuador we compared two different PPD brands for bTB diagnosis using skin testing and measuring skin thickness increase. Additionally, we evaluated four PPD brands, including those used for skin testing, in the Bovine Tuberculosis Interferon Gamma Test (IFN-γ test) measuring IFN-γ induction in whole blood. The study included 17 naturally tuberculosis-infected PPD and IFN-γ test positive bovines. Both the field and laboratory results showed significant differences in classifying the 17 bovines as bTB positive or negative. We hypothesize that several factors, such as the genetic background of the cows, sensitization to environmental mycobacteria, M. bovis strains involved in the bTB infection, and the manufacturing procedures of the PPDs, could have influenced the immune reaction toward the different tuberculin PPD brands. Our study emphasizes the necessity for comparative studies aimed at determining the diagnostic accuracy of PPD brands for bTB diagnosis as well as the development of standardized methods for PPD production and potency determination.


Subject(s)
Mycobacterium bovis , Tuberculosis, Bovine , Tuberculosis , Animals , Female , Cattle , Tuberculosis, Bovine/diagnosis , Tuberculin , Tuberculin Test/veterinary
10.
Prev Vet Med ; 224: 106129, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325115

ABSTRACT

In Ireland, the interferon-gamma (IFN-γ) assay is routinely used as an ancillary test interpreted in parallel with the single intradermal comparative tuberculin test (SICTT) to maximize the detection of bovine tuberculosis (bTB) infected animals. Up until 2018, a positive test result was recorded in the IFN-γ ELISA assay following whole blood stimulation with purified protein derivative (PPD)-bovine (B), PPD-avian (A) and nil sample (N), using the interpretation criteria, B-N > 50 optical density units (OD), B > 100 and B-A > 0. Following a review of available data, the threshold of the B-A component changed to B-A > 80. As predicting the impact of changing the cut-off thresholds for the IFN-γ test de novo is challenging, the aims of this study were to follow animals that initially tested negative using the new IFN-γ assay interpretation criteria and investigate their future risk of disclosure with bTB, with a focus on animals that otherwise would have been removed when using the older interpretation criteria (0 < B-A ≤ 80). Enrolled animals (n = 28,669 cattle from 527 herds) were followed up for two years (2019-2021), or to point of bTB detection or death. At the end of follow-up, 1151 (4.0%) of enrolled animals were bTB cases. The majority of these cases were diagnosed using SICTT (80.5%). The cumulative number of positive animals that would have been removed if the old cut-off (0 < B-A ≤ 80) was used amounted to 1680 cattle (5.9% of the enrolled cohort). Of these, 127 (7.5%) were diagnosed with bTB during follow-up. In contrast, 1024 of the 1151 cattle which subsequently tested positive during the study period following a negative IFN-γ test would not have been identified with the old or new IFN-γ cut-off criteria. Survival analysis showed that animals that would have been removed under the old interpretation criteria were at increased risk of a positive diagnosis with bTB during follow-up compared to other test negative animals. A newly developed risk prediction model (using a Cox proportional hazard model) showed that age, animal number of SICTT tests, number of inconclusive SICTT tests, B-A (IFN-γ assay), B-N (IFN-γ assay), animals from store herds and the percentage of the rest of the herd that were positive during the breakdown were statistically significantly associated with bTB detection. However, inclusion of the IFN-γ OD variables did not show added value in terms of prediction performance of the model.


Subject(s)
Mycobacterium bovis , Tuberculosis, Bovine , Animals , Cattle , Interferon-gamma , Ireland/epidemiology , Mycobacterium bovis/physiology , Tuberculin , Tuberculin Test/veterinary , Tuberculosis, Bovine/diagnosis , Tuberculosis, Bovine/epidemiology
11.
BMC Vet Res ; 20(1): 65, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395846

ABSTRACT

BACKGROUND: Bovine tuberculosis (bTB) is a chronic disease that results from infection with any member of the Mycobacterium tuberculosis complex. Infected animals are typically diagnosed with tuberculin-based intradermal skin tests according to World Organization of Animal Health which are presently in use. However, tuberculin is not suitable for use in BCG-vaccinated animals due to a high rate of false-positive reactions. Peptide-based defined skin test (DST) antigens have been identified using antigens (ESAT-6, CFP-10 and Rv3615c) which are absent from BCG, but their performance in buffaloes remains unknown. To assess the comparative performance of DST with the tuberculin-based single intradermal test (SIT) and the single intradermal comparative cervical test (SICCT), we screened 543 female buffaloes from 49 organized dairy farms in two districts of Haryana state in India. RESULTS: We found that 37 (7%), 4 (1%) and 18 (3%) buffaloes were reactors with the SIT, SICCT and DST tests, respectively. Of the 37 SIT reactors, four were positive with SICCT and 12 were positive with the DST. The results show that none of the animals tested positive with all three tests, and 6 DST positive animals were SIT negative. Together, a total of 43 animals were reactors with SIT, DST, or both, and the two assays showed moderate agreement (Cohen's Kappa 0.41; 95% Confidence Interval (CI): 0.23, 0.59). In contrast, only slight agreement (Cohen's Kappa 0.18; 95% CI: 0.02, 0.34) was observed between SIT and SICCT. Using a Bayesian latent class model, we estimated test specificities of 96.5% (95% CI, 92-99%), 99.7% (95% CI: 98-100%) and 99.0% (95% CI: 97-100%) for SIT, SICCT and DST, respectively, but considerably lower sensitivities of 58% (95% CI: 35-87%), 9% (95% CI: 3-21%), and 34% (95% CI: 18-55%) albeit with broad and overlapping credible intervals. CONCLUSION: Taken together, our investigation suggests that DST has a test specificity comparable with SICCT, and sensitivity intermediate between SIT and SICCT for the identification of buffaloes suspected of tuberculosis. Our study highlights an urgent need for future well-powered trials with detailed necropsy, with immunological and microbiological profiling of reactor and non-reactor animals to better define the underlying factors for the large observed discrepancies in assay performance, particularly between SIT and SICCT.


Subject(s)
Bison , Cattle Diseases , Mycobacterium bovis , Tuberculosis, Bovine , Female , Animals , Cattle , Tuberculosis, Bovine/diagnosis , Buffaloes , Tuberculin , Bayes Theorem , BCG Vaccine , Tuberculin Test/veterinary , Sensitivity and Specificity
12.
Vet Microbiol ; 290: 110009, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280303

ABSTRACT

Mycobacterium microti is a member of the Mycobacterium tuberculosis complex that seldom causes disease in livestock and humans. This study evaluated the effects on immunodiagnosis and the pathological findings in goats after experimental exposure by different routes and doses to M. microti. In a first experiment goats were challenged orally (PO, n = 7) or intranasally (IN, n = 7) with 104 CFU. In a second experiment, the endobronchial route was assessed, with a low dose of 102 CFU (EB-LD, n = 7) and a high dose of 105 CFU (EB-HD, n = 7) as well as the subcutaneous route (SC, n = 5). Temperature, body weight, clinical signs and immunological responses were monitored. Pathological evaluation was carried out and samples were processed for mycobacterial detection. RESULTS: demonstrated the induction of a subclinical pulmonary infection in all the EB-HD challenged animals. Infection was also confirmed in one animal of the SC group, but not in the EB-LD, PO or IN groups. Two animals belonging to the EB-HD and SC groups, respectively, showed positive results to the single intradermal tuberculin test, and another two animals of the EB-HD and EB-LD groups showed doubtful (inconclusive) results, indicating that M. microti can induce mild responses to tuberculin skin testing. No positive results were observed when defined antigens absent in M. microti (ESAT-6 and CPF-10) were used. Our results indicate that animals exposed to M. microti can yield positive results to the skin tests currently performed in livestock tuberculosis eradication campaigns and reinforce the need to use specific antigens in antemortem tests to avoid interference with M. bovis/M. caprae diagnosis.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Humans , Animals , Tuberculin Test/veterinary , Tuberculin , Goats , Tuberculosis, Pulmonary/veterinary
13.
Sci Rep ; 14(1): 2600, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38297023

ABSTRACT

Bovine tuberculosis is an infectious disease of global significance that remains endemic in many countries. Mycobacterium bovis infection in cattle is characterized by a cell-mediated immune response (CMI) that precedes humoral responses, however the timing and trajectories of CMI and antibody responses determined by newer generation assays remain undefined. Here we used defined-antigen interferon-gamma release assays (IGRA) and an eleven-antigen multiplex ELISA (Enferplex TB test) alongside traditional tuberculin-based IGRA and IDEXX M. bovis antibody tests to assess immune trajectories following experimental M. bovis infection of cattle. The results show CMI responses developed as early as two-weeks post-infection, with all infected cattle testing positive three weeks post-infection. Interestingly, 6 of 8 infected animals were serologically positive with the Enferplex TB assay as early as 4 weeks post-infection. As expected, application of the tuberculin skin test enhanced subsequent serological reactivity. Infrequent M. bovis faecal shedding was observed but was uncorrelated with observed immune trajectories. Together, the results show that early antibody responses to M. bovis infection are detectable in some individuals and highlight an urgent need to identify biomarkers that better predict infection outcomes, particularly for application in low-and-middle income countries where test-and-slaughter based control methods are largely unfeasible.


Subject(s)
Mycobacterium bovis , Tuberculosis, Bovine , Humans , Animals , Cattle , Interferon-gamma , Tuberculosis, Bovine/diagnosis , Tuberculin Test/veterinary , Immunity, Cellular
14.
Res Vet Sci ; 168: 105159, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266351

ABSTRACT

Bovine tuberculosis (bTB) constitutes a global challenge for public and animal health with still some deficiencies regarding its diagnosis. This study aimed to estimate the accuracy of the single intradermal tuberculin test (SIT) and post-mortem inspection for different diagnostic objectives following WOAH guidelines. Tissue samples from 59 microbiological culture/PCR-positive and 58 microbiological culture/PCR-negative cattle were evaluated. The diagnostic sensitivity and specificity, the positive and negative probability indices as well as the positive and negative predictive values (PPV and NPV) of each technique were estimated for different pretest probabilities. The SIT with strict interpretation demonstrated moderate precision in confirming the absence of infection in populations historically free of bTB, with a 12.1% rate of false positives, but also detecting positive animals in the early stage of the eradication programs, with a 13.6% rate of false negatives. The diagnostic performance for ruling out bTB was notably high (NPV > 90%) in animals with a pre-test probability (PTP) below 42%. Post-mortem inspection constituted an interesting alternative tool to confirm suspected and positive cases for SIT, particularly in areas with bTB prevalence exceeding 19%, where implementing SIT and eradication measures may be impractical. In these areas, the likelihood that animals with tuberculosis-like lesions are affected by the disease surpasses 90%. Similarly, in herds with a PTP below 25%, the absence of bTB could be confidently ruled out with over 90% certainty. These findings highlight the effectiveness of SIT and post-mortem inspection as valuable techniques for current eradication programs and controlling bTB in high-prevalence areas where molecular techniques may not be feasible.


Subject(s)
Cattle Diseases , Mycobacterium bovis , Tuberculosis, Bovine , Cattle , Animals , Tuberculosis, Bovine/epidemiology , Tuberculin Test/veterinary , Tuberculin Test/methods , Tuberculin , Intradermal Tests/veterinary , Risk Factors
15.
Vet Res Commun ; 48(1): 603-606, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37804385

ABSTRACT

Bovine tuberculosis is usually diagnosed using tuberculin skin and interferon gamma tests. However, it is clear these tests miss infected animals due to poor sensitivity. The Enferplex Bovine TB antibody test has been validated by the World Organisation for Animal Health as fit for purpose in diagnosing bovine TB. A recent paper by Madden and colleagues (Veterinary Research Communications published online 17 August 2023) presented data on the future risk of Enferplex test antibody positive animals developing bovine TB. We argue in this communication that this does not make sense. Also, the study design did not include measuring antibodies at the point of censure of the animals and hence the survival analysis performed was meaningless. Most significantly, the study misses the point that skin and interferon gamma tests fail to detect a significant proportion of infected animals identified by the Enferplex test.


Subject(s)
Cattle Diseases , Tuberculosis, Bovine , Animals , Cattle , Tuberculosis, Bovine/diagnosis , Tuberculin Test/veterinary , Interferon-gamma , Sensitivity and Specificity
16.
Vet Res Commun ; 48(1): 555-561, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37589815

ABSTRACT

The Single Intradermal Comparative Tuberculin Test (SICTT) and the interferon-gamma (IFN-γ) assay are the approved diagnostic tests for bovine tuberculosis (bTB) in Ireland. The aim of this pilot study was to explore if there was any added diagnostic benefit from applying the Enferplex bTB test (an antibody test) in severe bTB herd breakdowns after the removal of cattle that had tested positive to the SICTT and the IFN-γ test. In addition to the normal bTB testing and management protocols, the animals in these herds that tested negative to SICTT and the IFN-γ test were followed forward for a period of two years. All animals were tested by Enferplex at enrolment. The time to subsequent bTB detection (diagnosed with SICTT/IFN-γ tests or detection of visible lesions at routine slaughter) for animals that tested positive or negative to the Enferplex bTB test at the start of the study was compared using Kaplan-Meier survival curves and Cox based survival models. Of the 484 enrolled animals (from 11 herds), 171 (35.3%) and 151 (31.1%) initially tested positive in the Enferplex assay under the high sensitivity and high specificity interpretation settings respectively. The results of the survival analysis showed that there was no difference in the survival time to a positive diagnosis with bTB during the follow-up period between animals initially classified as positive and negative by the Enferplex test. Further research is warranted to explore the potential benefit of using the Enferplex test in other scenarios.


Subject(s)
Cattle Diseases , Tuberculosis, Bovine , Cattle , Animals , Tuberculosis, Bovine/diagnosis , Pilot Projects , Tuberculin Test/veterinary , Tuberculin Test/methods , Intradermal Tests/veterinary , Interferon-gamma
17.
Vet Rec ; 193(8): 311, 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37861135
18.
Vet Immunol Immunopathol ; 264: 110659, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37801841

ABSTRACT

Tuberculin skin test (TST) is the standard method for screening of bovine tuberculosis (bTB). However, gamma interferon blood test has been introduced in the bTB control program as an ancillary testing with TST in many countries of the world. The objective of this study was to recommend this screening test as an ancillary testing with TST for field application in Bangladesh. In this study 577 cattle of different age, sex and breeds from twenty nine (29) cattle herds were examined to determine skin response against bTB through single intradermal comparative tuberculin test (SICTT) that comprised of positive (n = 81), inconclusive (n = 44) and negative (n = 452) animals. Of which 74 animals that included positive (n = 63), inconclusive (n = 8) and negative (n = 3) animals were taken under this study. Blood samples were collected in heparinized tube and stimulated overnight with bovine and avian purified protein derivatives (PPDs) for the secretion of gamma interferon, and measured via sandwich ELISA. Cohen's kappa statistics was performed for the evaluation of agreement between the two tests. The agreement obtained between two tests was fair (Kappa agreement, K = 24.0%, 95% CI = 16.9-30.5%, P = 0.037). Of positive (n = 63), inconclusive (n = 8) and negative (n = 3) status of animals at SICTT, 82.54% (n = 52), 62.50% (n = 5), and 33.33% (n = 1) were found to be bTB positive respectively through this ancillary test. This test notably corroborates to TST result. A considerable number of inconclusive TB status animals were found to be positive through this gamma interferon assay. Therefore, this test could be used as an ancillary test with TST to maximize the proportion of bTB estimation in the infected cattle herd for early detection of zoonotic tuberculosis in Bangladesh before transmission at the animal-human interface.


Subject(s)
Cattle Diseases , Mycobacterium bovis , Tuberculosis, Bovine , Humans , Cattle , Animals , Tuberculosis, Bovine/diagnosis , Tuberculin Test/veterinary , Tuberculin Test/methods , Interferon-gamma , Bangladesh , Hematologic Tests/veterinary , Tuberculin
19.
Vet Res ; 54(1): 55, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37403088

ABSTRACT

The diagnostic methods for granting and maintenance of the official tuberculosis-free (OTF) status and for intra-Community movement of cattle are the tuberculin skin tests (single or comparative) and the interferon-γ (IFN-γ) release assay (IGRA). However, until now, IGRAs have been primarily applied in infected farms in parallel to the skin test to maximize the number of infected animals detected. Therefore, an evaluation of the performance of IGRAs in OTF herds to assess whether if their specificity is equal to or higher than that of the skin tests is needed. For this, a panel of 4365 plasma samples coming from 84 OTF herds in six European regions (five countries) was assembled and analysed using two IGRA kits, the ID Screen® Ruminant IFN-g (IDvet) and the Bovigam™ TB Kit (Bovigam). Results were evaluated using different cut-offs, and the impact of herd and animal-level factors on the probability of positivity was assessed using hierarchical Bayesian multivariable logistic regression models. The percentage of reactors ranged from 1.7 to 21.0% (IDvet: S/P ≥ 35%), and 2.1-26.3% (Bovigam: ODbovis-ODPBS ≥ 0.1 and ODbovis-ODavium ≥ 0.1) depending on the region, with Bovigam disclosing more reactors in all regions. The results suggest that specificity of IGRAs can be influenced by the production type, age and region of origin of the animals. Changes in the cut-offs could lead to specificity values above 98-99% in certain OTF populations, but no single cut-off yielding a sufficiently high specificity (equal or higher than that of skin tests) in all populations was identified. Therefore, an exploratory analysis of the baseline IFN-γ reactivity in OTF populations could help to assess the usefulness of this technique when applied for the purpose of maintaining OTF status.


Subject(s)
Cattle Diseases , Mycobacterium bovis , Tuberculosis, Bovine , Cattle , Animals , Interferon-gamma Release Tests/veterinary , Bayes Theorem , Sensitivity and Specificity , Tuberculosis, Bovine/diagnosis , Tuberculin Test/veterinary , Interferon-gamma
20.
Res Vet Sci ; 161: 15-19, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37301049

ABSTRACT

Bovine tuberculosis (bTB), a neglected zoonotic disease caused by Mycobacterium bovis is being reported worldwide. The present work was carried out from December 2020 to November 2021 to assess the prevalence and risk factors of bTB in peri-urban and urban dairy farms of Guwahati, Assam, India. A questionnaire was used to collect data on knowledge about bTB on 36 farms, and ten animals per farm were screened by single intradermal comparative cervical tuberculin test (SICCT) to determine the prevalence of bTB, giving a total of 360 animals. The demographic data of the farmers revealed that 61.1% respondents were illiterate, 66.7% had no awareness about bovine tuberculosis and 41.7% consumed unpasteurised milk and milk products. SICCT showed that 38 cattle from 18 of the farms were positive reactors for bTB, yielding an overall animal level prevalence of 10.55% (95% confidence interval (CI = 7.58-14.2%) and a 50% herd prevalence (95% CI 32.9-67.1%). Animals 5 years and above were found to be more likely to be positive for bTB (17.18%). The study highlighted the widespread prevalence of bovine tuberculosis in peri-urban and urban dairy farms of Guwahati which gives a picture also about other major cities of India. Hence, it is of utmost importance to undertake a comprehensive epidemiological study in such cities for effective control and prevention of bTB in a one health approach.


Subject(s)
Cattle Diseases , Mycobacterium bovis , Tuberculosis, Bovine , Cattle , Animals , Tuberculosis, Bovine/epidemiology , Tuberculosis, Bovine/prevention & control , Farms , Prevalence , Cities/epidemiology , Dairying , Risk Factors , Tuberculin Test/veterinary , India/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL